Eur J Clin Pharmacol (2012) 68:553-560
DOI 10.1007/s00228-011-1174-5

CLINICAL TRIAL

Effect of Ginkgo biloba special extract EGb 761
on human cytochrome P450 activity: a cocktail
interaction study in healthy volunteers

G. Zadoyan - D. Rokitta - S. Klement - A. Dienel -
R. Hoerr - T. Gramatté - U. Fuhr

Received: 20 September 2011 /Accepted: 15 November 2011 /Published online: 21 December 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract

Purpose We assessed the human in vivo metabolic drug
interaction profile of Ginkgo biloba extract EGb 761® with
respect to the activities of major cytochrome P450 (CYP)
enzymes.

Methods A single-center, open-label, randomized, three-
fold crossover, cocktail phenotyping design was applied.
In random order, the following treatments were adminis-
tered to 18 healthy men and women for 8 days each: placebo
twice daily, EGb 761® 120 mg twice daily, and EGb 761®
240 mg in the morning and placebo in the evening. In the
morning of day 8, administration was performed together
with the orally administered phenotyping cocktail (enzyme,
metric): 150 mg caffeine (CYP1A2, paraxanthine/caffeine
plasma ratio 6-h postdose), 125 mg tolbutamide (CYP2C9,
plasma concentration 24-h postdose), 20 mg omeprazole
(CYP2C19, omeprazole/5S-hydroxy omeprazole plasma ratio
3-h postdose), 30 mg dextromethorphan (CYP2D6, dextro-
methorphan/dextrorphan plasma ratio 3-h postdose), and
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2 mg of midazolam (CYP3A, plasma concentration 6-
h postdose). Formally, absence of a relevant interaction
was assumed if the 90% confidence intervals (Cls) for
EGb 761®/placebo ratios of the metrics were within the
0.70—1.43 range.

Results EGb 761®/placebo ratios for phenotyping metrics
were close to unity for all CYPs. Furthermore, respective
Cls were within the specified margins for all ratios except
CYP2C19 for EGb 761® 120 mg twice daily (90% CI
0.681-1.122) and for CYP2D6 for EGb 761® 240 mg once
daily (90% CI 0.667—1.281). These findings were attributed
to the intraindividual variability of the metrics used. All
treatments were well tolerated.

Conclusion EGb 761® has no relevant effect on the in vivo
activity of the major CYP enzymes in humans and therefore
has no relevant potential to cause respective metabolic
drug—drug interactions.

Keywords Cytochrome P450 - Ginkgo - EGb 761%® -
Cocktail interaction

Introduction

Ginkgo biloba extract is a popular herbal remedy used for a
variety of disorders. EGb 761®' special extract is a dry
extract from Ginkgo biloba leaves (drug-extract ratio 35—
67:1) that has been adjusted to 22.0-27.0% ginkgo flavo-
noids and 5.0—-7.0% terpene lactones consisting of 2.8-3.4%
ginkgolides A, B, C; and 2.6-3.2% bilobalides, with a
ginkgolic acid content <5 ppm [1]. EGb 761® interferes
with various pathomechanisms relevant to dementing

