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ABSTRACT Growing evidence shows that gut microbes are key factors involved in the regulation of energy homeostasis, metabolic
inflammation, lipid metabolism, and glucose metabolism. Therefore, gut microbiota modulations caused by selectively fer-
mented oligosaccharides or probiotic bacteria constitute an interesting target in the physiopathology of obesity. However, to
date, no probiotic yeast has been investigated in this context. Therefore, our study aimed to evaluate the impact of the most-
studied probiotic yeast (i.e., Saccharomyces boulardii Biocodex) on obesity and associated metabolic features, such as fat mass
development, hepatic steatosis, and low-grade inflammation, in obese mice. S. boulardii was administered daily by oral gavage
to leptin-resistant obese and type 2 diabetic mice (db/db) for 4 weeks. We found that S. boulardii-treated mice exhibited reduced
body weight, fat mass, hepatic steatosis, and inflammatory tone. Interestingly, these effects of S. boulardii on host metabolism
were associated with local effects in the intestine. S. boulardii increased cecum weight and cecum tissue weight but also induced
dramatic changes in the gut microbial composition at the phylum, family, and genus levels. These gut microbiota changes in re-
sponse to S. boulardii may also be correlated with the host metabolism response. In conclusion, this study demonstrates for the
first time that S. boulardii may act as a beneficial probiotic treatment in the context of obesity and type 2 diabetes.

IMPORTANCE To date, no probiotic yeast have been investigated in the context of obesity and type 2 diabetes. Here we found that
type 2 diabetic and obese mice (db/db) treated with Saccharomyces boulardii exhibited reduced body weight, fat mass, hepatic
steatosis, and inflammatory tone. These effects on host metabolism were associated with local effects in the intestine. Impor-
tantly, by using pyrosequencing, we found that S. boulardii treatment induces changes of the gut microbiota composition at the
phylum, family, and genus levels. Moreover, we found that gut microbiota changes in response to S. boulardii were correlated
with several host metabolism responses.

Received 27 February 2014 Accepted 15 May 2014 Published 10 June 2014

Citation Everard A, Matamoros S, Geurts L, Delzenne NM, Cani PD. 2014. Saccharomyces boulardii administration changes gut microbiota and reduces hepatic steatosis, low-
grade inflammation, and fat mass in obese and type 2 diabetic db/db mice. mBio 5(3):e01011-14. doi:10.1128/mBio.01011-14.

Editor Martin Blaser, New York University

Copyright © 2014 Everard et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported
license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

Address correspondence to Patrice D. Cani, patrice.cani@uclouvain.be.

Growing evidence supports that gut microbiota-host interac-
tions control energy homeostasis, glucose metabolism, and

lipid metabolism (1–4). We and others have shown that the gut
microbiota influences whole-body metabolism by affecting en-
ergy balance (1–3) and metabolic inflammation associated with
obesity and related disorders (5, 6). However, the exact roles of
specific microorganisms present in the gut remain poorly defined.
Among the different strategies available to modify the gut micro-
biota in the context of obesity and type 2 diabetes, compelling
evidence suggests that oral supplementation with selectively fer-
mented oligosaccharides (i.e., prebiotics, arabinoxylans, and re-
sistant starches) improves these metabolic disorders via several
mechanisms (7–12). Moreover, the use of probiotic bacteria has
also been suggested (3, 13–19). Strikingly, to our knowledge, the
role of probiotic yeast in the modulation of obesity and associated
related disorders has never been investigated. The most-studied
probiotic yeast is Saccharomyces cerevisiae var. boulardii Biocodex

(S. boulardii), and this yeast has been widely investigated and used
for the prevention of antibiotic-associated diarrhea (20). S. bou-
lardii differs from other strains by several physiological and met-
abolic characteristics. For instance, the optimum growth temper-
ature of S. boulardii is approximately 37°C, and other strains of
S. cerevisiae prefer lower temperatures (between 30 and 33°C) for
growth (21). In addition, S. boulardii is resistant to low pH and is
highly tolerant to bile acids (22). S. boulardii has been widely char-
acterized, and its beneficial roles have been associated with specific
mechanisms, such as specific antitoxin effects, antimicrobial ac-
tivities, a trophic effect on the gut mucosa, an improved immune
response (20), and increased production of butyrate (23), which is
a short-chain fatty acid (SCFA) known for its impact on intestinal
functions (24).

