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a b s t r a c t

Design and optimization of microalgae processes have traditionally relied on the application of unsegregated 
mathematical models, thus neglecting the impact of cell-to-cell heterogeneity. However, there is experi-
mental evidence that the latter one, including but not limited to variation in mass/size, internal composition 
and cell cycle phase, can play a crucial role in both cultivation and downstream processes. Population bal-
ance equations (PBEs) represent a powerful approach to develop mathematical models describing the effect 
of cell-to-cell heterogeneity. In this work, the potential of PBEs for the analysis and design of microalgae 
processes are discussed. A detailed review of PBE applications to microalgae cultivation, harvesting and 
disruption is reported. The review is largely focused on the application of the univariate size/mass structured 
PBE, where the size/mass is the only internal variable used to identify the cell state. Nonetheless, the need, 
addressed by few studies, for additional or alternative internal variables to identify the cell cycle phase and/ 
or provide information about the internal composition is discussed. Through the review, the limitations of 
previous studies are described, and areas are identified where the development of more reliable PBE models, 
driven by the increasing availability of single-cell experimental data, could support the understanding and 
purposeful exploitation of the mechanisms determining cell-to-cell heterogeneity.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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Nomenclature

b m m( , ) Daughter distribution function, (ng-1).
B(m) Born rate of cells of mass m, (ng-1 mm-3 hr-1).
Ba Born rate due to aggregation, (ng-1 mm-3 hr-1).
Bb Born rate due to aggregates breakage, (ng-1 mm-3 hr-1).
Cj Concentration of jth nutrient in the medium 

( = =j NO ; j H PO1 23 2 4 ), (g m-3).
CO2 Dissolved O2 concentration in the growth medium, (g 

m-3).
CO2

max Maximum O2 concentration tolerated by algae medium, 
(g m-3).

d Equivalent diameter of the cell, (μm).
dc Critical diameter at which the cell is committed to di-

vide, (μm).
D Disappearance rate of cells of mass m, (ng-1 mm-3 hr-1).
Da Disappearance rate due to aggregation, (ng-1 mm-3 

hr-1).
Db Disappearance rate due to aggregates breakage, (ng-1 

mm-3 hr-1).
Dil Dilution rate, (hr-1).
ED z, Axial dispersion coefficient, (m2 s-1).
f m( ) Probability density that a cell of mass m divides when 

approaching critical mass, (/).
hi Distribution in terms of frequency for the mass class I 

for unit mass, (ng-1).
H I( )av Heavyside function accounting that cell division occurs 

only in the dark, (/).
Iav Average photosynthetically active radiation within the 

culture, (μE m-2 hr-1).
Idir Directed photosynthetically active radiation within the 

culture, (μE m-2 hr-1).
I0 Incident photosynthetically active radiation, (μE m-2 

hr-1).
KI or KI1 Half saturation constant in the light-dependent term of 

the growth kinetics, (μE m-2 hr-1).
KI2 Inhibition constant in the light-dependent term of the 

growth kinetics, (μE m-2 hr-1).
m Single cell mass, (ng).
mc Critical mass at which the cell is committed to di-

vide, (ng).
m Mass of the generic mother cell, (ng).
N or n Number of cells, (/).
p Position in the cell cycle, (/).
p m m( , )i Partitioning function for the case of division into i 

daughter cells, (ng-1).
r Vector of space coordinates, (m).
R Radius of the cylindrical photobioreactors, (m).
t Time, (min).
v Single cell volume, (μm3).
vt s, Terminal velocity, (m s-1).

V Photobioreactor volume, (m3).
VCells

T Total volume of cells, (μm3).
X Biomass concentration, (g m-3).
yX j/ Ratio of weight of dry biomass produced to weight of jth 

nutrient consumed, (/).

Greek letters 

i Parameter of the Hill-Ng distribution for the case of 
division into i cells, (/).

( , )i i Beta function for the case of division into i daughter 
cells, (/).

b Breakage kernel, (s-1).

a Aggregation kernel, (m3 s-1).
Division intensity function, (hr-1).

i Parameter of the Hill-Ng distribution for the case of 
division into i cells, (/).
Vector of internal coordinates, (various).

m m( , ) Self-similar daughter distribution function, (/).
i Probability of forming a number of daughter cells equal 

to (i) per mitotic event, (/).
i Distribution in terms of frequency for the mass class i 

for unit mass, (ng-1).
µav Average growth rate, (hr-1).
µmax Maximum specific rate of single cell growth, (ng1/3 hr-1).
µc Mass loss rate of single cell, (hr-1).

d Single cell division rate, (hr-1).
m Time rate of change of cell mass m, (ng hr-1).
p Rate of progression in the cycle, (hr-1).

Specific weight of cells, (g m-3).

f Specific weight of fluid, (g m-3).
c Standard deviation of the division probability density 

function, (ng).
a Optical extinction coefficient for biomass, (m2 g-1).

Filtration coefficient, (/).
Density distribution function of the cell population, (ng- 

1 mm-3).
Angle of incidence of light, (rad).

Superscripts 

0 Initial conditions, (/).
exp Experimental value,
f Final conditions, (/).

Subscripts 

av Average value, (/).
i Number of daughter cells or generic counter, (/).
j Number of nutrients or generic counter, (/).
stat Steady state value, (/).
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1. Introduction

Microalgae represent a promising renewable feedstock for the 
production of several consumer goods ranging from functional food 
to biofuels, nutraceuticals, bioplastics, pharmaceuticals and feed. 
The typical configuration of a microalgae-based technology roughly 
involves four main operating steps: cultivation, harvesting, extrac-
tion of target compounds and eventual further refining (Fig. 1). Each 
of these operations may be carried out by different methods, and 
more than one valuable products might be obtained. The main 
process inputs consist of CO2, water, mineral salts and light to drive 
the photosynthesis that permits microalgae growing and energy to 
operate reactors and equipment.

When compared to conventional land crops, microalgae show 
higher growth rates that result in the need for less land for their 
cultivation. Microalgae can be cultivated even in saltwater, non- 
arable lands, and through processes integrated with CO2 capture 
from flue gases and wastewater remediation [1].

In light of the above, there is a growing demand for microalgae 
systems in fields of application that range from food/feed production 

to the energy [2]. Nevertheless, so far, microalgae-based technology 
has been viably applied at the industrial scale only for producing 
high-value end-products such as nutraceuticals and superfoods. 
However, when aiming to obtain low-value products, such as bio-
fuels or bioplastics, that are typically produced on a massive scale, 
microalgae technologies are still not widespread due to technical 
constraints that undermine its economic viability. Accordingly, the 
implementation of this technology at the industrial production scale 
requires the optimization of the different unit steps of the process, 
i.e., cultivation, harvesting and lipid extraction, as well as the 
abatement of their related costs.

In particular, the scale-up of cultivation systems undoubtedly 
needs significant improvements. To this aim, suitable process en-
gineering techniques relying on the use of mathematical models 
capable of predicting the system behavior when changing the op-
erating conditions could be used. Several mathematical models have 
been proposed in the literature in the last decade to describe mi-
croalgae growth under different conditions [3]. Most of them 
quantitatively describe the evolution of biomass concentration as a 
function of light density, nutrient availability (CO2, N, P) and 

Fig. 1. Proof of concept scheme of a generic microalgae-based bio-refinery. 
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photobioreactors operating mode [2,4,5]. Several models were fo-
cused on the description of the influence of hydrodynamic regime on 
light availability for microalgae [6,7], while others were able to 
evaluate lipid production under nitrogen starvation [8–14]. More-
over, models describing the co-production of lipids and carbo-
hyrdates for a biorefinery microalgal technology implementation 
have also been developed [13a].

Also, in the context of CFDs models, PBMs have a crucial role in 
describing the bubble size distribution in the gas phase. They pro-
vide a more accurate tool to evaluate break-up and coalescence of 
bubbles in the photobioreactor, which can be important when the 
specific-area of the gas-liquid interface needs to be accurately 
evaluated as related to mass transfer phenomena. On the other hand, 
the bubbles size and distribution could play also a role in light 
transfer, hydrodynamics, and potentially heat transfer [15].

Though the number, reliability and complexity of mathematical 
models being proposed are still growing, most assume that in-
dividual cells constituting the microalgae population have the same 
growth rate, biochemical composition and metabolism. It is however 
widely recognized that microalgae populations consist of cells 
having different size, morphology, biochemical composition and age, 
even within a pure monoculture [16–18]. Such heterogeneity may 
strongly influence the behavior of the cultures. For instance, Nan-
nocholorpsis oculata shows a diameter varying between 1.5 and 
3.8 µm, corresponding to a variability of the cell volume of about 
16 times [19,20]. Relevant cell-to-cell variations have been experi-
mentally determined even for other parameters as the specific 
growth rate (till 2.4 folds) and for intracellular TAG accumulation 
under N-starvation till about 400 folds (Table 1).

The accurate evaluation of cell size distribution can provide 
suitable information to control and optimize the downstream pro-
cesses such as harvesting and refining (Fig. 1) and reduce their cost. 
For instance, when considering the harvesting steps, the setting and 
optimization of operating parameters are closely related to the 
knowledge of particle size distribution [22–24].

Downstream extraction processes (Fig. 1) are typically preceded 
by a cell disruption treatment (mechanical or non-mechanical) [25]
aimed at breaking microalgal cells and facilitating the release of 
intra-cellular compounds [26–28]. Since the disruption reaction 
occurs at the cells' surface, mechanical and non-mechanical dis-
ruption techniques can be influenced by cell size [29,30]. Even the 
extraction of intracellular compounds is based on mass transfer 
phenomena occurring at the cell surface – liquid interphase and is 
thus strongly affected by the cell size. Therefore, starting from the 
knowledge of cell size distribution, one can finely tune the amount 
of energy and reactants used for cell disruption, thus reducing the 
operating costs.