"' EGb 761® is the active substance of Tebonin® (Dr. Willmar Schwabe
GmbH & Co. KG, Karlsruhe, Germany)
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disorders [2—4]. A large number of clinical trials suggest that
Ginkgo biloba extract (GBE) has beneficial effects on mem-
ory, cognition, and the vascular system [5-9]. For a herbal
drug to be taken by elderly people, who often have several
chronic diseases, the ability of GBE to cause metabolic
drug—drug interactions should be known. In fact, available
data for GBE effects on cytochrome P450 activity in vitro
and in vivo from animal and human studies is inconsistent.
In vitro studies in rat liver microsomes showed inhibitory
effects of GBE on some CYPs [10-12], whereas both inhi-
bition [13, 14] and induction [15—17] was reported for in
vivo studies. In vitro experiments carried out in human liver
microsomes suggested that GBE weakly inhibits human
CYP enzymes, e.g., CYP1A2 and CYP3A [18]. Yale and
Glurich [19] found a weak inhibition of CYP2D6 activity
(20%) of Ginkgo biloba in vitro and moderate inhibition for
CYP2C9 and CYP3A. The effect of Ginkgo biloba was also
assessed on a panel of recombinant human CYPs (CYP1A2,
CYP2C9, CYP2C19, CYP2D6, CYP3A). Constituents of
Ginkgo biloba (ginkgolic acids I and II) significantly
inhibited CYP1A2 (ICs50=4.85 uM), CYP2C9 (IC50=2.25
uM), and CYP2C19 (ICs59p=4.3 uM) [20]. The extract tested
in the study reported here, EGb 761®, was also tested for its
ability to inhibit major human CYPs. Except for CYP2D6
(K;>900 pg/ml), the full extract was observed to strongly
inhibit CYP2C9 (K;=14+4 pg/ml) and, to a lesser extent,
CYPIA2 (K;=106+24 ug/ml), CYP2E1 (K;=127+42 ug/ml),
and CYP3A (K;=155+43 ug/ml) [21].

Whereas studies using enzymes from laboratory animals
and in vitro studies with human material may provide some
general information, especially with herbal drugs, it is dif-
ficult to predict drug—drug interactions in patients in this
way [22]. The interplay of multiple chemical moieties, each
of these subject to its own pharmacokinetics, limits the
applicability of mechanistic approaches for in vitro/in vivo
extrapolations. Available in vivo studies in humans indicate
that GBE has no effect on the hepatic microsomal drug
oxidation system [23]. In a clinical trial with 12 healthy
volunteers, no significant effect on CYP1A2, CYP2D6,
CYP2E1, and CYP3A activity for Ginkgo biloba was found
[24]. Another clinical study with 12 healthy volunteers
assessed the influence of GBE on CYP2D6 and CYP3A
activity using the probe substrates dextromethorphan (DEX)
and alprazolam, respectively. No differences were observed
between baseline and post-GBE treatment [25]. A pharma-
cokinetic study in healthy volunteers conducted with diaze-
pam as a substrate of CYP2C19 also did not provide
evidence for a herb—drug interaction [26]. Izzo and Ernst
[27] reviewed the literature (Medline, Cochrane Library and
Embase) to determine the possible interactions between
seven popular herbal medicines, including ginkgo. They sum-
marized from about 128 case reports and 80 clinical trials that
an effect on CYP enzymes by ginkgo seems unlikely.
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In summary, despite limited in vivo data supporting the
absence of major effects, it cannot be excluded that EGb
761® may alter the activity of CYP enzymes in patients. The
objective of our study was to quantitatively assess the in
vivo herbal drug—drug interaction potential of EGb 761®
with respect to the five major human drug-metabolizing
CYP enzymes.

Materials and methods

Study participants The study (EudraCT number 2008-
005686-63) was approved by the Ethics Committee of the
Chamber of Physicians of Northrhine and the pertinent
regulatory authorities and conducted as defined in local
regulations, International Conference on Harmonisation of
Technical Requirements for Registration of Pharmaceuticals
for Human Use (ICH-GCP), Directive 2001/20/EC, and in
accordance with the Declaration of Helsinki. Eighteen
healthy volunteers gave written informed consent to partic-
ipate in the study. Participants were considered to be in good
health on the basis of medical history, physical examination,
vital signs measurement, electrocardiogram (ECG), and
clinical laboratory tests. Volunteers were required to be
Caucasian, of either gender, aged between 18 and 55 years,
to have a body mass index (BMI) between 19 and 29 kg/m?,
to be a nonsmoker, and (if female) be and stay nonpregnant
and nonlactating. Drugs other than the study medication
(within 2 weeks prior to study start), usual consumption
of >50 g alcohol per day, illicit drugs, and concomitant intake
of alcohol, methylxanthines, or grapefruit products (72 h before
first study drug administration until 48 h after last study drug
administration) was prohibited.