Although it is well established that S. boulardii improves gut
health, the potential roles of S. boulardii in obesity, associated
hepatic disorders, and metabolic inflammation are unknown.
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Thus, this study had the following aims: (i) to elucidate the
impact of S. boulardii on obesity, fat mass development, hepatic
steatosis, and low-grade inflammation in leptin-resistant obese
and type 2 diabetic mice (db/db) and (ii) to investigate the influ-
ence of S. boulardii treatment on the taxonomic profile of the
mouse gut microbiota by using high-throughput sequencing anal-
ysis.

RESULTS
S. boulardii administration reduces body weight gain and fat
mass in obese and type 2 diabetic mice. Leptin-resistant obese
and type 2 (ic�db/db) diabetic mice develop fatty livers associated
with severe obesity and type 2 diabetes (25). Here, we found that
after 4 weeks of daily oral gavage with S. boulardii, treated (db-Sb)
mice exhibited a modest but significant decrease in body weight
(Fig. 1a) compared to vehicle-treated mice (db-CT). The body
weight gain was about 15% lower in S. boulardii-treated animals
(10.13 � 0.56 g in db-CT mice versus 8.71 � 0.98 g in db-Sb mice
[means � standard errors of the means, or SEM]; P � 0.05). This
effect was accompanied by a significantly reduced whole-body fat
mass (Fig. 1b) and adiposity index (Fig. 1c), which was assessed by
weighing the main fat depots (visceral, epididymal, and subcuta-
neous) (Fig. 1d to f). This effect was not associated with any
changes in food intake (cumulative food intake per mouse. 140.97
� 6.01 g in db-CT mice versus 149.02 � 3.81 g in db-Sb mice; P �
0.05).

S. boulardii administration reduces hepatic steatosis in
obese and type 2 diabetic mice. We found that S. boulardii signif-

icantly reduced liver weight (Fig. 2a). To identify if this decrease
might be attributed to the fat content, total lipids were extracted
from the liver. We found that S. boulardii significantly decreased
total hepatic lipid content in db-Sb mice compared to db-CT mice
(Fig. 2b). These effects were not associated with changes in fasted
glycemia (487 � 22 mg/dl in db-CT versus 489 � 18 mg/dl in
db-Sb; P � 0.05) and fasted insulinemia (8.7 � 0.9 �g/liter in
db-CT versus 7.5 � 0.8 �g/liter in db-Sb; P � 0.05).

S. boulardii administration decreases hepatic and systemic
inflammation. Evidence suggests that obesity is associated with
the development of inflammatory liver diseases, such as nonalco-
holic fatty liver disease and nonalcoholic steatohepatitis (26, 27).
We have also previously demonstrated that the gut microbiota
contributes to the development of hepatic steatosis and inflamma-
tion (7, 28, 29). In the present study, we found that the decreased
hepatic steatosis observed in db-Sb mice was associated with a
marked decrease in liver macrophage infiltration markers, as
shown by the 50% decrease in cluster of differentiation 11c
(CD11c) and F4/80 mRNA levels as well as the reduced expression
(to approximately 40%) of monocyte chemoattractant protein 1
(MCP-1) mRNA (Fig. 2c to e). In accordance with the lower ex-
pression of macrophage infiltration markers, we found that
S. boulardii treatment reduced liver interleukin-1� (IL-1�)
mRNA levels by approximately 37% compared to vehicle-treated
mice (Fig. 2f). In addition to the reduced hepatic inflammation,
we found that systemic markers of inflammation were reduced
following S. boulardii treatment. Plasma cytokine concentrations
of IL-6 and IL-4 were significantly reduced by approximately

