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Abstract

Calcium-regulated exocytosis is a ubiquitous process in eukaryotes, whereby secretory vesicles 

fuse with the plasma membrane and release their contents in response to an intracellular calcium 

surge1. This process regulates diverse cellular functions like plasma membrane repair in plants and 

animals2,3, discharge of defensive spikes in Paramecium4, and secretion of insulin from 

pancreatic cells, immune modulators from lymphocytes, and chemical transmitters from neurons5. 

In animal cells, serine/threonine kinases including PKA, PKC and CaM-kinases have been 

implicated in calcium-signal transduction leading to regulated secretion1,6,7. Although plants and 

protozoa also regulate secretion via intracellular calcium, the means by which these signals are 

relayed have not been elucidated. Here we demonstrate that the Toxoplasma gondii calcium-

dependent protein kinase 1 (TgCDPK1) is an essential regulator of calcium-dependent exocytosis 

in this opportunistic human pathogen. Conditional suppression of TgCDPK1 revealed that it 

controls calcium-dependent secretion of specialized organelles called micronemes, resulting in a 

block of essential phenotypes including parasite motility, host-cell invasion, and egress. This 

phenotype was recapitulated using a chemical biology approach, wherein pyrazolopyrimidine-

derived compounds specifically inhibited TgCDPK1 and disrupted the parasite life cycle at stages 

dependent on microneme secretion. Inhibition was specific to TgCDPK1, since expression of a 

resistant kinase mutant reversed sensitivity to the inhibitor. TgCDPK1 is conserved among 

apicomplexans and belongs to a family of kinases shared with plants and ciliates8, suggesting that 

related CDPKs may play a role in calcium-regulated secretion in other organisms. Since this 
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kinase family is absent from mammalian hosts, it represents a validated target that may be 

exploitable for chemotherapy against T. gondii and related apicomplexans.

The apicomplexan parasite T. gondii has been used as a model for the secretion of numerous 

proteins from specialized organelles, called micronemes, in response to increased 

intracellular calcium9. Microneme secretion can be blocked by broad-spectrum serine/

threonine kinase inhibitors, and this is not circumvented by addition of calcium ionophores, 

suggesting kinases mediate the transduction of the calcium signal10. Calcium-dependent 

protein kinases (CDPKs), have been identified in plants, ciliates, and apicomplexans, but are 

absent in fungi and animals11. CDPKs can respond to calcium when their calmodulin-like 

domain binds calcium and releases the kinase domain from an inactive conformation11. 

Recent structural studies illustrate a novel mechanism of CDPK activation that results from 

a large-scale intramolecular rearrangement12. Apicomplexans contain a diverse family of 

CDPKs, some of which have canonical domain structures, while others are more diverse8. In 

Plasmodium, the causative agent of malaria, gene knockouts of several individual CDPKs 

have revealed important roles at specific developmental stages8. For example, disruption of 

CDPK4 in Plasmodium berghei asexual stages leads to differentiation defects in male 

gametocytes13; a block which currently precludes analysis of its role in other motile stages 

such as sporozoites. The orthologue of this kinase is called TgCDPK1 in T. gondii and a 

previous study suggested the ability of KT5926, a pan-specific S/T kinase inhibitor related 

to staurosporine, to block cell attachment may result from inhibition of this target14. 

Although KT5926 inhibits TgCDPK1 activity in vitro14, it is unlikely to provide specific 

inhibition in the parasite, which harbors 11 distinct CDPKs8 that control largely unexplored 

cellular pathways.

To precisely define the role of TgCDPK1 in the parasite life-cycle, we generated a 

conditional knockout (cKO) using the tetracycline trans-activator system, previously 

developed for the study of essential genes in Toxoplasma15. We first engineered a strain 

expressing a HA9-tagged allele of TgCDPK1 driven by a modified TetOSAG1 promoter, 

permitting repression of the transgene during growth in anhydrotetracycline (ATc; Fig. 1a). 

The endogenous TgCDPK1 gene was then replaced by double homologous recombination, 

generating the cKO as confirmed by PCR analysis (Fig 1a,b). Different alleles, expressed 

under the SAG1 constitutive promoter, were subsequently introduced into the cKO to test for 

complementation. Growth of the cKO in ATc resulted in nearly undetectable levels of the 

HA9-tagged regulatable protein, while the c-Myc-tagged constitutive proteins were stably 

expressed in the complemented strains (Fig. 1, c and d). As a first assessment of the 

essentiality of TgCDPK1, we tested the ability of parasites to form plaques on host cell 

monolayers. Both WT and cKO lines grew normally in the absence of ATc, while the 

presence of ATc led to a complete block in plaque formation in only the cKO (Fig. 1e). The 

phenotype was fully rescued when complemented with the wild type allele (cKO/WT; Fig. 