When developing mathematical tools, the quantitative descrip-
tion of cell-to-cell heterogeneity can provide significant advantages 
for the design and control of microalgae cultivation and processing 
systems in the entire biorefinery process. Small cells attain higher 
photosynthetic and carbon fixation rates as compared to larger ones 

and are characterized by a faster uptake of nutrients [19]. Since 
nutrient absorption and light gathering occur at the cell surface, 
smaller cells are favoured compared to bigger ones due to their 
larger specific surface area. Single-cell biochemical analyses of mi-
croalgae have shown a high cell-to-cell variability in terms of pro-
teins, lipids and starch content [16]. In some cases, the appearance of 
different subpopulations with different behaviour has been reported. 
Different works indicated that during N-starvation, the cell-to-cell 
heterogeneity for the accumulation of lipids increases in microalgae, 
thus significantly affecting the whole production rate of the popu-
lation [17,31]. Population size structure may change even as a result 
of temperature or exposure to various pollutants, UV radiations, and 
other environmental conditions [32,33].

The mechanisms at the base of this high cell-to-cell hetero-
geneity are still largely unknown. Currently, no process control 
strategies are available to reduce the negative impact of cell-to-cell 
heterogeneity on microalgae process performances. The develop-
ment of reliable and predictive mathematical models can shed light 
on these phenomena and possibly lead to effective control strategies 
in industrial bioprocesses. To this scope, the most powerful tool is 
represented by population balance equations (PBEs). The latter ones 
consist of a set of partial differential equations resulting from a 
dynamic balance of a population of individuals entities (cells) dis-
tinguished on the basis of one or more features, i.e. the so-called 
internal coordinates, which can be the cellular size, mass, age, 
morphology, etc. [34]. If the size is the internal variable, by using 
PBEs it will be possible to simulate the transient dynamics of a size- 
structured population of cells along with all the possible aspects 
discussed above.

An additional character of PBE-based models is that biomass 
growth and cell division are taken into account separately [19]. Such 
a feature may come in handy to properly simulate the cultivation of 
microalgae since, according to different studies [35–37], biomass 
growth and cell division can be uncoupled. This happens when mi-
croalgae face variable energy and nutrient availability (e.g. light/dark 
cycles) [35,37]. It should be noted that such behaviour cannot be 
described and predicted through classical unsegregated models, 
which do not distinguish between cell duplication and biomass 
production, thus leading to potentially unsuitable simulations. On 
the contrary, by allowing such a distinction, PBE-based models 
proposed in the literature [19,23] have been able to effectively si-
mulate the effect of light-dark cycles on microalgae growth and di-
vision.

In light of the above, a systematic literature review is performed 
in this work on the use of PBEs in the microalgae-based processes. In 
particular, after a brief desciption of the general aspects of popula-
tion balance tools, the work is articulated in three sections regarding 
the usage of population balance equations to quantitatively describe 
the three main steps of the microalgae technology, i.e. cultivation, 
harvesting and extraction. In addition to analysing the literature 
models based on the use of PBEs, the potential and perspectives for 
the application of this modeling approach for the analysis and 

Table 1 
Typical size ranges of some microalgal strains reported in the literature. 

Strain Parameter Mean 
value

Min. 
value

Max. 
value

fold 
variation

Reference

Nannocholorpsis oculata Volume (µm3) 73.58 14.13 229.73 16.26 [19]
Tetradesmus obliquus Volume (µm3) 36 12 129 10.75 [17]
Tetradesmus obliquus Volume (µm3) 70 15 239 15.93 [17]
Tetradesmus obliquus TAG content (pg/cell) 0.32 0.06 1.2 20 [17]
Tetradesmus obliquus TAG content (pg/cell) 14 0.25 99 396 [17]
Chlorella sp. Volume (µm3) 57.88 44.58 82.41 1.85 [21]
Chlorella sp. Volume (µm3) 102.11 65.42 164.55 2.52 [21]
Chlamydomonas reinhardtii Doubling time (h) 10 7 17 2.43 [18]

*TAG: Triacylglycerols.
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optimization of the different microalgae processing steps are dis-
cussed.

2. The population balance equation (PBE)

The main goal of the PBE is to describe the evolution of a po-
pulation of entities as a result of the action of external or internal 
factors [38]. External factors include temporal and spatial variations 
in the environmental variables (e.g., fluctuations in substrate con-
centration and external temperature in cell cultivation processes) 
that can influence the state of entities, while internal factors can be 
related to phenomena taking place within each entity (e.g., sto-
chastic fluctuations in metabolites concentrations, asymmetric cell 
division). To describe the effect of these factors, PBEs rely on the 
number density function defined in a phase space including external 
and internal coordinates. PBEs literature refers to space co-
ordinates =r x y z( , , ) as external coordinates, whereas the internal 
coordinates, hereafter denoted as = …( , ., ),n1 coincide with one or 
more properties of the entities constituting the population, such as, 
for example, mass, size, age, energy, chemical composition and 
temperature [39].

By indicating with =r t dr d dS( , , ) | |the total number of 
entities having coordinates in the phase space volume of size =dS| |

= …dr d dx dy dz d d d· n1 2 , i.e., the space between r( , ) and 
+ +r dr d( , ) at the time t , it can be stated that r t( , , ) represents 

the so-called number density distribution in the space S [38]. Ac-
cordingly, the total number of entities in S is S dS| |. Hence, by 
imposing the conservation law for the total number of entities, the 
following general formulation for the PBE can be derived [38,40–42]:

+ +

=

r t
t

r t v r t r t v r t

B r t D r t

( , , )
( ( , , ) ( , , )) ( ( , , ) ( , , ))

( , , ) ( , , )

r r

(1) 

where = ( )v , ,r
dx
dt

dy
dt

dz
dt

and = …( )v , ,d
dt

d
dt

n1 denote the velocity at 

which the entities move within the physical space and the rate at 
which internal coordinates change, respectively, while B r t( , , )and 
D r t( , , ) are the birth and the death rate of entities, respectively. In 
few cases, to take into account possible random fluctuations of the 
actual velocities, some authors [43–47] introduced also diffusive 
terms in the PBE thus obtaining the following general form:

+ + =
t

v v D D B D( ) ( ) ( ) ( )r r r r r (2) 

The diffusive terms come in handy, for example, in the case of 
plug flow reactors with dispersion [43] or for growth rates with 
stochastic components [48]. However, it should be noted that the 
correctness related to the introduction of diffusive terms in PBE is 
still a subject of a scientific dispute between different authors [44]. 
Accordingly, the classical general formulation of the PBE should be 
considered as the one reported in Eq. (1).

Finally, it should be noted that the deterministic formulations 
of velocities and source terms, i.e., birth and death, can be very 
different depending on the specific population being described 
(e.g., cells, particles, droplets), internal coordinates adopted (e.g., 
size, mass, age, temperature), as well as the specific phenomena 
being described (e.g., nucleation, growth, mitosis, breakage, ag-
gregation, coalescence, birth, chemical reaction). A massive lit-
erature exists regarding the applications of PBEs to the most 
disparate systems, and its review is out of the scope of this work. 
On the contrary, our goal is to review the applications of PBE- 
modelling to microalgae-based processes and identify the possible 
applicative outcomes that can be derived from the use of PBE 
modelling in this emerging field.

3. Single-cell analysis

Every model needs to be validated against experimental data, 
hence in order to choose the internal coordinates to be used, it is 
fundamental to consider the experimental data that can be more 
easily and reliably obtained. Several different cell variables could be 
used as internal coordinates. The population balances for living cells 
have been typically written by using the cell volume as internal 
coordinate [34,40,46,48–54].

Frequently, the measurement of microalgae mass or cell number 
is carried out by optical density measurements. This technique 
mainly consists in generating a calibration curve between optical 
density measurement and cell dry weight or cell number, to be then 
adopted across the cultivation, providing an affordable and rapid 
tool for their measurement. However, these techniques show their 
limitations when it comes to evolving environmental conditions, 
which could affect pigments content, bringing a relevant error if the 
measurement wavelength is not properly chosen, and if the cali-
bration curve is derived only ones for the whole set of experiments. 
If the calibration curve is not executed considering changes in pig-
ments concentration and/or changes in the cell size within the cul-
tivation, the measurement could not be representative of the real 
cell mass/number measurements introducing large errors [55,56]. In 
the case of PBMs applied to microalgae, different experimental 
techniques have been applied, based on the need of having accurate 
representation of the variable involved in the models, and specifi-
cally, of the cell mass/volume distribution. Typically, the analytical 
measurements for PBMs are carried out by using experimental 
techniques that overcome the limitations brought by spectro-
photometric techniques. Hence, the use of specific techniques to 
measure cell mass/size distribution should enable to obtain accurate 
measurements of these variables excluding errors related to changes 
either in pigments content or size of the cells [55,56].

Cell volume can be measured directly or indirectly by using dif-
ferent techniques. For microalgae, these include the application of a 
cell counter, which measures the volume directly, or image-based 
cell-meters, which can be used to measure the area, diameter, vo-
lume or other morphological parameters, and flow-cytometers, 
which can be used to measure indirectly cell size/volume [54,57–59]. 
Flow-cytometry is a high-throughput method which can easily allow 
collecting up to 10,000 events/s, while the reliability of the results 
should be carefully assessed since the calibration of the instrument 
is more difficult compared to coulter counter and image-analysis. 
However, flow cytometers coupled to high-throughput image-ana-
lysis are commercially available (Attune CyPix, Thermo Scientific).

Mass is often used as an internal coordinate to describe the state 
cells in PBE models. In this case, experimental data for the mass 
distribution within the cell population are derived from volume 
distribution measurements by assuming a constantmass per unit of 
cell’s volume, consequently assuming no variations of its own den-
sity. However, it should be taken into account that in many situa-
tions, density is not constant for microalgal cells, especially when 
microalgae are cultivated under temporally varying nutrient con-
centrations. In this case, microalgae can accumulate different 
amounts of starch (d = 1.5 g/mL) or lipids (d ∼ 0.9 g/mL), which 
determines variations between the densities of cells. Density can 
also change in response to osmotic stress. Therefore, the assumption 
of constant density is only valid under some specific conditions.

Recent studies have shown the feasibility of measuring single- 
cell mass by measuring the cell’s buoyant mass in H2O and D2O 
through a suspended microchannel resonator, which was applied to 
cells with weights between 10 fg up to 130 pg [60].

Other coordinates than size/volume and mass could also be used 
in the models, for example, cell's age, temperature, and chemical 
composition. However, their experimental quantification is more 
difficult. A few studies reported microalgal single-cell quantification 
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of intracellular properties. Measurements have been reported for 
lipids, starch, proteins and DNA [16,17,61].