FIG 1 S. boulardii administration reduces body weight gain and fat mass in obese and type 2 diabetic mice. Body weight (a), fat mass measured by nuclear
magnetic resonance (b), the adiposity index (c), visceral adipose tissue weight (d), epididymal adipose tissue weight (e), and subcutaneous adipose tissue (f) were
measured in db/db mice treated with the vehicle (saline; db-CT; n � 15) or S. boulardii (db-Sb; n � 15). Data are means � SEM. *, P � 0.05 according to Student’s
t test.
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2-fold (Fig. 3a and c) in db-Sb mice compared to db-CT mice.
IL-1� was reduced by approximately 40% (P � 0.06), and tumor
necrosis factor alpha (TNF-�) was reduced by approximately 20%
(P � 0.12) (Fig. 3b and d).

S. boulardii significantly increases cecum weight. The gut
mucosa is subjected to a constant and rapid cellular turnover (30,
31), and S. boulardii has been shown to exert a trophic effect on gut
mucosa (32, 33). Here we found that S. boulardii significantly
increased cecum weight and cecal tissue weight, thereby suggest-
ing a trophic effect on this tissue (Fig. 4a and b).

S. boulardii profoundly affects the gut microbial community
at different taxonomic levels. We first quantified the abundance
of total yeast cells as well as total Saccharomyces cells. The number
of yeast cells reached 6.57 � 0.09 log10 cells/g of cecal content in

db-CT mice and 8.21 � 0.17 log10 cells/g of cecal in db-Sb mice; P
� 1 � 10�15). The abundance of total Saccharomyces was 5.85 �
0.09 log10 cells/g of cecal content in db-CT mice and 8.08 � 0.22
log10 cells/g of cecal content in db-Sb mice (P � 5.9 � 10�17),
thereby showing that S. boulardii administration increased by
about 2 logs the abundance of Saccharomyces yeast cells in the
cecal content of mice. Principal coordinates analysis (PCoA)
showed that the overall gut microbial community was signifi-
cantly modified by S. boulardii treatment (Fig. 5a). We previously
demonstrated that db/db mice present an altered gut microbiota
composition that is characterized by a decrease in the abundance
of the phylum Bacteroidetes, an increase of Firmicutes, and a dra-
matic increase in Proteobacteria compared to lean mice (25). In
the present study, we found that S. boulardii treatment profoundly
affected the abundance of different phyla. For instance, we found
that S. boulardii was associated with a significant increase in Bac-
teroidetes (by approximately 37%) and a significant decrease in the
abundance of Firmicutes (by 30%) compared to db-CT mice
(Fig. 5b; see also Table S2 in the supplemental material). Both
Proteobacteria and Tenericutes were profoundly affected by the

FIG 2 S. boulardii administration reduces liver weight, hepatic steatosis, and
hepatic inflammatory markers in obese and type 2 diabetic mice. Liver weight
(a), total lipid liver content (b), and inflammatory marker mRNA expression
of CD11c (c), F4/80 (d), MCP-1 (e), and IL-1� (f) measured in db/db mice
treated with the vehicle (saline; db-CT; n � 15) or S. boulardii (db-Sb; n � 15).
mRNA data are expressed relative to results in db-CT mice. Data are means �
SEM. *, P � 0.05 according to Student’s t test.