1e) but not by a mutant allele where the catalytic aspartate was mutated to an alanine 

(cKO/D174A; Fig. 1e), indicating that TgCDPK1 function requires an active kinase.

Motility in apicomplexan parasites depends on a unique system whereby adhesins contained 

in the micronemes are released onto the apical end of the parasite and translocated to the 
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posterior of the cell, thus propelling the parasite forward16. Down regulation of TgCDPK1 

by addition of ATc during intracellular growth did not affect parasite replication, yet 

parasites harvested from such cultures were significantly impaired in all forms of gliding 

motility (Fig. 2a). Those few cKO parasites that where able to glide, presumably due to 

leaky suppression, exhibited wild type speeds of motility, indicating that the motor complex 

itself was unaffected (Supplementary Fig.1). Gliding motility is normally prerequisite for 

cell invasion16 and consistent with this, the cKO experienced greater than 90% reduction in 

invasion when grown in the presence of ATc (Fig. 2b). Just as with plaque formation, 

invasion could be rescued by expression of the constitutive WT allele, but not the kinase-

dead allele (Fig. 2b). Interestingly, suppression of TgCDPK1 also resulted in a strong 

reduction in host cell attachment (Fig. 2b), suggesting it affects an early step in invasion.

Egress from host cells depends on many of the same cellular pathways required for invasion, 

and this pathway may naturally be triggered by accumulation of the plant-like hormone 

abscisic acid17. The cKO parasites grown in the absence of ATc, behaved like WT and 

rapidly egressed from host cells in response to calcium ionophore treatment, an artificial but 

potent trigger of egress18 (Fig. 2c, Supplementary Movie 1, Supplementary Table 1). In 

contrast, virtually all cKO parasites grown in the presence of ATc did not respond to 

ionophore, remaining immotile within the vacuole (Fig. 2c, Supplementary Movie 2, 

Supplementary Table 1). Together these experiments indicate that TgCDPK1 is essential for 

the transduction of the calcium signals regulating gliding motility, invasion, and egress.

All of the above TgCDPK1-dependent phenotypes share a requirement for adhesins stored 

in micronemes, which undergo calcium-regulated exocytosis, in contrast to other secretory 

compartments such as dense granules, which are constitutively released9. Interestingly, 

TgCDPK1 shares a similar expression pattern to known microneme proteins, as detected by 

microarray analysis of synchronized parasites (95% C.I.; M. Behnke and M. White 

unpublished data). Together, these data suggested that TgCDPK1 might regulate microneme 

secretion, releasing, among other proteins, the well-studied adhesin MIC29. Following 

secretion onto the cell surface, MIC2 is translocated to the cell posterior and shed from the 

parasite surface by proteolysis, allowing for the detection of secreted MIC2 in the 

supernatant19. As expected, MIC2 was detected in the supernatant of WT parasites 

stimulated with ethanol, which is another potent secretagogue that is thought to act through 

phospholipase C20 (Fig. 3a). In contrast, the amount of MIC2 secreted by the cKO parasites 

grown in the presence of ATc was nearly undetectable, demonstrating a severe defect in 

calcium-regulated exocytosis (Fig. 3a). Secretion of MIC2 was restored to wild type levels 

by the constitutive WT allele, but not by the kinase dead allele (Fig. 3a). Growth of the cKO 

in ATc did not affect dense granule release (Fig. 3a), demonstrating that TgCDPK1 

specifically regulates calcium-dependent exocytosis from micronemes, and not other 

secretory pathways.

Microneme secretion also plays an important role in parasite egress releasing the perforin-

like protein TgPLP1 that aids in permeabilization of the parasitophorous vacuole membrane 

(PVM)21. To assess the role of TgCDPK1 in controlling microneme secretion during egress, 

we generated WT and cKO lines expressing a constitutively secreted form of DsRed, 

allowing for the visualization of PVM integrity by live video microscopy. To avoid 
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premature rupture of the vacuole, parasites were treated with cytochalasin D to immobilize 

them and allow selective monitoring of the kinetics of PVM rupture by leakage of DsRed. 