4. Application of PBEs for the optimization of the cultivation 
section

In this section, the development and application of PBE models to 
describe the growth of microalgae in the cultivation section are 
discussed. The literature survey initially analyses the application of 
univariate PBE models where either the size or the mass is used to 
describe the cell state, which is the approach most widely adopted 
by previous studies. Accordingly, Section 4.1 describes the size/mass 
structured PBE and the mathematical models used to simulate the 
continuous growth, birth and death terms appearing in this equa-
tion. The application of the structured size/mass PBE to describe 
microalgae growth with binary and multiple-fission is then re-
viewed in Sections 4.2 and 4.3, respectively. Finally, Section 4.4
discusses the application of PBE models, including the use of dif-
ferent internal variables, in addition to or alternative to the size/ 
mass descriptions of the cell state.

4.1. Size/mass structured PBE mathematical modelling

Most works relying on PBEs take advantage of only one internal 
coordinate, which can somehow be traced back to the size (volume) 
or mass of the cells [38,44]. If this is the case, the PBE can be then 
derived to substitute the vector of internal coordinates with m or v
in Eqs. (7)–(8), respectively. Particularly, as living cells were con-
cerned, the cell volume v (or, equivalently, the diameter or the sur-
face area) was typically used as internal coordinate in PBE models 
[34,40,46,48–54]. This choice was mainly motivated by the wider 
availability of cell size/volume distribution data derived by the ap-
plication of cell counter, image based cell-meters, and cyto-
fluorimetry [54,57–59]. The use of the mass as an internal coordinate 
for PBE modelling of living cells is, in contrast, less common, even 
though some relevant papers demonstrated that it permits obtaining 
simpler expressions for the growth and source/sink terms 
[38,53,57,62,63]. On the other hand, when the density of cells is 
assumed to be constant during the simulated process, mass and 
volumes are linearly dependent; thus, the volume and mass-struc-
tured PBEs become equivalent.

Motivated by this analysis, with only a few exceptions [59,64,65], 
PBEs so far proposed in the microalgae literature were written using 
the cell mass m as the internal coordinate [19,43,58,59,64,66,67].

Broadly, CSTR photobioreactors were considered in these works, 
and thus the convective term in space at the LHS of Eq. (2) dis-
appears. Under these conditions, by integrating both sides of Eq. (2)
over the reactor volume, the following PBE can be derived:

+ =t
t

t v t B t D t Dil t t
( , )

( ( , ) ( , )) ( , ) ( , ) ( ) ( , )

(3) 

where represents m or v depending on whether the volume or the 
mass is used as an internal coordinate, and Dil t( ) denotes the reactor 
dilution factor. In what follows, the approaches adopted in the lit-
erature to describe continuous growth (vm or vv), as well as birth (B) 
and the death (D) terms are reviewed.

4.1.1. The continuous growth term
The second term on the LHS of Eq. (3) takes into account the fact 

that the mass m, , and the volume, v, of a single cell increase con-
tinuously with rates =vm

dm
dt

or =vv
dv
dt

, respectively, contributing to 
changing over time the corresponding density distribution functions 
[68]. These rates depend on different variables, including the lim-
iting nutrient concentration in the growth medium C( )j , the average 
light intensity within the culture I( )av , the dissolved oxygen con-
centration C( )O2 , and the intracellular nutrient concentrations (Cj

Int) 
[43,58,66]. As shown in Table 2, different expressions have been 
used to evaluate the volume growth rate of single cells.

As can be observed from Table 2, except for a few differences, the 
adopted expressions were quite similar. In these Equations, µmax
represents the maximum specific growth rate, while µc is the con-
tinuous rate of mass loss. The latter one can be attributed to specific 
physiological phenomena such as respiration, maintenance and 
catabolites excretion, and it was typically assumed to be constant. A 
Monod-type expression was usually adopted to quantify the de-
pendence of vmon the nutrient concentrations in the growth 
medium, except for Usai et al. [65]. In the latter study, vm adoptes a 
double affinity law to describe the ability of microalgae to growth at 
high and low levels of intracellular nitrates concetrations. The de-
pendence on the intracellular nutrient concentration was introduced 
to simulate the ability of microalgae to grow by exploiting 

Table 2 
Formulations of single-cell growth rates adopted in the literature for microalgae. 

Expression of vm adopted in the literature Ref.

µ µ+ + m1
Iav
n

KI
n Iav

n
Cj

Kj Cj

CO
CO

cmax
2

2
max

[43]

µ
+ + m1
Iav
n

KI
n Iav

n
Cj

Kj Cj

CO
CO

max
2

2
max

[66]

µ µ+ + dh m
Cj

Kj Cj H

H
Idir h

KI Idir h cmax
1

0

( )

( )

[58]

µ µ
+ +

+ mIav

KI Iav
Iav
KI

Cj
Kj Cj

cmax 2

2
3

[19]

µ µ+ + vIav
KI Iav

v
Kv v cmax

[59]

+

+ + + +
+ +

( )x x v(1 )A

CNO
Int nL

K
CNO

Int LG
nL CNO

Int nL
CNO

Int

K
CNO

Int L I

nL A

CNO
Int nH

K
CNO

Int H
nH CNO

Int nH
CNO

Int

K
CNO

Int H I

nH
IavnI

KI
nI IavnI Iav

KIav I

nImax

(
3

)

(

3
,

) (
3

)
(

3
)2

3
, :

(
3

)

(

3
,

) (
3

)
(

3
)2

3
, :

2

:

3
4

2
3 2/3

[65]

=Constant 1 [64]

A. Usai, C. Theodoropoulos, F. Di Caprio et al. Computational and Structural Biotechnology Journal 21 (2023) 1169–1188

1174



accumulated reserve materials even when a limiting nutrient is 
depleted in the extracellular environment. This dependence is 
usually described by the Droop model, typically used to simulate 
microalgae growth under depletion of N or P [9,69]. Hill, Haldane, or 
modified Andrews-type dependence were adopted for the light-de-
pendent kinetics [70]. Using these functional forms allows for the 
accounting of potential photo-inhibition phenomena occurring at 
too-high light intensities. Finally, the inhibition effect of oxygen was 
typically accounted for by a saturating function, when the photo-
bioreactor type can determine oxygen accumulation in the liquid 
phase.

An aspect to observe in the Equations of Table 2 is that cell mass 
vm or volume vv growth rates are typically assumed to increase lin-
early with the mass or size of the cell [43,58,66]. However, the de-
pendence of the growth rate on the 2/3 power of the mass (or size) 
was often reported to more effectively describe the effect of cell size/ 
mass on growth kinetics [71]. Indeed, the nutrient uptake rate of 
microalgae increases linearly with the number of sites for nutrient 
uptake available at the cell surface [72]. Since the surface density of 
these sites can be considered constant during cell growth, the nu-
trient uptake rate of a microalgal cell increases linearly with the area 
of the cell surface which, in turn, is proportional to a 2/3 power of 
the cell volume and thus of cell mass [73]. Light supply, needed to 
trigger photosynthesis, also depends on the geometric cross-section 
of the cell, and therefore it is proportional to the 2/3 power of the 
volume as well [74]. Accordingly, in the late formulation by [19], a 2/ 
3 allometric scaling law was adopted for the cell mass.

4.1.2. Death and birth terms
The term D at the right-hand side of Eq. (3) takes into account 

that a cell of mass m can disappear as a result of its division, due to 
mitosis, into a certain number of daughter cells having smaller 
masses (or sizes). For size or mass-structured PBEs, this term can be 
expressed as the product between m( )and the so-called division 
intensity function ( )representing the propensity of cells to divide as 
they approach a certain critical mass m( )c .

=D m m m( ) ( ) ( ) (4) 

In one of the reported cases of size-structured PBEs [75], the 
same relationship was adopted, while all the functions were as-
sumed to depend on a typical characteristic length of microalgae 
cell, and was assumed to remain constant.

When mass was considered as the only internal coordinate 
[43,58], the function was expressed as the product of a division 
rate vd, typically considered equal to the single cell growth rate, and 
the probability that the cell divides depending on its mass:

=m v m C I
f m

f m dm
( ) ( , , )

( )

1 ( )
d j m

0 (5) 

The function f m( )returns the probability density that a cell di-
vides when its mass, m, approaches the critical one m( )c and is, in 
these cases, expressed as a Gaussian function:

=f m
m m

( )
1

2

( )
2

c

c

c2

2

2
(6) 

The symbols σc refers to the standard deviation of dividing mo-
ther cells. It should be noted that Eqs. (4)–(6) can be equivalently 
expressed by using the cell volume (v) instead of the cell mass m( ). 
The following sections will provide more details related to some of 
these alternative formulations.

In Eq. (3), the symbol B represents the birth rate and takes into 
account the contribution to the class of cells with mass m( ) (or vo-
lume v) by newborn cells resulting from the division of cells having 
larger mass >m m’ (or volume >v v). The probability that a cell 
having mass m is formed depends on the rate 

=D m m Cj m( ’) ( ’, ) ( ’) at which the larger cells, i.e., with >m m’ (or 
>v v’ ) undergo cytokinesis as well as on the fraction p m m( , ’) (or 

p v v( , ’)) of cell having mass m produced by the division of the cell 
with mass m’. Since each cell with mass >m m (or >v v) might 
theoretically divide to give rise at least one cell of mass m, the overall 
contribution of newborn cells to the class of cells with mass m or 
volume v is obtained by integrating this contribution over the mass 
domain involving all the cells having mass >m m or volume >v v.

Therefore, the birth term B in the population balance can be 
written as follows:

=B m m C p m m m dm( ) ( , ) ( , ) ( ’)
m

j (7) 

The so-called partition function p m m( , ) thus expresses the 
probability that a mother cell of mass m will give birth to a daughter 
cell of mass m when it divides. As far as microalgae are concerned, 
the expressions reported in Table 3 have been adopted in the lit-
erature for the partition terms.

It should be noted that the expressions in Table 3 are re-
presentative of a situation, called unequal partitioning, where the 
daughter cells produced at each division cycle can have different size.