FIG 3 S. boulardii administration reduces plasma cytokines in obese and type
2 diabetic mice. Plasma cytokine concentrations of IL-6 (a), IL-1� (b), IL-4 (c),
and TNF-� (d) measured in the plasma of db/db mice treated with the vehicle
(saline; db-CT; n � 15) or S. boulardii (db-Sb; n � 15). Data are means � SEM.
*, P � 0.05 according to Student’s t test.
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treatment, as we found decreases of 55 and 57%, respectively.
These results suggested that S. boulardii changes the gut microbial
community by affecting the relative fractional abundance of the
four main phyla (Fig. 5b; see also Table S2). At the family level, we
found several important modifications of the gut microbiota
composition. Among the 34 families identified, 5 of them were
significantly changed following S. boulardii treatment, after cor-
rection via a false-discovery rate (FDR) test according to the
Benjamini-Hochberg procedure (Fig. 5c; see also Table S3 in the
supplemental material). The major differences were observed at
the level of the dominant families, as follows: the Bacteroidaceae
family was increased by 6-fold in db-Sb mice, and Porphyromon-
adaceae was decreased by 8-fold in db-Sb mice (Fig. 5c; see also
Table S3).

Among the 30 genera detected, Bacteroides was the most abun-
dant, with a mean abundance of 8.3% across all samples. In the
S. boulardii treatment group, this genus was increased by 400%.
Conversely, the following genera were decreased in S. boulardii-
treated mice: Anaeroplasma (�92%), Anaerotruncus (�47%)
Dorea (�77%), Odoribacter (�82%), Oscillospira (�38%), Para-
bacteroides (�91%), Prevotella (�76%), and Ruminococcus
(�44%) (Fig. 5d; see also Table S4 in the supplemental material).

S. boulardii-induced modifications of the gut microbiota
correlates with metabolic parameters. We performed a Spear-
man correlation analysis corrected by a false-discovery rate test
according to the Benjamini-Hochberg procedure in order to eval-
uate the potential link between significant changes in gut micro-
biota composition induced by S. boulardii and host metabolism
(Fig. 6).

We found that several markers were positively or negatively
associated with body weight, fat mass, cecum weight, hepatic ste-
atosis, or inflammatory markers. For instance, we found that the
adiposity index and specific adipose tissue weights were signifi-
cantly associated with several genera. Odoribacter, Parabacte-
roides, Prevotella, and Ruminococcus were all positively associated
with the adiposity index or epididymal adipose tissue (EAT)
weight, whereas Bacteroides was inversely associated with fat mass

(Fig. 6). We found that cecum weight was negatively correlated
with Prevotella, and Anaerotruncus. Among the different genera
affected by S. boulardii, we found that Bilophila was the only genus
that was negatively correlated with liver tissue weight.

In contrast, Ruminococcus was positively associated with these
parameters and with F4/80 mRNA expression (Fig. 6).

DISCUSSION

This study demonstrated that S. boulardii administration in obese
and type 2 diabetic mice profoundly modifies host metabolism
and is associated with changes in the gut microbial composition.
S. boulardii-treated mice exhibited reduced fat mass, hepatic ste-
atosis, and inflammatory tone, thereby suggesting that S. boulardii
may also act as a beneficial probiotic treatment in the context of
obesity and type 2 diabetes. To our knowledge, this study is the
first high-throughput study that has analyzed the effects of this
yeast on the gut microbiota as well as the first study that has shown
an impact of S. boulardii on metabolic disorders associated with
cardiometabolic risk factors, such as fat mass development, ste-
atosis, and inflammation. Nevertheless, numerous studies have
already shown a protective effect of S. boulardii in different models
associated with inflammation (e.g., inflammatory bowel diseases,
colitis, intestinal infections, and hepatic injury) (20, 34–36). We
did not find any changes in food intake between groups. This
observation suggested that S. boulardii modulates energy homeo-
stasis via a mechanism other than energy intake. Importantly, we
found that S. boulardii treatment reduced hepatic and systemic
inflammation. Because liver lipid accumulation is associated with
liver and systemic inflammation, one may postulate that the de-
creased inflammatory tone may be related to the lower liver and
whole-body fat accumulation. However, the impacts of S. boular-
dii on both fat mass and body weight were approximately 10%,
and the inflammatory markers were reduced by 40 to 50%. There-
fore, we suggest that S. boulardii contributed to the reduced in-
flammation by a putative gut-to-liver axis. Given that this treat-
ment has been previously associated with an improved gut barrier
function (20, 32, 34–38), we may not exclude that S. boulardii
improved the gut barrier function in this model. Regarding intes-
tinal integrity, we found that S. boulardii treatment increased both
cecum and cecal tissue weights, thereby suggesting a trophic effect
of the yeast on the intestinal epithelial cells. These results were also
consistent with previous studies that showed that S. boulardii ex-
erts a trophic effect on the intestinal epithelium via several molec-
ular mechanisms (33, 37),