As previously reported21, WT parasites rapidly permeabilized the PVM upon calcium-

ionophore treatment, releasing DsRed into the host-cell cytoplasm (Fig. 3b, Supplementary 

Movie 3). All WT vacuoles showed rapid PVM permeabilization (average 1.7 ± 0.5 min, 

s.d.), whereas approximately 30% of cKO parasites grown in the presence of ATc failed to 

rupture the PVM (Fig. 3c, Supplementary Movie 4; data not shown). Analysis of those cKO 

parasite vacuoles that did rupture, showed a significant delay in the timing and rate of 

DsRed release when compared to WT vacuoles (Fig. 3c, d). Collectively, these results 

demonstrate a requirement for TgCDPK1 in controlling the release of microneme contents 

including TgPLP1 during egress. Moreover, the inability of calcium-ionophore to 

circumvent the requirement for TgCDPK1, places this kinase as the critical transducer 

downstream of the calcium signal regulating microneme exocytosis.

Having established the crucial role of TgCDPK1, we took advantage of the atypical 

nucleotide-binding pocket of TgCDPK112 to develop a chemical biology approach to further 

evaluate the essential nature of this kinase. It has been previously reported that the amino 

acid residue at the “gatekeeper” position within the nucleotide binding pocket radically 

affects inhibition by pyrazolopyrimidine (PP1) derivatives, which have limited activity 

against most S/T protein kinases22. Insensitivity is conferred by bulky gatekeeper residues in 

nearly all kinases of both animal and parasite cells; however, kinases can be rendered fully 

sensitive by mutation to a small gatekeeper22 (Supplementary Table 2). Fortuitously, 

TgCDPK1 displays a glycine at this position, which is unique among canonical CDPKs (Fig. 

4a) and all other protein kinases in T. gondii (L. Peixoto and D. Roos, unpublished data). 

This finding predicted that wild type TgCDPK1 would be naturally sensitive to PP1-based 

inhibitors and, consistent with this a pilot screen of selected derivatives inhibited parasite 

lytic growth in vitro (Supplementary Fig. 2). Furthermore, purified TgCDPK1 enzyme was 

extremely sensitive to the compound 3-MP-PP1 (Fig. 4b), while mutation of the glycine 

gatekeeper to methionine shifted the sensitivity by more than 4 logs (Supplementary Table 

2). Complementation of the TgCDPK1 cKO with either wild type or gatekeeper-mutant 

kinase alleles (cKO/WT and cKO/G128M, respectively) restored plaque formation, 

demonstrating that the mutation had no major deleterious effect (Supplementary Fig. 3). 

When treated with PP1 analogs, both WT and cKO/WT parasites were strongly inhibited in 

host cell attachment and invasion (Fig. 4c), consistent with a recent report that appeared 

online during the revision of the present work 23. In contrast to this recent report, which 

failed to provide quantitative analysis of secretion 23, we observed that microneme secretion 

by extracellular parasites and ionophore-induced egress (Supplementary Fig. 4) were also 

strongly inhibited by PP1 analogs (Fig. 4d). The reversal of these phenotypes in the G128M 

mutant confirms that the primary in vivo target of PP1 derivatives is TgCDPK1. Consistent 

with these effects, 3-MB-PP1 and the related compound 3-BrB-PP1, blocked the ability of 

the parasite to lyse host cell monolayers (Fig. 4e,f), demonstrating the essential role of 

TgCDPK1 during in vitro infection. Chemical genetic studies indicate that TgCDPK1 acts 

independently of the previously characterized cGMP-dependent kinase (PKG), the primary 

target of trisubstituted pyrole and imidazopyridine kinase inhibitors that also block 

microneme secretion in T. gondii24,25. Correspondingly, PKG is predicted to be insensitive 
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to PP1 derivatives (Fig. 4a)22. Collectively these findings indicate that both kinases are 

essential for efficient microneme secretion, possibly reflecting a hierarchical control of this 

important cellular pathway.

Our findings demonstrate that TgCDPK1 acts downstream of the second messenger calcium 

to regulate exocytosis in T. gondii, thus controlling several essential biological steps in the 

life cycle. Nearly all mammalian protein kinases normally show very low sensitivity to PP1 

derivatives22, making them potential lead compounds for development of specific anti-

parasitic drugs. In addition, CDPKs may regulate calcium-dependent exocytosis in related 

parasites or other organisms like ciliates and plants, representing an evolutionary precedent 

to calmodulin-dependent kinases that regulate exocytosis in animals.