If the case of binary fission with equal partitioning is considered, 
i.e., two daughter cells having the same mass are produced by each 
mitotic event, the Eq. (7) can be simplified as follows [34]:

=B m m m( ) 4 (2 ) (2 ) (8) 

This assumption permits simplifying the numerical handling of 
the resulting PBE model. With all of these considerations, the typical 
PBE can be solved along with the corresponding initial and boundary 
conditions. It should be noted that, while the initial condition is 
given by the initial distribution of cells, the typical boundary con-
dition is =t t(0, ) 0 , expressing the condition that no cell with 
null mass or volume should be taken into account.

Table 3 
Expression adopted in the literature to describe the partition function of microalgae. 

Expression of p (m,m’) Symbol significance / notes Ref

( ) ( )1
q q m

m
m

q m
m

q1
( , )

1 1 1 Binary fission 
m: mass of the cell g m( ) : mass of the mother cell g q( ) : parameter of the beta function ( ) : Euler beta function

[43]

30 m m m

m

2( )2

5

Binary fission 
m: mass of the cell g m( ) : mass of the mother cell g( )

[58]

( ) ( )1
i i m

m
m

i m
m

i1
( , )

1 Multiple fission in terms of mass. 
m: mass of the cell g m( ) : mass of the mother cell g( ) , :i i parameters of the beta function for division into i daughter cells ( ) :
Euler beta function

[19]

( ) ( )1
i i v

v
v

i v
v

i1
( , )

1 Multiple fission in terms of mass. 
v: volume of the cell g v( ) : volume of the mother cell g( ) , :i i parameters of the beta function for division into i daughter cells  
( ) : Euler beta function

[65]
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4.2. Application of the size/mass structured PBE model with binary cell 
division

As far as the application of PBEs to microalgae is concerned, the 
first work presented in the literature was the one by Concas et al. 
[43]. In this work, a classical homogeneous, isothermal, axial dis-
persion model was adopted to simulate the spatiotemporal evolu-
tion of main nutrient species (C, N, P) and photosynthetic O2 in the 
liquid phase in a BIOCOIL photobioreactor. A PBE model was adopted 
to simulate algae growth. In particular, since microalgal cells move 
along the tube, a “mass structured” population balance, including 
the effect of cell dispersion along the reactor axis, was proposed:

+ + =
t

v
m

v
z

E
z

B D
( )m

z D z,

2

2 (9) 

where z denotes the axial coordinate, while vzand ED z, represent the 
velocity and the dispersion coefficient along the z-direction, re-
spectively. Accordingly, a 2D-PBE was obtained with the z-direction 
as external (spatial) coordinate and the cell mass m( )as the only in-
ternal coordinate. Birth and death terms were described by Eqs. (4) 
and (7) with division intensity and partition functions reported in 
Eq. (5), and Tables 1–2. The 2D-PDE system resulting from coupling 
the PBE to the mass balances for nutrients and oxygen was then 
solved by the application of finite element techniques [43]. The so-
lution returned the number density function from which the 
biomass concentration X could be computed as follows:

=X z t m z t mdm( , ) ( , , )
0 (10) 

The reliability of the mathematical model was assessed by 
comparison with experimental literature data, expressed in terms of 
biomass concentration, concerning the growth of the cyanobacteria 
Spirulina Platensis in BIOCOIL [76]. However, the comparison could 
not be performed in terms of mass distribution since no experi-
mental data were available for such distribution. On the other hand, 
by analysing the evolution of the mass distribution at the reactor 
outlet predicted by the model (Fig. 2a), the mechanisms responsible 
for transient oscillations (Fig. 4b) in the outlet biomass concentra-
tion reported by previous experimental studies [76] could be ex-
plained. In accordance with the illustrated analysis, these 
oscillations can originate from the initial overlapping of mitosis and 
growth within the cell population, and they are progressively 
damped as cells get synchronized (i.e., mitosis and growth take place 
at the same time for all the cells).

Bertucco et al. [58] applied a PBE model to simulate and control 
Scenedesmus obliquus growth in a flat panel photobioreactor oper-
ated in both batch and continuous modes. Again, only the mass was 
employed as an internal coordinate, and the implemented PBE was 
thus substantially equal to Eq. (3). The single cell mass growth rate 
and the partition function adopted to describe birth and death terms 
are reported in Tables 2 and 2, respectively [58]. The PBE was solved 
through the Finite-size domain Complete set of trial functions 
Method of Moments (FCMOM) [77].

In Bertucco et al. [58], the PBE model was validated for the first 
time not only by comparing the predicted and experimental biomass 
concentrations but also in terms of mass distribution. To this aim, 
growth experiments were performed during which cell size and 
mass distributions were recorded by the application of a cell counter. 
The critical mass, i.e., the mass at which cells divide, was varied at 
selected residence times to enforce the fitting of the model to ex-
perimental biomass and cell concentrations. This aspect might be 
questionable since the critical mass should always be the same for 
the same microalgal strain. However, some authors confirm that a 
slight change in the critical mass can be observed depending on the 
cultivation conditions. In addition, it should be noted that, by 
adopting this fitting strategy, the model could satisfactorily re-
produce not only the evolution of average cell and wet biomass 
concentrations, but also the mass distribution experimental data. 
The latter data were not used to perform the fitting, which con-
tributes to corroborate the reliability of the analysis presented by 
Bertucco et al. [58].

4.3. Application of the size/mass structured PBE model with multiple 
fission

The models so far discussed are based on the assumption that 
microalgae strains divide by binary fission, which is valid only for 
some species and under particular environmental conditions. 
Several microalgal species, such as Scenedesmus and Desmodesmus, 
show alternative cell cycles, whereby they divide into 2 n daughter 
cells, with n ranging between 1 and 15 (multiple fission).[37,78,79]. 
To the best of our knowledge, only three mathematical models of 
microalgae growth taking into account multiple cell division have 
been proposed in the literature [19,80,81] with two of them con-
sidering also the life-cycle of microalgae cells [81,82].

While well-posed from the mathematical point of view, the 
model by Rading et al. [80] neglects relevant biological phenomena, 
such as the effects of light intensity and nutrient concentrations on 

Fig. 2. Cell mass distribution at outlet (z = L) of the biocoil photobioreactor (a), and average cell mass oscillations over the cultivation time (b). Adapted from Concas et al. [43]. 
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the growth of single cells and the occurrence of cell division in 
the dark.

On the contrary, the model by Concas et al. [19] considered the 
effect of different operating parameters and culture conditions, such 
as, for example, light intensity and nutrient availability, to simulate 
the size-structured growth of the strain Pseudochloris wilhelmii di-
viding by multiple fission. The model is based on some specific 
features of the microalgae cell cycle schematically shown in Fig. 3. 
When exposed to light, cells exploit photosynthesis to increase their 
size (G1 phase). At a certain instant, hereafter called commitment 
point (CP), cells attain the minimum size that allows triggering a 
sequence of events leading to cell division. Specifically, cells can 
enter the S, G2 and M phases and finally divide by cytokinesis. 
However, when the CP is reached during the light period, the divi-
sion process is postponed in order to prevent possible DNA damage 
phenomena induced by the photon flux [37]. If this is the case, then 
the cell continues to grow rather than divide, and consecutive CPs 
can be attained. Each CP is followed by DNA replication-division, but 
only at the onset of dark (or very low light intensity) the cells can 
perform cytokinesis and release the new-born daughter cells. The 
number of new-born daughter cells is then roughly equal to 2 n, n 
being equal to the number of CPs previously attained.

However, the mechanisms governing the progression through 
the cell cycle and determining the number of attained CPs are still 
not completely clear, and a biologically sound mathematical model 
which allows predicting how many cells are formed at each mitotic 
event is not available. On the other hand, the frequency with which 
each mitotic event gives rise to a specific number of daughter cells 
can be determined from experimental data of cell division. Such an 
approach was exploited by Concas et al. [19] to infer the probability 
( i), that the division generates a given number (i) of daughter cells 
for a concerned strain. The general formulation of the PBE described 
by Eq. (3), with the growth rate depending on light intensity, nu-
trient availability and cell mass (Table 2), was adopted by [19]. 
However, the death term D, describing the disappearance of a cell of 
mass m as a result of division, was modified as follows (Eq. (11)) to 
ensure that division could occur only at a sufficiently low light in-
tensity to prevent DNA photodamage:
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+=

D m
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K C
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f m

f m dm
H I m( )

( )

1 ( )
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where H(Iav) is the Heaviside function of light intensity. To describe 
the possibility of multiple-fission, the birth term was then written as 
follows:

=B m m C
m

m m m dm( ) ( , )
1

( , ) ( )
m

j
(12) 

where m m( , ) denotes the self-similar daughter distribution and 
obeys the extended Hill-Ng power law [19]. This distribution con-
templates the possibility that a variable number (i) of daughters cells 
may be generated and can be written as follows:

=
=

m m m i p m m( , ) ( , )
i

n

i i
1

d

(13) 

where p m m( , )i is the partition function and is clearly defined in 
Table 3. By substituting expressions Eq. (12) and Eq. (13) in Eq. (3), 
the following PBE can be derived:
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To validate the model, the simulation results were compared 
with the experimental data derived by monitoring the growth of the 
strain Pseudochloris wihlelmii, typically dividing by multiple fission, 
in batch photobioreactors where the growth rate limiting nutrients 
were nitrates and phosphates. Only the maximum growth rate was 
estimated by fitting model predictions to the experimental data 
obtained under a base condition, while the remaining model para-
meters were taken from the literature [19]. Since no experimental 
data were available for the size distribution, model validation could 
only be performed by verifying the ability to predict average biomass 
concentration data (Fig. 4a). Nonetheless, the model could effec-
tively describe the decoupling of biomass growth and cell division 
steps between the day and the night, predicting oscillations of the 
average diameter (Figs. 4b, 4c), which are qualitatively in agreement 
with experimental findings [19].

Finally, in order to show the capability of PBE modelling to op-
timize the microalgal technology Concas et al. [23] evaluated the 
effect of the cell division mode on the dosage of flocculant needed to 
achieve and effective harvesting. The results of such an analysis are 
here summarized in Fig. 4d. This figure highlights how the cell di-
vision mode, and thus the size distribution affects the amount of 
flocculants needed to harvest microalgae and thus the economic 
sustainability of the process. Ultimately, while needing to be further 
corroborated by experimental evidence, the model by Concas et al. 
[19] permits to suitably account for the effects of multiple fission on 
industrially relevant aspects of microalgae cultivation.