Study design The study had an open-label, single-center,
randomized, threefold cross-over design. The following
treatments were administered for § days each: placebo twice
daily (treatment A), EGb 761® 120 mg twice daily (treat-
ment B), and EGb 761® 240 mg in the morning and placebo
in the evening (treatment C). In the morning of day 8§,
administration was performed together with the orally ad-
ministered phenotyping cocktail: 150 mg caffeine (CAF)
(three tablets of Percoffedrinol®, Lindopharm GmbH,
Germany), 125 mg of tolbutamide (TOL) (one fourth of a
tablet of Tolbutamide 500 mg, Actavis UK Limited, UK),
20 mg omeprazole (OME) (one tablet Omeprazol-
ratiopharm® NT 20 mg, ratiopharm GmbH, Germany),
30 mg DEX hydrobromide (one capsule Hustenstiller-
ratiopharm®, ratiopharm GmbH, Germany). Administration
of 2 mg midazolam (MID) (Dormicum® V Injektionslésung,
Roche Pharma AG, Germany) orally with 120 ml of water
was administered 1 min thereafter. The three study periods
were separated by a washout phase of at least 14 days between
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cocktail administrations. On each day, drug administration
took place between 7:00 and 9:00 a.m. and between
7:00 and 9:00 p.m., with an interval of exactly 12 h between
doses. For an individual participant, the same time of study-
drug administration was used for all periods. Participants
fasted from 2 h before until 2 h after evening dose on day 7
and 8 and at least 9 h before until 6 h after administration in the
morning of day 8 and from 2 h before until 2 h after evening
dose on day 8. Blood samples to check for exposure/compli-
ance and steady-state conditions (plasma concentrations of the
four terpene lactones bilobalide, ginkgolide A, B, and C) were
collected approximately 10 min prior to the 9th, 13th, and 15th
dose of EGb 761® or placebo. Blood samples for phenotyping
agents [to determine CAF, paraxanthine (PAX), TOL, OME,
5-hydroxy OME (5-OH-OME), DEX, dextrorphan (DOR),
and MID] were collected via an indwelling catheter into
9-ml Li-Heparin Monovettes® (Sarstedt) on day 8 approx-
imately 10 min prior to dosing of the cocktail and 3, 6, and
24 h thereafter.

Handling of pharmacokinetic samples Immediately after
withdrawal, blood samples for compliance were cooled in
ice water, centrifuged for 10 min at 4°C at 2.000 g. To
analyze terpene lactones as pharmacokinetic marker constit-
uents of EGb 761®, the supernatant plasma was transferred
into two polypropylene tubes, acidified with hydrochloric
acid (to stabilize terpene lactones), and stored <—20°C until
analysis. Blood samples drawn for phenotyping agents were
handled the same way except that no hydrochloric acid was
added and storing temperature was <—65°C.

Sample preparation for analysis After thawing, plasma
samples (200 ul) were precipitated with 400 pl acetonitrile
(ACN) for the CAF, PAX, and TOL assays. For this method,
two internal standards [20 pl CAF-d3 (300 ng/ml) and 20 ul
TOL-d9 (300 ng/ml) dissolved in ACN] were added. Pre-
cipitation was done the same way without an internal stan-
dard for OME, 5-OH-OME, DEX, DOR), and MID assays,
respectively. After thorough mixing for 10 s, samples were
centrifuged for 10 min at room temperature at 20.800 g.
After centrifugation, 200 ul of supernatant were transferred
into screw-capped glass vials for liquid chromatography
tandem mass spectrometry (LC-MS/MS) analysis.