METHODS SUMMARY

Growth of host cells and parasite strains

T. gondii tachyzoites were maintained by growth in human foreskin fibroblasts, as 

previously described26. Complemented strains were grown in 3μM pyrimethamine (Sigma) 

and ATc (Clontech) was added (1.5μg/ml) for 72h unless otherwise indicated. For inhibitor 

studies, parasites were incubated in the indicated concentration of 3-MB-PP1, 3-BrB-PP1, or 

DMSO control, for 20 min at RT, prior to use in assays.

Cellular assays

Plaque formation and invasion assays were performed as previously described27,28. 

Microneme secretion was assayed by monitoring the release of MIC2 into the culture 

medium following stimulation with 3%FBS and 2% ethanol, 15 min at 37°C, as previously 

described20. Samples were resolved by SDS-PAGE, blotted and probed with mouse-α-MIC2 

(mAb 6D10), and mouse-α-GRA1 (mAb Tg17-43) and quantified by phosphoimager 

analysis. Egress and PVM permeabilization were monitored by video microscopy following 

stimulation with 8 μM calcium-ionophore A23187 (Calbiochem). When noted, parasites 

were pre-treated for 10 min with 2μM Cytochalasin D (Calbiochem) to block motility. The 

extent and rate of egress, as well as degree of vacuole permeability was quantified using 

Openlab v. 4.1 (Improvision) as described in the supplementary materials. Host cell lysis 

was assayed by staining monolayers with crystal violet, 3 days after infection at an MOI of 

1.

METHODS

Growth of host cells and parasite strains

T. gondii tachyzoites were maintained by growth in monolayers of human foreskin 

fibroblasts (HFFs) cultured in Dulbecco’s modified Eagle’s medium containing 10% 

tetracycline-free fetal bovine serum (HyClone) , 2mM glutamine, 10mM HEPES (pH 7.5), 

and 20μg/ml gentamicin. Chloramphenicol (20μg/ml; Sigma), phleomycin (5 μg/ml; 

InvivoGen), ATc (1.5 μg/ml; Clontech), and pyrimethamine (3 μM; Sigma) were added to 

the media as indicated, and for the maintenance of merodiploid or complemented strains. 

When noted, parasites were treated with ATc for 72h.
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Strain construction

The TgCDPK1 cKO was constructed using tetracycline transactivator system15, as 

previously described for TgALD126. Briefly, TgCDPK1 (Genbank accession number 

AF333958) was cloned with a C-terminal HA9-tag into the pTetO7SAG1 vector (obtained 

from Dominique Soldati), downstream of the inducible promoter, and the CAT selectable 

marker driven by the SAG1 promoter was introduced at a different site. The TATi-1 strain 

(obtained from Dominique Soldati), used as the wild type (WT) background in this study, 

was transfected with the regulatable construct, and stable merodiploids were selected with 

chloramphenicol29, and cloned by limiting dilution. To generate the knockout construct the 

Ble selectable marker30 was flanked with 1.5kb upstream of the TgCDPK1 start codon and 

1.5kb downstream of the stop codon, followed by a YFP expression cassette26. The 

knockout construct was linearized and transfected into the merodiploid strain and stable 

pools were selected through two rounds of phleomycin selection30. Sorting for YFP-

negative parasites was used to enrich for successful knockouts and individual clones were 

isolated by limiting dilution. Knockout of the endogenous TgCDPK1 gene was confirmed in 

clones by polymerase chain reaction, using primers against consecutive exons and the 

intervening intron, to distinguish between the endogenous and regulatable genes. 

Complementing plasmids were constructed by cloning TgCDPK1 with a carboxyl-terminal 

c-Myc-tag, under the regulation of the SAG1 promoter. The DHFR selectable marker 

conferring pyramethamine resistance31 was cloned into the complementing vectors. For the 

inhibitor studies, SAG1 was replaced with the 1.5kb region preceding the TgCDPK1 start 

codon. Co-transfection with pDHFR-TS31 was used to generate stable clones. Mutations 

were generated by site directed mutagenesis. Complementing plasmids were transfected into 

the cKO, stable lines were selected with pyramethamine, and clones were isolated by 

limiting dilution. To monitor PVM permeabilization, WT and cKO strains were transfected 

with p30-DsRed21 (obtained from Florence Dzierszinski) and pDHFR-TS for isolation of 

stable transgenic lines as described above.