Usai et al. [65] presented a PBE based on the same fission mod-
elling framework proposed by Concas et al. [19,23] but using the cell 
volume as the principal internal coordinate. However, their model 
considered two distinct compartments, i.e., an intracellular and an 
extracellular compartment, which exchange nutrients along with 
light. The model potentially allows the description of intracellular 
products not secreted in the extracellular environment as well as the 
time evolution of nutrients in the extracellular compartment that 
are available for cell uptake and intracellular processes. The PBEs 
followed the same form of Eq. (3) except for the addition of a lysis 
term, which depends on nutrient availability, to account for the cell 
number decrease experimentally observed. One of the main specific 
aspects of the model consisted in the coupling of cell growth with 
the extracellular and intracellular nutrient content by means of 
Eqs. (15) and (16), where total volume VCells

T was evaluated through 
the PBE:

Fig. 3. Scheme of main phenomena involved in microalgae cell division by multiple 
fission. 
Adapted from Concas et al. [19].
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Here, the material balances for the specific j-th species are car-
ried out in the specific control volume for the cells (V )Cells

T , and for the 
cultivation medium (V V )R

T
Cells
T . Also, the transport of the species 

between the two compartments is considered throughout the term 
Cj, as well as the dilution term due to variation of the cell population 
volume, indicated here as a derivative of the total cell vo-

lume 
dV

dt
Cells
T

.

Model predictions showed a good agreement with experimental 
data in terms of 0th order moment, of average cell volume (ratio 
between order 1st and 0th), and nutrient availability in the extra-
cellular media.

The model prediction was also tested against the experimental 
density distribution of the cells (Fig. 5) recorded during the photo-
autotrophic cultivation of Haematococcus pluvialis. To the best of our 
knowledge, as far as microalgae are concerned, this was the more 
comprehensive comparison of PBEs model results, in terms of cell 
size distributions, with experimental data. Furthermore, the pro-
posed model was able to predict the relevant lyses phenomena, 
occurring when cells undergo stress nutrient conditions. This aspect 

is a relevant advantage of the model since lysis can dominate useful 
products loss if not properly addressed.

Further improvements of this model could be obtained as in-
tracellular nutrient data become available. These data could allow 
refining model calibration and validation for all the variables in-
volved.

4.4. Beyond size/mass structured PBE models of microalgae growth: 
introduction of additional/alternative internal variables

All the studies analysed in the previous section included the 
application of the size/mass structured PBE model, where only the 
mass or the volume defines the cell state. However, this is a sim-
plification of how internal coordinates can represent the physiolo-
gical response of cells (e.g., biomass composition) that cannot be 
unequivocally quantified based on the knowledge of only the size/ 
mass. Cells with the same mass or volume, but attaining different 
values of these internal coordinates, can thus exhibit different re-
sponses (e.g., growth rates) to identical perturbations in the en-
vironmental variables. Tracking the evolution of the cell mass or 
volume distribution may be then insufficient to predict how cell 
heterogeneity is structured in response to the temporal evolution of 
environmental variables. In this framework, experimental studies 
have demonstrated that significant variations in the cell response to 
external perturbations can be attained depending on the position 

Fig. 4. Results obtained with the model by Concas et al. [19,23] by simulating multiple fission of microalgae: comparison between model results and experimental data in terms of 
first moment of the distribution (a); dynamic evolution of average cell size and cell number (b) and effect of light – dark photoperiod on the average cell size and cell number 
evolution (c); effect of the cell division mode on the dosage of flocculant needed to harvest microalgae 
Adapted from Concas et al. [19,23].
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within the cell cycle and/or the biomass composition (e.g., internal 
quota of reserve materials).

4.4.1. The impact of cell cycle structure on microalgae population 
dynamics

Cell duplication and growth take place separately within the 
different stages of the cell cycle. While depending on the specific 
strain, the cell cycle of microalgae is generally characterized by four 
main phases that are common to all strains [83]. Growth of single- 
cell size occurs in the G1 phase due to the conversion of assimilated 
nutrients into structural intracellular molecules, among which 
mRNA and proteins that are required for DNA synthesis. When these 
reactions are completed, and the cells reach a critical mass/size 
(commitment point), the cells are committed to divide, and they can 
pass to the following S-phase where DNA is duplicated [51]. During 
this phase, nutrients uptake and cell size growth are interrupted 
since only internal transformations take place within the cell. At the 
end of this process, cells achieve the so-called G2 phase, wherein 
proteins and other cellular components needed for cell division are 
synthesized. Therefore, a certain increase in the cell size/mass occurs 
in this phase, which is typically lower than in G1 phase. Finally, the 
cells enter the M phase (mitosis), where each cell divides (cytokin-
esis) into two daughter cells. In this phase, no cell mass increase 
occurs, while cell number increases can be observed following di-
vision. Then, each new-born daughter cell reiterates the cycle de-
scribed above [37,83,84].

According to this qualitative description, environmental factors 
(nutrient concentration and light intensity) control the progression 
through only specific cell cycle stages. This aspect explains why cell 
division can take place after nutrient starvation is introduced [85]: 
the cells that have already completed the growth phase and crossed 
the CP are allowed to divide.

This dynamics can hardly be described by the size/mass struc-
tured PBE formulation discussed in the previous section. In the ap-
plication of this formulation, the velocity of cell division is typically 
assumed to be equal to the cell growth rate, which becomes equal to 
zero under nutrient starvation. This implies that cell duplication is 
allowed only in case nutrients are available, which is in contra-
diction with the experimental evidence. It should be also observed 
that, by employing only the size/mass as internal coordinate, the PBE 
formulation can be hardly corrected to describe illustrated me-
chanisms of progression through the cell cycle. While a critical mass/ 
size threshold can be used to identify the achievement of the CP, the 
mass remains constant during the S and the M phases and cannot 
thus be used to track the progression through these stages of the 
cycle. The approach that has been followed to overcome this ob-
stacle is to introduce, alternatively or in addition to the cell mass/ 
size, an internal coordinate identifying the position within the cell 
cycle.

A PBE formulation, including the application of only this internal 
coordinate, was implemented by [86] to investigate the impact of 
the cell cycle on the dynamics of a microalgae population in a CSTR. 
It was assumed that, during the nutrient-dependent segment, pro-
gression through the cycle proceeds at a rate depending on the ex-
ternal concentration of a limiting nutrient through a Monod-like 
function, while the progression rate is constant during the nutrient- 
independent segment. Accordingly, the PBE was written as follows:

+ =
t

v

p
D p Dil

( )
( )p

(17) 

where p denotes the position within the cell cycle, while vp is the 
rate of progression through the cycle, which was expressed as 
follows:

Fig. 5. Model predictions in terms of density distribution comparison between model and experimental data 
adapted from Usai et al. [65].
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where v v, c0 and KN denote the maximum progression rate during 
the nutrient dependent segment, the progression rate during the 
resource independent segment and the half-saturation constant, 
respectively. Cell division was described by the following boundary 
condition expressing the flux of new-born cells at p= 0:

= =dp
dt

p t D p p t dp forp( , ) 2 ( ) ( , ) 0
0 (19) 

while the function D p( ) was written as follows:

=D p
dp
dt

f p

f p dp
( )

( )

1 ( )p

0 (20) 

where f p( ) is the normal distribution described by Eq. (6) with the 
mass m replaced by p..

By considering model simulations, it was shown that autono-
mous periodic oscillations in the cell concentration can be generated 
in the CSTR by the interaction between the dynamics of nutrient 
consumption in the medium and the cell distribution along the 
cycle. The model was subsequently runned by including the periodic 
forcing of the inlet nutrient concentration. Under these conditions, 
the onset of quasi-periodic and chaotic oscillations was observed. 
However, the study did not include any systematic comparison, even 
qualitative, with the outcomes of experimental studies.

The model proposed by [86] was successively adopted by [87] to 
qualitatively explain the synchronization of microalgae cells in re-
sponse to the alternation of nutrient replete and nutrient starvation 
conditions. In this study, it was experimentally demonstrated that 
starting from a population of non-synchronized microalgae cells, the 
transient application of nitrogen starvation, followed by the re-
plenishment of nitrogen, allows attaining synchronized growth and 
replication. By the application of the model proposed by [86], the 
authors showed that the synchronization can be explained by ar-
rested progression through the cell cycle attained under nitrogen 
starvation: cells starting from different positions within the nu-
trient-independent segment of the cycle eventually reach and ac-
cumulate at the beginning of the nutrient-dependent segment. 
Starting from the latter condition, synchronized progression through 
the cell cycle can then be activated by the replenishment of nitrogen.

While qualitatively reproducing microalgae population dy-
namics, the PBE formulation with the cell state described by the only 
position within the cycle can hardly be validated against experi-
mental data or implemented for process control objectives. It is in-
deed difficult to monitor the position of cells within the cycle. To 
overcome this limitation, [66] proposed a PBE model with two in-
ternal variables: the cell mass and the position within the cell cycle. 
The main advantage of this approach is the possibility to effectively 
parametrize the progression through the cell cycle by the position 
coordinate, reproducing, at the same time, the mass distribution of 
cells, which can be used for model validation and/or control pur-
poses.

The model was split into two main PDE equations (Eqs. (21)- 
(22)). The first one (Eq. 21) is valid when the cell mass is lower than 
the critical one ( <m mc) and the second (Eq. 22) works for the 
nutrient-independent phase, i.e., for m mc:

+ + =
t

v
m p

v
m

p D Dil for m m
( )

[0, ]m m
ref c

(21) 

µ

+ + = >
t

v
m

p

p
D Dil for m m

( )m
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c
(22) 

Here pref represented the minimum cell maturation degree which 
allows division, and Dil denotes the dilution rate, introduced to si-
mulate fed-batch mode operation. The death rate D was eval-
uated as:

= +D
dm
dt

f m

f m dm

dp
dt

f p

f p dp

( )

1 ( )

( )

1 ( )m p

0 0 (23) 

where f p( ) is the normal distribution (Eq. 6). The birth term B does 
not appear in the PBEs (Eqs. (21)-(22)) since it was considered in the 
boundary conditions as follows:

= =m p t for m( , , ) 0 0 (24) 

= = =B
dp
dt

m p t D m p t m p t dp for p( , , ) 2 ( , , ) ( , , ) 0
0 (25) 

The numerical solution of the proposed model by finite differ-
ence techniques permitted evaluating the evolution of the cell dis-
tribution function during batch operation in the domain of the mass 
and the cell position within the cycle. Moreover, the total biomass 
concentration and nutrient consumption were evaluated under 
batch operating conditions. Finally, the fed-batch operation was si-
mulated by considering different harvesting periods to identify the 
dilution ratio that maximizes biomass productivity. The model was 
very innovative in the microalgae sector, both in light of the con-
sidered phenomena and the theoretical framework developed de-
spite the fact that the obtained results were not validated by 
comparison with experimental data.