Quantification of phenotyping cocktail substances Plasma
concentrations of CAF, PAX, and TOL were quantified on
an API 5000 with QJet™ Jon Guide (Applied Biosystems,
Foster City, CA, USA) LC-MS/MS. The effluent of LC
system (300 ml/min; 1200 series; Agilent, Waldbronn,
Germany) was delivered through a reversed-phase column
(125 x 2 mm, 3 pm; Nucleodur C18 Isis, Macherey-Nagel,
Dueren, Germany) eluted with a gradient solvent system
consisting of water (A) and methanol (B) (0 — 0.75

min A:B 80:20 — A:B 30:70, 0.75 — 4.00 min A:B
30:70, 4.00 — 5.00 min A:B 30:70 — A:B 80:20) to
the mass spectrometer. Plasma concentrations of OME,
5-OH-OME, DEX, DOR, and MID were determined on
the same system with the following modifications. The
effluent (300 ml/min) was delivered through a different
reversed-phase column (50 x 2.1 mm, 5 pm; Hypersil
Gold, Thermo Electron, Runcorn, UK) eluted with a
gradient solvent system consisting of 0.1% formic acid
(A) and methanol (B) (0 — 1.5 min A:B 95:5, 1.5 —
1.51 min A:B 95:5 — A:B 10:90, 1.51 — 6 min A:B
10:90 — 6 — 6.5 min A:B 10:90 — A:B 95:5, 6.5 —
10 min A:B 95:5) to the mass spectrometer. Caffeine,
CAF-d3, PAX, TOL, and TOL-d9 were detected by
positive electrospray ionization (ESI") in the positive
multiple reaction monitoring mode (MRM ") with the follow-
ing ion transitions [m/z]: 195.1 — 138.0 for CAF, 198.0 —
138.0 for CAF-d3, 181.1 — 124.0 for PAX, 271.3 — 91.1 for
TOL, and 280.2 — 90.8 for TOL-d9. CAF, CAF-d3, and PAX
were eluted after 2.17 and 1.99 min, respectively. TOL and its
internal standard were eluted after 2.55 min. The lower limits
of quantification (LLOQ) for CAF and PAX were 100 ng/ml
and for TOL 300 ng/ml. Instrument control and data acquisi-
tion were performed with the Analyst 1.4.2 software (Applied
Biosystems). Peak area ratios (analyte/internal standard) were
used for quantification, and calibration functions were calcu-
lated via a weighted (1/x) least squares linear regression. CAF
and PAX concentrations ranged from 0.2 to 2.5 pug/ml. Inter-
day precision was between 1.8% and 8.2% and 1.5% and
14.5%, respectively, and interday accuracy was between
—1.8% and 0.3 % and —5.3% and —0.8 %, respectively. TOL
concentrations ranged from 0.6 to 7.5 pg/ml. Interday preci-
sion was between 7.3% and 12.5%, and interday accuracy was
between —4.7% and 5.4%.

OME, 5-OH-OME, DEX, DOR, and MID were also
detected by ESI" in the MRM" mode, with the following
ion transitions [m/z]: 346.2 — 197.9 for OME, 362.2 —
214.1 for 5-OH-OME, 272.2 — 171.2 for DEX, 258.2 —
157.0 for DOR, and 326.1 — 291.0 for MID. Under these
conditions, OME and 5-OH-OME were eluted after 2.87
and 2.82 min, respectively. DEX, DOR, and MID were
eluted after 2.80, 2.74, and 2.84 min, respectively. LLOQ
for OME and 5-OH-OME was 3.3 ng/ml, for DEX and
DOR 0.17 ng/ml, and for MID 0.4 ng/ml. OME and 5-
OH-OME concentrations ranged from 3.3 to 360 ng/ml.
Interday precision was between 3.0% and 11.7% and 3.7%
and 12.2%, respectively, whereas interday accuracy was
between —7.4% and 8.4% and —5.4% and 7.0%, respective-
ly. DEX and DOR concentrations ranged from 0.17 to
18.36 ng/ml. The interday precision was between 5.4%
and 13.2% and 1.7% and 12.0%, respectively, whereas inter-
day accuracy was between —4.2% and 5.1% and —4.9% and
2.4%, respectively. Concentration ranges for MID were
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from 0.4 to 43.2 ng/ml. The interday precision was between
4.4% and 7.0%, whereas interday accuracy was between
—7.1% and 6.2%.