Plaque assay

Plaque assays were performed as previously described27. Confluent monolayers of human 

foreskin fibroblasts in 6-well plates were infected with 200 parasites per well in media with 

or without 1.5μg/ml ATc (Clontech). 24 h post infection additional media was added reduce 

the concentration of ATc to 1μg/ml. Monolayers were fixed 7 days post infection and 

stained with crystal violet. Experiments were repeated three times with triplicate wells / 

experiment.

Invasion assay

Parasites were harvested in invasion media (Dulbecco’s modified Eagle’s medium 

containing 20 mM HEPES, pH 7.5, supplemented with 3% FBS). 5 × 106 parasites in a 

250μl volume were added to sub-confluent HFF monolayers in 24-well plates and allowed to 

invade for 20 min. Monolayers were then fixed and stained as previously described28 to 

distinguish extracellular from total parasites. Three experimental replicates were performed 

for each strain in each of three separate experiments and parasite numbers per field were 
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normalized to host-cell nuclei. For the inhibitor studies, parasites were incubated in 5μM 3-

MB-PP1 or vehicle-only control (DMSO), for 20 min at room temperature, prior to invasion.

Host-lysis assay

Parasites were harvested and incubated in the indicated inhibitor or DMSO concentrations 

for 20 min at room temperature, prior to incubation with confluent monolayers in 96-well 

plates at an MOI of 1. For experiments comparing complemented strains, parasites were 

grown in 1.5μg/ml ATc for 72 h prior to harvesting. Parasites were allowed to invade for 1 

hour, monolayers were washed 3-5 times and fresh media containing 1μg/ml ATc was 

added. The infection was allowed to progress 3 days before fixing with 70% ethanol and 

staining with crystal violet. Host-cell lysis was determined by measuring absorbance at 

570nm in an EL800 microplate reader (BioTek Instruments, Inc.).

Immunofluorescence microscopy

Intracellular parasites were stained as previously described26. MIC2 staining within the 

micronemes required a 2 min permeabilization with cold 100% ethanol on ice. Staining was 

performed with rabbit-α-HA9 (Invitrogen) and mouse-α-MIC2 (mAb 6D10), followed by 

Alexa564-goat-α-rabbit IgG (Invitrogen), Cy5-goat-α-mouse IgG (Jackson) and Sytox green 

(Invitrogen) for the nuclear stain. Images were collected on a Zeiss LSM 510 confocal 

microscope.

Video microscopy and quantitation of gliding motility

Gliding and egress were analyzed by video microscopy as previously described32. For 

gliding, 75 images were taken with exposure times ranging from 50-100 milliseconds with 1 

second between exposures. Images were collected and combined into composites using 

Openlab v. 4.1 (Improvision). ImageJ was used to analyze the images. The ParticleTracker 

plug-in was used to track cell motility and Cell Counter was used to quantify percent 

motility.

Ionophore-induced egress and PVM permeabilization

Egress and PVM permeabilization were monitored by video microscopy as described above. 

Where noted, parasites were pre-incubated for 10 min in media containing 2μM 

Cytochalasin D (Calbiochem) at 37°C. All dishes were allowed to equilibrate for 5 min on 

the heated stage, prior to the addition of 8μM calcium ionophore A23187 (Calbiochem). 

Vacuoles were imaged for up to 10 min after the addition of ionophore. To quantify vacuole 

permeabilization the fluorescence intensity within a 80μm2 region of each vacuole was 

measured using Openlab. The values for each vacuole were normalized against the starting 

(100%) and ending (0%) values for that particular vacuole, and the derivative of the curve 

was used to find the maximal rate of fluorescence loss and the time when that rate occurred. 

For the inhibitor studies, parasites were pre-treated with 5μM 3-MB-PP1 or vehicle-only 

control (DMSO) for 20 min at 37°C, prior to the addition of ionophore.
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MIC2 secretion assay

Microneme secretion was assayed as previously described20 by monitoring the release of 

MIC2 into the culture medium. Secretion was stimulated by treatment with 3%FBS and 2% 

ethanol, 15 min at 37°C. Parasite lysis was monitored by the release of actin into the 

medium and remained undetectable in all experiments presented. GRA1 secretion was used 

as a control for constitutive secretion. Samples were resolved by SDS-PAGE, blotted and 

probed with mouse-α-MIC2 (mAb 6D10), rabbit-α-TgACT1, and mouse-α-GRA1 (mAb 

Tg17-43, kindly provided by Marie France Cesbron, Genoble, France). Quantitation was 

performed by densitometry using a FLA-5000 phosphoimager (Fuji Medical Systems). For 

the inhibitor studies, parasites were pre-treated with 5μM 3-MB-PP1 or vehicle-only control 

(DMSO) for 20 min at 37°C, prior to stimulation.