4.4.2. The impact of internal nutrient quota on microalgae population 
dynamics

The response of cells to changes in the environmental variables 
can vary depending on the internal composition. For example, cells 
can undergo lysis or survive under nutrient starvation depending 
on whether they have previously accumulated sufficiently large 
fractions of reserve materials (e.g., lipids, carbohydrates). This 
mechanism is extensively exploited for the selection of microbe 
strains with an increased ability to accumulate reserve materials 
starting from mixed microbial populations [88]. To this aim, feast 
and famine processes are typically implemented, whereby nutrient 
replete conditions (feast phase) are alternated to nutrient starva-
tion (famine phase). This way, microorganisms that accumulate 
larger fractions of reserve materials during the feast phase can be 
selected during the famine phase over the microorganisms with 
reduced accumulation capacity. This strategy is typically im-
plemented with the objective of selecting a specific strain from a 
mixed culture, while a different response to temporal variations in 
the external nutrient concentrations can be observed even starting 
from a unique strain. [85] have recently applied the feast and 
famine strategy to prevent bacterial contamination during the 
heterotrophic cultivation of microalgae. For both bacteria and 
microalgae, only a fraction of the cells were found to undergo lysis 
during the famine phase, while the remaining cells could resist 
starvation for a significantly longer period, thus suggesting the 
existence of sub-populations with different resistances to starva-
tion. Although a definitive explanation for this experimental result 
is currently elusive, reported experimental results suggest that the 
existence of two subpopulations with markedly different re-
sistances to starvation might have been determined by a hetero-
geneous distribution of the reserve material accumulation during 
the initial feast phase [85].
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The idea that temporal fluctuations in the nutrient availability or 
the application of nutrient starvation could activate a heterogeneous 
behaviour, typically referred to as “phenotypic heterogeneity”, of 
isogenic cells has been, at the same time, consolidated by single-cell 
experimental studies [89].

Unfortunately, scarce attention has been paid to the development 
of PBE mathematical models describing the distribution of internal 
biomass fractions within the cell population. In this framework, a 
PBE model making use of the nitrogen quota q as an internal co-
ordinate was implemented by [90] to examine the impact of a het-
erogeneous distribution of the microalgae cell composition. This 
modelling approach was guided by the idea that the growth kinetics 
of each cell within the population can be described more effectively 
by the Droop model than by a Monod-like model. The Droop model, 
which is the most widely adopted to describe the unsegregated 
growth of microalgae biomass [9], is based on the assumption that 
the internal quota determines the growth rate, and not the external 
concentration, of nitrogen. The internal nitrogen quota q varies 
within a prescribed interval [qmin, qmax] and provides an indirect 
quantification for the fraction of accumulated reserve materials: the 
fraction of reserve materials progressively increases with decreasing 
q from qmax to qmin [91]. In the PBE model proposed by [90], mi-
croalgae population dynamics were described by the introduction of 
a biomass density function with internal coordinate the nitrogen 
quota q. Accordingly, the model does not provide any indication 
about the mass distribution and does not describe the impact of cell 
division, quantifying only the part of the biomass contained in the 
reactor volume that has prescribed nitrogen quota, q. The analytical 
solution of the proposed PBE model was compared with the solution 
of the unsegregated reactor model derived by the application of the 
Droop model with an average nitrogen quota. This way, the over-
estimation of the growth rate produced by the Droop model with the 
average quota was quantified. The study, however, did not include 
any comparison between model predictions and experimental re-
sults.

5. Application of PBE models to the design of downstream 
processes

5.1. Use of PBEs for the design of the harvesting section

Harvesting is one of the most expensive section of the entire 
microalgae-based process, especially in the cultivation plants 
making use of open ponds, where lower biomass concentrations 
(high water content) are attained [92]. Accordingly, the identifica-
tion of proper techniques to harvest microalgae is crucial to increase 
process sustainability. One of the main aspects of the harvesting is 
related to the cell movement within the fluid containing themselves. 
The description of the cell movement in a liquid media can be 
challenging and its complexity increases dramatically when factors 
such as shape, motility, cell density, equipment design become re-
levant and need to be considered. A comprehensive reading on the 
topic to be considers is Dusenbery’s book [93]. At the photo-
bioreactor or pond outlet, the culture medium has a water content 
typically ranging between 99.5% and 99.9%. Different methods are 

typically employed for microalgae harvesting; a brief summary is 
reported in Table 4.

Harvesting efficiency is strictly related to the size of particles or 
particle aggregates (flocs) to be separated from the liquid phase. 
Indeed, when considering filtration systems, only flocs larger than 
the pores of membranes or cakes can be separated. On the other 
hand, in the case of gravity settling or centrifuges, recovery yields 
depend on the rate at which flocs move along a direction determined 
by the mechanical force field acting on the particles, i.e., by the fluid 
dynamics of the system. In this case, the settling rate is ruled by the 
well-known Stokes law and is linearly proportional to the size of 
particles or flocs. Thus, the larger the flocs, the higher the settling 
rate and recovery yields. This is the reason why a flocculation step 
aimed to promote microalgae aggregation and floc size enlargement 
often precedes the harvesting one.

It is thus apparent that the knowledge of cells/flocs size dis-
tribution of the microalgal suspension is crucial when simulating, 
designing, or controlling the above processes. In this view, some 
works have been devoted to developing PBE models, that permit the 
assessment of the evolution of microalgae (or microalgae ag-
gregates) size during the steps of flocculation and harvesting.

5.1.1. PBEs for modelling microalgae flocculation
In the microalgae industry, flocculation can be applied as the first 

of a two-step process for microalgae harvesting. Flocculants are 
chemicals added to neutralize negative charges on the cell surface, 
thus favouring cell aggregation [96]. The amount of chemicals to use 
increases with decreasing cell size since the surface-to-volume ratio 
becomes larger when cells become smaller. Moreover, the operating 
conditions usually involve force-fields applied to the suspension of 
microalgae, whose effect can depend on particle size, as in the case 
of differential settling, Brownian motion, or fluid share. Hence, one 
of the main variables affecting the flocculation process of a micro-
algal suspension is cell size [97,98]. Therefore, the general PBE 
adopted to describe microalgae flocculation is typically written by 
using the floc-volume, v, as an internal coordinate rather than the 
mass, m (Eq. (29)).

Actually, few works have been so far presented in the literature 
dealing with the use of PBEs for simulating microalgae flocculation. 
Some of them focus on the quantitative description of flocs size 
overshoot during prolonged microalgae flocculation [99,100], while 
some others deal with the interactive effects of fluid dynamics with 
the process when not-ideal force fields are acting inside the floc-
culation device [101]. PBEs have also been proposed to optimize and 
design a process where flocculation and sedimentation occur si-
multaneously. Indeed, such a model permits the evaluation of the 
settling time, the flocculant concentration and the tank size that 
maximize harvesting efficiency [22]. Finally, PBEs have also been 
used in non-industrial frameworks such as the assessment of the 
effect of microalgae flocculation on Suspended Particulate Matters 
(SPMs) formation in north European coastal areas [102]. Therefore, 
despite the high potential of PBEs, still few works have been pre-
sented in the literature aimed to exploit this mathematical tool to 
optimize the microalgal flocculation process. Accordingly, room for 
research activity exists in this sector. In what follows, a brief 

Table 4 
Comparison of main harvesting methods for algae [94,95]. 

Method Post harvest 
concentration

Recovery 
yields

Major benefits Major limitations

Centrifugation 12–22 wt% >  90% Reliable, high solids conc. Energy-intensive, high cost
Membrane filtration 5–27 wt% 70–90% Reliable, high solids conc. Membrane fouling, high cost
Gravity sedimentation 0.5–3 wt% 10–90% Low cost Slow, unreliable
Dissolved air flotation 3–6 wt% 50–90% Proven at large scale Flocculants usually required
Electrocoagulation Up to 60% Up to 90% Low dosage for coagulants, cost comparable with 

other technologies
Increased metal concentration, low technology 
readiness level
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discussion about the mathematical form of PBEs in flocculation is 
reported.

5.1.2. Mathematical formulation of PBEs for simulating microalgal 
flocculation

The growth-related birth and death terms are usually neglected 
in the PBE model formulation because the characteristic times of 
growth and death are usually sufficiently lower than the harvesting 
time. The term aggregation identifies the formation of a floc starting 
from smaller entities which can be either smaller single cells or 
smaller flocs in different combinations as shown in Fig. 6. The term 
breakage is used to quantify the formation of flocs or single-cell 
entities due to breakage of a larger floc (Fig. 7). Hence, the size term 
in single-stage PBEs usually refers to generic particle size, and not 
specifically to cell size as in the case of growth-related PBE. In 
Eq. (29), B v t( , )a and B v t( , )b are the birth terms due to aggregation 
and breakage for a particle of size v respectively, and correspond-
ingly D v t( , )a and D v t( , )b are the death terms due to aggregation and 
breakage [103,104]:

= +v t
t

B v t D v t B v t D v t
( , )

( , ) ( , ) ( , ) ( , )a a b b (26) 

Birth of flocs of volume v by aggregation can be achieved when 
two smaller particles of generic sizes u and v u combine, resulting 
in the formation of a floc having volume just equal to v. In this case, 
the birth term is typically expressed by the following general for-
mulation:

=B v t u v u u t v u t du( , )
1
2

( , ) ( , ) ( , )a
v

a0 (27) 

Where the symbol u v u( , )a refers to the aggregation rate, which 
is the product of the aggregation collision efficiency u v u( , )a and 
the frequency u v u( , )a .