Quantification of terpene lactones Plasma concentrations of
the four terpene lactones bilobalide and ginkgolide A, B,
and C were quantified using LC-MS with electrospray in the
negative ionization mode (UltiMate 3000 with detector
MSQ+, Dionex, Sunnyvale, CA, USA). Mobile phase was
isocratic (0.9 ml/min) methanol/water/formic acid (500/500/
0.25 v/v) on a reversed-phase column [250 x 4.6 mm, 5 pm;
Luna C18(2), Phenomenex, Torrance, CA, USA] with post-
column addition of methanol/ammonium hydroxide solu-
tion 30% (98/2 v/v) with 0.1 ml/min. Bilobalide and
ginkgolide A, B, and C were detected by negative ESI
(ESI') in the selected ion monitoring (SIM) mode with the
following ion transitions [m/z]: 324.9 for bilobalide, 406.9
for ginkgolide A, 422.9 for ginkgolide B, and 439.0 for
ginkgolide C. Bilobalide and ginkgolide A, B, and C were
cluted after 5.4, 7.4, 8.0, and 5.1 min, respectively. LLOQ
for ginkgolide A was 1.2 ng/ml and for bilobalide and
ginkgolide B and C 0.6 ng/ml. Instrument control and data
acquisition were performed with Chromeleon software
(Dionex). Peak areas were used for quantification, and cal-
ibration functions were calculated via a least square linear
regression. Concentrations of bilobalide and ginkgolide A,
B, and C ranged from 0.7 to 7.9 ng/ml, 1.3 to 10.2 ng/ml,
1.0 to 6.2 ng/ml, and 0.6 to 1.1 ng/ml, respectively; interday
precision was between 1.0% and 10.2%, 0.6% and 12.2%,
1.1% and 10.0%, and 0.3% and 13.9%, respectively, with
interday accuracy between —4.9% and 8.0%, —6.9% and
0.0%, —11.7% and 7.7%, and —9.8% and 6.4%, respectively.

CYP phenotyping metrics Estimation of individual CYP
enzyme activity for each enzyme was based on established
phenotyping metrics. To establish CYP1A2 activity, the
molar PAX over CAF plasma concentration ratio at 6 h post-
dose was determined. CYP2C9 activity was estimated using
the 24-h postdose TOL plasma concentration. In vivo
CYP2C19 activity was measured using the molar plasma
OME over 5-OH-OME concentration ratio 3 h after OME
administration. The 3 h molar plasma concentration ratio of
DEX over DOR was used as an index of CYP2D6 activity.
Cytochrome P450 3A activity was estimated using the MID
plasma concentration 6 h after oral administration.

Statistical methods Evaluation of phenotyping metrics fol-
lowed the standard bioequivalence approach, with adjusted
margins. Absence of a clinically relevant interaction was
concluded if the 90% confidence interval (CI) for estimated
ratio Wt/ Hplacebo did not exceed a range of 0.70-1.43 for a
phenotyping metric. For an anticipated intrasubject multi-
plicative coefficient of variation (CV) of <25%, a sample
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size of n=14 would have allowed rejection of each null
hypothesis “relevant interaction present” with o« = 0.05
(two-sided) and a power of at least 90%. Four additional
participants were included to account for potential dropouts,
resulting in a sample size of n=18. There was no adjustment
for multiple comparisons because all assessments were con-
sidered as separate tests. Genotyping was done to identify
individuals with two nonfunctional alleles of CYP2C19 and/
or CYP2D6, and such individuals were excluded from analyses
for the respective metric because any interaction with regard to
a specific enzyme cannot occur in its absence.

Results

Demographic data Eighteen (eight men, ten women)
healthy volunteers were included in this study. Mean age
[+ standard deviation (SD)] was 32.6+£9.8 years, mean
height 172+8.8 cm, mean body weight 67.4+9.8 kg, and
mean body mass index (BMI) 22.7+2.3 kg/m®. All partic-
ipants completed the three planned study periods. Four
participants were poor metabolizers for CYP2D6 and were
excluded from analysis of EGb 761® effects on this enzyme;
no participant carried two alleles coding for nonfunctional
CYP2C19. One participant was also excluded from CYP3A
analysis because the concentration was below the LLOQ.