In vitro IC50 determination

Full-length His-tagged TgCDPK1 was cloned into the pET-22b(+) vector (Novagen) and 

expressed in Escherichia coli BL21. Point mutations were generated using QuickChange 

site-directed mutagenesis (Stratagene). Proteins were induced with IPTG and purified using 

nickel-affinity chromatography. Activities of WT and G128M TgCDPK1 were determined 

using the CycLex CaM Kinase II Assay Kit (MBL International Corporation) according to 

manufacturer’s instructions. c-Src proteins were expressed and assayed in the presence of 

various concentrations of the inhibitors as previously described33. IC50 was determined by 

fitting dose response curve with the GraphPad Prism software.

Statistics

Experiments were repeated three or more times and statistical analyses conducted in Excel 

using the Students’s test (unpaired, equal variance, two-tailed test) for comparisons with 

data that fit a normal distribution or the Mann-Whitney test for non-parametric comparisons.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. TgCDPK1 is essential for the lytic cycle
a, Regulatable, HA9-tagged TgCDPK1 was added to wild-type (WT) to create a 

merodiploid (mDip). Endogenous TgCDPK1 was replaced with phleomycin resistance 

(bleR) to generate the cKO. Complementation with c-Myc tagged mutant alleles (denoted by 

cKO/“allele”). b, Multiplexed PCR analysis of TgCDPK1. c, Immunofluorescence analysis 

of the cKO +/−ATc; endogenous MIC2 (green), HA9-tag (red) and DNA (blue). d, 

Immunoblot of HA9-tagged regulatable and c-Myc-tagged constitutive TgCDPK1 in cKO 

and complemented strains +/− Atc. Aldolase, loading control. e, Plaque formation on 

fibroblast monolayers, +/− ATc for 7 days.
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Figure 2. TgCDPK1 is required for phenotypes associated with microneme secretion
a, Types of gliding motility as quantified by video microscopy. Student’s t test; *P < 0.05, 

mean ± s.e.m., N = 4 experiments. b, Invasion of fibroblasts by WT, cKO and 

complemented strains. Extracellular and intracellular parasites were differentially stained 

and enumerated as described in supplementary materials. Student’s t test; ***P<0.0005, 

**P<0.005, mean ± s.e.m., N = 3 experiments. c, Ionophore-induced egress of the cKO +/− 

ATc. Time stamp (min:sec) after calcium ionophore addition. See supplementary online 

videos.
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Figure 3. Calcium-dependent microneme secretion requires TgCDPK1
a, Western blot analysis of microneme protein MIC2 secretion following induction by 

ethanol for 15 min. GRA1 shows constitutive secretion of dense granules. Student’s t test; 

**P < 0.005, mean ± s.e.m., N = 3 experiments. b, Ionophore-induced permeabilization 

detected by vacuolar DsRed leakage monitored by fluorescence video-microscopy of strains 

90h + ATc . Time stamp (min:sec) after calcium ionophore addition. CytochalasinD added 

to prevent eggress. c-d, Quantification of maximal rate and timing of florescence loss from 

rupturing vacuoles. Mann-Whitney test; ***P < 0.0005, **P < 0.005, mean, N = 3 

experiments.
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Figure 4. PP1 derivatives specifically inhibit TgCDPK1 and block micronem-mediated functions
a, Alignment of the kinase sub-domain V highlighting the gatekeeper residue. b, Structures 

of 3-MB-PP1 and 3-BrB-PP1. c, Effect of 5μM 3-MB-PP1 on host cell invasion. Student’s t 

test; *P < 0.05, mean ± s.e.m., N = 3 experiments. d, Effect of 5μM 3-MB-PP1 on MIC2 

secretion. Student’s t test; *P < 0.05, mean ± s.e.m., N = 3 experiments. e-f, Effect of PP1 

derivatives on host lysis by T. gondii +/− 3-MB-PP1 (e) and 3-Br- PP1 (f). Mean ± s.e.m., N 

= 3 experiments.

Lourido et al. Page 14

Nature. Author manuscript; available in PMC 2010 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