Aggregation phenomena can cause the disappearance of flocs of 
volume v when they aggregate with other particles of volume u to 

produce a floc of size larger than v, i.e. +v u. By applying a similar 
approach to the case of birth for mitosis, the death term can be thus 
written as follows:

=D v t u v u t v t du( , ) ( , ) ( , ) ( , )a a0 (28) 

It should be noted that the adopted formulation contemplates 
only binary aggregation, i.e. the cases where aggregation involves 
two single cells, a cell and floc or two flocs.

Eqs. (30)-(31) consider aggregation as a global second-order ki-
netic event as demonstrated by the multiplicative term for the two 
particles densities with volume u and v u respectively. The dis-
appearance of cell flocs belonging to the class size v can be due to 
the breakage of the floc, and Eq. (32) mathematically expresses the 
death rate due to this phenomenon:

=D v t v t v t( , ) ( , ) ( , )b b (29) 

In Eq. (32), v t( , )b represents the breakage rate, i.e., the fre-
quency at which the particles break. Breakage of particles with vo-
lume w larger than v can result, with a certain probability, in the 
production of particles with size v. The symbol Bb in Eq. (33) re-
presents the birth term describing the breakage of particles with size 
w which forms particles with size v.

=B v t w t p w v w t dw( , ) ( , ) ( , ) ( , )b
v b (30) 

where p w v( , ) is a partition function quantifying the probability that 
the breakage of a larger particle w could give rise to a particle of size 
equal to v.

5.1.2.1. Mathematical formulation of the aggregation rate. As 
mentioned above, the aggregation rate a i, due to the generic ith 

mechanism can be broadly defined as the product of the collision 
efficiency a i, , and the collision frequency a i, , that is:

=a i a i a i, , , (31) 

All the works dealing with the application of PBEs to simulate 
microalgae flocculation assume that the various mechanisms are 
contributing to aggregation overlay linearly [105]. Accordingly, the 

Fig. 6. Schematic representation of the main possible aggregation mechanisms of 
microalgae cells.

Fig. 7. Schematic representation of the main possible breakage mechanisms of mi-
croalgae flocs.
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total aggregation rate is evaluated as the sum of the rates a i, ex-
tended to all the n mechanisms considered (Eq. 35).

= =
= =a i

n
a i i

n
a i a i1 , 1 , , (32) 

The collision efficiency a i, can be seen as the probability that two 
colliding cells do aggregate. To better distinguish among the factors 
influencing the collision efficiency, Schmideder [106] separated the 
physicochemical and the hydrodynamic effects.

In PBEs describing microalgae flocculation, the physicochemical 
effects are determined by the surface properties of colliding cells and 
specifically by the charge distribution as well as by the colloidal 
characteristics of particles [100]. However, in some works [102] the 
collision efficiency is represented by an adjustable parameter, while 
in some others [22,101] it is set equal to 1, thus assuming that all 
collisions lead to the formation of new flocs (aggregates). This is 
typically the case when flocculants are employed. These reduce at-
traction/repulsion forces and favour the collision between the par-
ticles (cells or flocs), thus justifying a collision efficiency equal to 1.

Instead, the hydrodynamic effect accounts for the action of the 
flow field around colliding particles which influences their tendency 
to create an aggregate. Such an effect has been taken into account in 
the model proposed by Schmideder et al. [106] to simulate micro-
algae flotation.

As mentioned above, the aggregation rate also depends on the 
collision frequency, which can, in turn, be affected by different 
mechanisms such as fluid shear, Brownian motion and differential 
settling [22,100–102]. The shear-induced collision frequency is 
usually described by functions similar to the one proposed by 
Smoluchowski [107], which involves the shear rate G and the third 
power of the sum of the colliding particle diameters. Two examples 
of the application of such an approach to the case of microalgae 
flocculation are provided in the models by Golzarijalal et al. [101]
and Salim et al. [22] that assume particles to have a spherical shape, 
thus arriving at the aggregation rate reported in Eq. (36):

= +K G d d( )i j
a

i j,
3

(33) 

Here K is a constant whose value was obtained by fitting to ex-
perimental data whiledi and dj are the diameters of colliding parti-
cles i and j, respectively. The model developed by Golzarijalal et al. 
[101] was successfully compared to experimental data obtained with 
Chlorella sp. in terms of flocs distribution at the end of the floccu-
lation process as well as in terms of recovery efficiency evolution 
during settling. The model by Salim et al. [22] was successfully va-
lidated (specifically at late process time) by comparison with optical 
density experimental data obtained from flocculation/sedimentation 
of Ettlia texensis.

In other works, the aggregation rate is formulated starting from 
the more realistic assumption that particles and aggregates have an 
irregular shape and are permeable to the homogeneous phase [105]. 
In the latter case, a more complex fractal description is adopted 
wherein the aggregate mass, m, is related to the fractal dimension, 
df , and the characteristic collision length, l, by a relationship of the 
type m ldf [105].

Among the works adopting such an approach, it is worth men-
tioning the one by Sadegh-Vaziri et al. [100], who, by starting from 
the presumption that shear and Brownian motion are the main 
mechanisms affecting flocculation of microalgae and considering the 
mass of aggregate to be a function of the radius of gyration Rpand of 
the fractal dimension df , proposed the following expression for the 
aggregation rate:

µ
= + +

+
m m G R m m

k T m m

mm
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where kB is the Boltzmann constant, T is the temperature and µthe 
viscosity of the fluid. The latter ones are taken into account in Eq. 
(37) since Brownian motion was assumed to be among the main 
phenomena affecting aggregation. Accordingly, in the model pre-
sented in [91], the aggregation rate is proportional to the tempera-
ture, whose increase promotes the random particle motion. At the 
same time, it is inversely related to the fluid viscosity µ since viscous 
fluids tend to slow down the motion of particles. The model was 
successfully validated by comparing the experimental data of the 
mean aggregate size, fractal dimension, and radius of gyration with 
the corresponding model results. As seen in Figure 8b, the model 
allowed to capture well the overshoot phenomena taking place 
during flocculation. Accordingly, it represents a valuable tool for 
designing and optimising the microalgae flocculation process.

Shen et al. [93] proposed a similar approach, describing the 
collision radius of microalgae or their aggregates using a fractal di-
mension. However, in this case, a third mechanism was considered 
to affect microalgae flocculation: differential settling, which consists 
of particles submerged in a fluid following the direction of the ap-
plied force field, such as gravity or centrifugal forces, involved in the 
flocculation process. Shen et al. [102] considered the differential 
settling aggregation rate to be proportional both to the square sum 
of the particles fractal size, and to the difference between the set-
tling velocities ws i, of the particles as reported in Eq. (38):
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where the settling velocities are usually described by the Stokes law 
or modified Stokes laws to count deviations from the regular law 
behavior in case of large particles.

The model developed by Shen et al. [102] was mainly used to 
simulate the mass fraction and the size/time-evolution of different 
flocs size classes (Mega-flocs, macro-flocs, and micro-flocs) in a 
north European costal system, which is likely to be influenced by 
algae bloom in specific periods of the year. So, the model was suc-
cessfully compared to seasonal data of mean floc size and settling 
velocity, taking into account the time evolution of the along-shore 
velocity.

5.1.2.2. Mathematical formulation of the breakage rate. During the 
flocculation process, the flocs can also break apart, generating 
smaller particles/aggregates. Unfortunately, there are no first- 
principles theories about the breakage process, and consequently, 
PBEs usually adopt empirical relations containing tunable 
parameters to describe the process. As shown in Eq. (32), the sink 
term of the breakage process is represented by first-order kinetics, 
and thus it is described as the particle number distribution 
multiplied by a constant. When considering applications to the 
case of microalgae flocculation, the breakage rate is generally 
quantified by the power law of the local dissipation energy and of 
the share rate G( ). Sadegh-Vaziri and Babler [99], by adopting an 
approach typically used for brittle particles, proposed an empirical 
formulation of breakage frequency which depends on the shear rate 
through the local dissipation energy , and the critical dissipation 
energy cr as shown in the following equation:

=
G

x for x

x x x x

for x

ln

0. 457 2. 8775 2

0. 00104 0. 02284 0. 149 0. 8138

3. 16 2

b

b b

b b b b

b

4 3 2

(36) 

Here = =x Cm Cln ( / ) ,b cr
d p2/( 1)f is an adjustable coefficient 

related to particle strength, df the fractal dimension, p1an adjustable 
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parameter, and m the mass class size. As mentioned above, such a 
representation of the breakage kernel implies fragile particle beha-
vior, meaning that when the particle approaches a critical value for 
the dissipation energy, it tends to break suddenly.

Shen et al. [102] proposed a breakage frequency inversely pro-
portional to the square root of the floc strength Fy which was, in turn, 
assumed to linearly decrease with the floc size DFi. The breakage 
frequency proposed by Shen et al. [102] is reported in Eq. (40) and 
was assumed to increase with the floc size, which, in turn, was es-

timated through the relative fractal size ( )D D
D

nf3
Fi P

P
where nf is the 

fractal dimension, and DP is the diameter of the elementary particles, 
i.e. microalgae cells:

µ= =E G
D D

D
G

F D
i

/
( 1, 2)i

b
b

Fi P

P

nf

y Fi

3

2

1
2

(37) 

In Eq. (40), Eb represents an adjustable parameter, G is the shear 
rate and µthe viscosity of the fluid where cells and flocs are sub-
merged.

Golzarijalal et al. [101] presented the following power law to 
describe the breakage rate of microalgae flocs as a function of the 
shear rate:

= c Gi
b c

i2 3 (38) 

where G is the shear rate, i the ith particle size while c2, c3, are 
adjustable parameters.

5.1.2.3. Mathematical formulation of partition functions. The 
aggregates undergoing breakage generate particles that need a size 
distribution specification. The aforementioned phenomenon is 
usually addressed by considering a specific partition function. In 
the field of microalgae flocculation, the most simple partition 
function expresses the size of the fragmented particles as the ratio 
between the breaking particle and the newly formed ones. A 
subcategory of this approach is the so-called equipartitioned 
binary fission, where the ratio above is equal to two, meaning that 
the particle divides into two alike particles [101]. A symmetric 
binary partitioning breakage function for particles of mass m’ 
dividing into particles of mass m was adopted by Sadegh-Vaziri 
et al. [100] and it is shown in Eq. (42) where b is an adjustable 
parameter.