EGb 761% terpene lactone concentrations Concentrations
of terpene lactones from EGb 761® were measured from all
18 participants who received active treatment and completed
the study. Between days 5 and 8, geometric mean plasma
concentrations for the four terpene lactones showed only
small variations: mean values (+ SD) varied for ginkgolide
A between 2.78+1.64 ng/ml (day 5) and 2.92+1.78 ng/ml
(day 7), ginkgolide B between 2.25+0.90 ng/ml (day 5) and
2.34+1.06 ng/ml (day 8), ginkgolide C between 0.75+0.08—
0.13 ng/ml (days 8 and 7) and 0.76+0.14 ng/ml (day 5), and
bilobalide between 1.87+1.25 ng/ml (day 7) and 1.92+
1.37 ng/ml (day 5), indicating that steady state was reached.

Evaluation of CYP activity Based on data from all 18 par-
ticipants, the geometric mean ratios for the CYP1A2,
CYP2C9, and CYP3A metric were similar for all three
treatments (Table 1), with 90% CIs for ratios of the respec-
tive metrics being within the predefined acceptance range
(Table 2). Thus, EGb 761® showed neither inhibition nor
induction of these enzymes.

For CYP2C19, the lower limit of the 90% CI for its
OME-based metric ratio exceeded the predefined range
(0.681<0.70, see Table 2) in the 120-mg b.i.d. group. In
contrast, the 90% CI for the other dosing schedule of
240 mg EGb 761® q.d. was completely within the
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Table 1 Overview of geometric means for the metrics of cytochrome P450s (CYPs)
CYP Sample size Unit Geometric mean (90% confidence interval)

Placebo Test 1 Test 2
1A2 18 (ratio) 0.61 (0.50-0.74) 0.56 (0.48-0.66) 0.58 (0.47-0.72)
2C9 18 pg/ml 10.93 (8.71-13.71) 9.11 (7.03-11.79) 9.26 (7.37-11.65)
2C19 18 (ratio) 0.84 (0.61-1.16) 0.73 (0.50-1.05) 0.75 (0.54-1.05)
2D6 14 (ratio) 0.11 (0.06-0.17) 0.11 (0.07-0.17) 0.10 (0.07-0.15)
3A 17 ng/ml 2.51 (1.81-3.48) 2.62 (1.91-3.59) 2.46 (1.88-3.22)
Test 1, 120 mg Ginkgo biloba special extract EGb 761® twice daily (b.i.d.)
Test 2, 240 mg EGb 761® once daily (q.d.) plus placebo once daily
Placebo, placebo b.i.d.
predefined limits. Geometric mean ratios of CYP2D6 for all ~ Discussion

three treatments were similar (Table 1) based on data from
14 of 18 participants (four were poor metabolizers). Al-
though the point estimator (0.925) of the ratio for CYP2D6
in the 240-mg q.d. group was close to unity, the lower limit
of the 90% CI exceeded the predefined range (0.667<0.70,
see Table 2), whereas for the 120-mg EGb 761® b.i.d.
group, the 90% CI for the ratios was within the limits.

Safety results All 18 randomized participants received all
three kinds of study medication and were included in the
safety analysis set. Administration of EGb 761® 120 mg b.i.
d. and EGb 761® 240 mg q.d. was well tolerated when
given alone and together with the phenotyping cocktail.
Overall, 19 adverse events (AE) occurred during the study,
out of which 11 were considered as unlikely to be related to
study medication, with headache being the most frequent
event, for which a causal drug relationship could not be
excluded. Laboratory tests, 12-lead ECGs, physical exami-
nations, and vital signs did not evince any risk of EGb 761®
in any of the three treatment groups.

The aim of the study was to evaluate a possible effect of
EGb 761® intake on the activity of five major human CYP
enzymes using the cocktail-phenotyping approach. We pro-
vide evidence that EGb 761® has no clinically relevant
inhibitory or inducing effects toward the major human
CYP enzymes when administered at chronic therapeutic
doses in vivo. Phenotyping for drug-metabolizing enzymes
is defined as measuring its actual in vivo activity in an
individual and is performed by administering a selective
substrate for this enzyme and subsequently determining
appropriate pharmacokinetic parameters closely reflecting
enzyme activity [28]. Drugs within a cocktail should not
interfere with metabolism of other drugs in the cocktail [29].
Usually, a crossover design is used, with administration of
the respective phenotyping agents in both periods, com-
bined with coadministration of the drug to be tested on
one period [28].

This study was designed to combine a state-of-the-art
drug—drug-interaction cocktail [28, 30] with a minimal

Table 2 Summary of statistical analysis of cytochrome P450 (CYP) phenotyping metrics

CYP Sample size CV* (%) Ratio (point estimates and 90% confidence interval)

Test 1/placebo Test 2/placebo
1A2 18 18.5 0.930 (0.839, 1.032) 0.960 (0.866, 1.065)
2C9 18 24.1 0.834 (0.729, 0.953) 0.848 (0.741, 0.969)
2C19 18 454 0.874 (0.681, 1.122) 0.896 (0.702, 1.145)
2D6 14 51.9 1.024 (0.746, 1.407) 0.925 (0.667, 1.281)
3A 17 375 1.035 (0.838, 1.279) 0.977 (0.791, 1.207)

Log-transformed evaluation, results presented after back-transformation

Ratios derived from least squares geometric means

Test 1, 120 mg Gingko biloba special extract EGb 761® twice daily (b.i.d.)

Test 2, 240 mg EGb 761® once daily (q.d.) plus placebo once daily
Placebo, placebo b.i.d.

 intraindividual coefficient of variation
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sampling strategy. Based on estimation of the samples size
required, the number of participants was essentially suffi-
cient, although intraindividual variability was higher than
expected (Table 2). As far as is known, the substrates are
specific for individual CYPs, there are no interactions be-
tween these substrates, and the probe drugs in the coctail are
among those that may be considered as best validated [31—
34]. Exposure to EGb 761® has been monitored, and steady-
state conditions with regard to plasma concentrations of the
four terpene lactones were achieved. A maximum exposure
was realized with a 240-mg EGb 761® daily dose, and
exposure duration was sufficient to eventually induce CYPs,
as steady state for EGb 761® components was reached, and
1 week is typically sufficient to achieve full induction [35].
As to whether phenotyping metrics used were optimal, the
most recent European Medicines Agency draft guidelines on
the investigation of drug interactions (CPMP/EWP/560/95/
Rev. 1 — Corr.), published after completion of this study,
asks for determination of complete area under the
concentration-time-curve (AUC) values of phenotyping
substrates and discourages the use of single concentrations
and metabolic ratios. For simplicity, however, it is desirable
to use metrics that need single samples [28], as done in our
study. For either approach, it is decisive to what extent the
metric indeed reflects enzyme activity. The metrics used for
CYPI1A2 and CYP2C9 may be considered as fully validated
[28]. For CYP2C19, based on OME hydroxylation; and for
CYP2D6, based on DEX demethylation, validation of plas-
ma clearance or AUC of the substrates is not superior to
single-point measurements [28]. Single-point assessment for
CYP3A based on MID hydroxylation is still considered
appropriate [31, 32]. For CYPs1A2, 2C9, and 3A, 90%
ClIs were within the predefined acceptance range, indicating
the absence of herbal drug—drug interactions. This holds true
for both dosing schedules. For CYP2C19, the lower limit of
the 90% CI for its metric ratio was outside the predefined
range (Table 2) in the 120-mg group. Assuming this to be a
real effect of EGb 761® on CYP2C19 activity would arouse
suspicion that EGb 761® might induce CYP2C19 at the
120-mg b.i.d. dose only. Conspicuously, data of this study
obviously demonstrate that EGb 761® is free on any inhib-
itory effect directed toward CYP2C19, because the upper
limit of the 90% CI for its metric ratio is clearly positioned
within the predefined range (for both dosing schedules).
Some induction of OME metabolism by GBE was reported
by Yin et al. [36]; as volunteers with genes coding for
inactive CYP2C19 had the highest effect, this change cannot
be explained by CYP2C19 induction [37]. A pharmacoki-
netic study in healthy volunteers conducted with diazepam
as a substrate of CYP2C19 presented no herb—drug interac-
tion between GBE and diazepam [26]. Also, another clinical
study examined the possible effects of Ginkgo biloba on
single-dose pharmacokinetics of voriconazole in healthy