= + +g m m b
m

m
m

( , ) ( 1)
2 2

1

b

(39) 

No further examples of partition functions associated with flocs 
breakage could be found in the literature as far as microalgae-based 
processes are concerned.

5.2. PBEs for modelling microalgae harvesting by gravity settling or 
centrifugation

As mentioned above, harvesting is one of the most expensive 
section of microalgae-based processes which are strongly size-de-
pendent, and among the others, sedimentation and centrifugation 
are two of the most widespread operations to harvest microalgae 
cells. The size dependence of the operation makes PBEs potentially 
useful during the design and optimization of the equipment. The 
generic equation uses a continuous term along with the spatial 
distance travelled by the particles (h), and the cell growth does not 
represent a relevant term in the process. Therefore, according to Lee 
et al. [108], the PBE for describing microalgae harvesting assumes 
the general form reported in Eq. (43):

=t z d
t

v t h d t h d
h

( , , ) [ ( , , ) ( , , )]h

(40) 

According to the authors, the expression of the velocity v t h d( , , )h

depends on the position h, and the cell size d. A particle settling in a 
fluid usually follows the direction of the field force generating the 
settling, and its velocity increases until it reaches its terminal value 
when a steady state is achieved in terms of the motion. For dilute 
solutions, the Stokes law reported in Eq. (44) holds true, thus per-
mitting to evaluate the terminal velocity as a function of particle and 
fluid densities p and f , gravitational acceleration g , particle size d, 
and fluid viscosity µ:

µ
=v

g d( )

18t s
p f

,

2

(41) 

Such an equation was adopted by Lee et al. [108] to quantitatively 
describe microalgae settling in a natural gravitational force field. 
However, the same authors simulated also harvesting of microalgae 
by centrifugation by adopting an adaptation of the Stokes law to the 
case where the force field was produced by a centrifugal motion of 
the fluid, i.e.:

µ
=v

r d( )

18t c
p f c

,

2 2

(42) 

where rcis the radius of the centrifuge and the centrifuge rotational 
speed.

The application of the PBE considers that the terminal velocity is 
immediately reached so that it can be expressed as a function of the 
cell size. In Lee et al. [108], the density of the cells was considered as 
size specific, with values varying from 1044 to 1137 kg m-3 in a cell 
size range between 2.75 and 9 µm.

Model results were compared to experimental data obtained 
when considering both sedimentation and centrifugation cases. At 
the end of the harvesting process, the experimental data coming 
both from settling and centrifugation were compared with the 
model outputs. It is worth noting that the model accounting for a 
variable cell density could better predict the data compared with the 
model developed under the assumption of constant cell density.

A PBM framework, like the one reported in Eq. (43), was devel-
oped for the evaluation of the cellular density during the harvesting 
in case of sedimentation and centrifugation. The model combined 
with a specific experimental procedure provided a tool that could 
help in the development of downstream separation techniques. In 
this work, cell size and the cycle stage of the cell growth are po-
tentially interconnected with the cellular density itself. Having dif-
ferent density, the effects of the force field acting on the cells can 
have different impact when it comes to sedimentation or cen-
trifugation [109].

5.3. PBEs for modelling microalgae harvesting by microfiltration

Microfiltration is a harvesting alternative to sedimentation and 
centrifugation. During microfiltration, the solution containing par-
ticles is passed through a filter with a mesh dimension usually close 
to the typical size of microalgae cells, i.e. from 1 to 2–10 µm. To the 
best of our knowledge, only one paper [110] can be found in the 
literature where the following PBE is used to simulate microalgae 
filtration:

=t h d
t

v
h d t h d

h
( , , ) [1 ( , )] ( , , )]

(43) 

It can be seen that a convective term along the h axis (parallel to 
the motion of the bulk fluid) is adopted in the PBE to account for the 
fact that the motion of microalgae cells along the porous medium 
(filter) is hindered as their size increases. The term , which is a 
function of the cells size distribution, accounts for the fact that the 
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convective velocity of the cells should decrease within the filter as 
much as their size increases. Therefore, in discrete terms, the fil-
tration coefficient assumed different values for each size class of 
the cells. Lee et al. [110] obtained the value of as a function of the 
cell size d by fitting suitable experimental data obtained with 
Chlorella vulgaris. This way the authors achieved the non-trivial re-
sult that the pattern of d( ) became convex thus indicating that 
small and large cells are preferred for filtration in large pores filters 
rather than cells of intermediate size [110]. This is probably because 
very small cells tend to form large aggregates that are more effi-
ciently captured by the filter. Moreover, electrostatic phenomena 
leading small cells to be captured by the filter probably took place in 
large pores. According to the authors, such an outcome (i.e. the 
convexity of d( ))needs a deeper investigation to establish a direct 
relation between the filtration and the electrostatic attraction in 
this case.

Derived size-specific filtration coefficients of microalgae were 
obtained by calibrating the model with the experimental data de-
rived from Chlorella sp. filtering. Specifically, the model helps to 
identify different patterns in the filtration coefficient depending on 
the filter pore size.

5.4. Use of PBEs for the optimization of the cell disruption section

The microalgae industry mainly focuses on the sustainable pro-
duction of added-value chemicals. Such compounds are usually in-
tracellular; therefore, an extraction process is required to separate 
these products from others [111]. Extraction is usually high-energy 
demanding, and strategies to reduce its cost should be developed. 
Several possible cell disruption treatments have been proposed so 
far. For all of them, the efficiency is dependent on cell size. Indeed, 
the larger microalgae cells are, the more easily to be disrupted as 
compared to smaller ones [29,30]. As a result, the simulations of 
these processes by employing PBEs could contribute to their im-
provement. Nevertheless, to our knowledge, only one paper applied 
PBEs to describe cell disruption [29], i.e. mechanical disruption. Cell 
size is not the only parameter to be taken into account. Other bio-
logical features also have an impact, as the composition of the cell 
wall, which can change remarkably depending on the microalgal 
species [25]. A classic discretized formulation of PBEs adopted for 
bead milling disruption of a microalgae cell population is shown in 
Eq. (47), and it was specifically used to describe the different size- 
dependent phenomena which can affect the cell size class wi [29,30]:

= +
=

d t
dt

S w t b S w t
w ( )

( ) ( )i
j i j

i
i j j j1

1
, (44) 

By using this equation, some authors inferred that the shear ef-
fect prevails in the disruption of smaller particles and compression 
effects in larger particles [29,30]. As in flocculation breakage pro-
cesses, the breakage due to bead milling can be represented by a 
stress model, which is a function of the overall stress applied on the 
cells, strictly related to the cell size. Zinkoné et al. [30] tried to ex-
tend the effect of the disruption variables to the efficiency of the 
main products extraction from microalgae biomass. The model 
proposed by Pan et al. [29] was used to fit experimental data coming 
from Nannochloropsis sp.

6. Concluding remarks and future perspectives

PBE models have been proposed to optimize different operating 
steps involved in the microalgae process industry. Operating steps 
that could greatly benefit from PBE application are microalgae cul-
tivation, harvesting, disruption and extraction.

PBE models have been formulated to analyze the impact of cell 
cycle progression, multiple fission and lysis on population growth 
dynamics. Integrating the description of these phenomena into the 

modeling of microalgae growth through PBEs allowed the ex-
plaination of complex cultivation dynamics, such as the onset of 
transient oscillations and the synchronization of microalgae cells in 
response to nutrient availability fluctuations, which are determined 
by cell-to-cell heterogeneity and cannot be reproduced by tradi-
tional unsegregated models. Furthermore, the use of PBE models was 
demonstrated to prevent the erroneous estimation of average spe-
cific growth rate, which is determined if an average biomass con-
centration is used, as specific growth rate is nonlinearly dependent 
on nutrient concentrations.

Downstream processes (harvesting and cell disruption) always 
include size/mass dependent treatments, and the use of PBE high-
lighted how different particle/cells sizes behave differently when 
exposed to the same operating conditions. PBEs have been used to 
describe the effect that different particle size can display on the 
formation of larger particles and on settling and centrifugation.

Classical formulations of PBEs have even been applied to describe 
mechanical cell disruption of cells.

Nevertheless, the potential of PBE models to analyze and simu-
late microalgae growth dynamics has not fully exploited yet. 
Although it is extensively recognized that single cell growth dy-
namics can be hardly described based on the knowledge of a unique 
internal variable, univariate PBE models were typically formulated, 
where the state of cells was identified by either the size/mass or the 
position through the cell cycle, while only few studies were found 
describing the cell state by multiple internal variables. Even in this 
latter case, only the mass and/or the position within the cell cycle 
were used as internal variables, while scarce efforts were devoted to 
developing PBE models predicting the distribution of biomass frac-
tions (e.g. lipids, carbohydrates, proteins) within the cell population.

These limitations can be attributed to the increasing computa-
tional difficulties that are introduced with increasing the number of 
internal variables and to the lack of quantitative experimental data 
about the biochemical composition of single cells. However, the 
increasing availability of computational resources combined with 
the development of efficient computational solution schemes 
[112,113] and the rapid advancement in the development of analy-
tical methods for single-cell analysis recorded over the past few 
years could help overcome these limitations [16,114]. Analytical 
techniques have been continuously improved, allowing the collec-
tion of quantitative data on intracellular lipids, starch, and protein as 
well as the growth rate. In addition, such experimental data can be 
used to gain further insights into the mechanisms driving the oc-
currence of phenotypic heterogeneity (i.e., the differentiation of 
isogenic cells in the absence of mutations [18]) and their effect on 
the dynamic behavior of microalgae. Cells with different specific 
growth rates or different fractions of accumulated reserve materials 
may, for example, exhibit different resistances to conditions like 
nutrient starvation [85] or the presence of antimicrobial compounds 
[115]. Even random variations in the metabolism can determine the 
cellular fate under variable nutrient supply [116]. In this framework, 
PBE formulations tracking the distribution of biomass composition 
variables could be integrated with mathematical models describing 
the ability of single cells to switch between different metabolic 
states in response to random fluctuations [89,117,118]. By taking 
advantage of experimental data of biochemical composition dis-
tribution becoming increasingly available, the resulting integrated 
models can be used to validate the mechanisms proposed for the 
switching, and subsequently implemented to predict the hetero-
geneous response recorded under time-varying environmental 
conditions.
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