@ Springer

volunteers. There was also no evidence of induction of
CYP2C19 activity because of Ginkgo biloba treatment
[38]. The study reported here suggests that the observed
variability is the main reason for the lower CI range being
outside the predefined limits, as the intraindividual CV of
the CYP2C19 metric was the second highest of all CYPs
considered (45.4%, Table 2). This is supported by the fact
that the inability to formally exclude an interaction was
observed for only one of the two dosing schedules. As a
consequence, we concluded that there is no clinical rele-
vance of CYP2C19-related findings of the cocktail study
under consideration. A daily dose of 120 mg EGb 761® b.i.d.
does not affect CYP2C19 activity when administered over an
8-day period.

Similar considerations also apply for CYP2D6, where the
lower limit of the 90% CI for its metric ratio exceeded the
predefined range (Table 2), in this case only for the 240-mg
q.d. group. Assuming this to be a real effect of EGb 761®
would arouse suspicion that EGb 761® might affect
CYP2D6 activity in the direction of induction, whereas
there is clearly no inhibitory effect directed toward CYPD6.
Again, most probably, the variability observed is of key
relevance for the inability to formally reject the possibility
of an interaction, as the intraindividual CV of the CYP2D6
metric was the highest of all the CYPs considered (51.9%,
Table 2). Published data regarding a potential induction of
CYP2D6 by GBE has not been found. In principle,
CYP2D6 is not inducible in humans [39, 40]. A previous
clinical study of 12 healthy volunteers assessed the influ-
ence of EGb 761® on CYP2D6 and 3A activity. For probe
substrates DEX (CYP2D6 activity) and alprazolam (CYP3A
activity), no statistically significant differences were ob-
served between baseline and post-GBE treatment, indicating
a lack of effect on CYP2D6 and CYP3A [25]. Taking these
findings together, we conclude that there is no clinical
relevance of CYP2D6-related findings of the drug-cocktail
study under consideration.

In general, in vitro and in vivo studies produced
conflicting results [10—17]. In vitro studies with human
enzymes showed that Ginkgo biloba may inhibit CYPs
[18-21]. Such inhibition has been associated with ginkgolic
acids [20]. Variability in ginkgolic acid content of tested
extracts might therefore explain some of the observed var-
iabilities. EGb 761® contains <5 ppm ginkgolic acids. Tak-
ing all these contradictory data into account, however, in
humans, we could not confirm any of these findings for the
effect of EGb 761® on CYP activity following chronic
administration, whereas results of the study reported are in
accordance with published data from clinical studies
assessed in human participants with this, and other, Ginkgo
biloba preparation [23-26].

In summary, our data indicate that there is no inhibitory
effect of EGb 761® on any of the five human CYPs.
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Furthermore, our results suggest that EGb 761® does not
induce CYP1A2, 2C9, and 3A activity. For the noninducible
CYP2D6, 90% Cls exceeding the acceptance range for one
dosing schedule is meaningless. For CYP2C19, 90% Cls
exceeding the acceptance range toward an induction effect
was not attended by corresponding results of clinical drug—
drug-interaction studies. Thus, from a clinical point of view,
a relevant effect on activity of the CYPs tested could be ruled
out for both treatment regimens. Our results eliminate the need
for further in vitro or in vivo evaluation of particular CYP-
related drug—drug interaction studies with EGb 761®.
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