We and others previously demonstrated that the gut microbi-
ota contributes to the development of hepatic steatosis, hepatic
inflammation, and systemic inflammation, but the impact of
S. boulardii on the gut microbiota is poorly defined (7, 28, 39–43).
Thus, we decided to determine the impact of S. boulardii on the
abundance of total yeast and the genus Saccharomyces but also on
the gut microbiota composition by using a high-throughput se-
quencing method. We found that S. boulardii administration in-
creased by about 160-fold the abundance of total Saccharomyces in
the cecal content, whereas the total number of yeast cells was in-
creased by about 40-fold, thereby increasing the relative propor-
tion of Saccharomyces cells per total yeast cells from 18.9% to
73.9%. Thus, this result suggests that the relatively lower increase
in total yeast cells observed upon S. boulardii treatment might be
explained by a modification of the abundance of other yeasts.
However, this hypothesis merits further investigation.

FIG 4 S. boulardii administration increases cecum weight and cecum tissue
weight in obese and type 2 diabetic mice. Total cecum weight (a) and cecum
tissue weight (b) were measured in db/db mice treated with the vehicle (salinel
db-CT; n � 15) or S. boulardii (db-Sb; n � 15). Data are means � SEM. *, P �
0.05 according to Student’s t test.
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FIG 5 S. boulardii administration changes the gut microbiota composition at different taxonomic levels. (a) PCoA results for the gut bacterial community, based
on the weighted Unifrac analysis of the different OTUs in db-CT (red dots) and db-Sb (blue squares) mice. Phyla (b), families (c), and genera (d) were detected
in the cecal contents of db/db mice treated with the vehicle (saline; db-CT; n � 15) or S. boulardii (db-Sb; n � 15). Undetected taxa are not represented in the
graphic. In panels c and d, each column is set at 100% to illustrate the proportion of each taxa among the two groups; the presence of only one color indicates that
the taxa was present only in this group of mice. The significant changes and raw values of each taxa are shown in the supplemental material.
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Here, we found that S. boulardii significantly changed the gut
microbiota composition with an increased proportion of Bacte-
roidetes and a decreased amount of the phyla Firmicutes, Proteo-
bacteria, and Tenericutes. These phyla have been previously asso-
ciated with obesity and type 2 diabetes in mice, with a higher
abundance of Firmicutes, Proteobacteria, and Tenericutes as well as
a lower abundance of Bacteroidetes (8, 25, 44–46). Moreover, we
found that S. boulardii treatment affected several genera that have
been previously associated with diabetes and inflammation in
db/db mice (i.e., Odoribacter, Ruminococcus, and Prevotella) (25).
Thus, we speculate that, in response to S. boulardii, the gut micro-
biota may contribute to the host metabolism response. However,
the relationships that exist between S. boulardii and specific mi-
crobes remain unknown. S. boulardii has been shown to modify
the production of SCFAs, such as butyrate (23). Evidence suggests
that butyrate may contribute to the regulation of several functions
at the level of the gut barrier but also to energy homeostasis (47–
49) and hepatic steatosis (50). Further investigation is required to
understand whether the positive effects observed upon S. boular-
dii treatment are mediated through butyrate- or SCFA-dependent
mechanisms. In the present study, we found that 7 families among
the 34 identified were significantly affected by the treatment. At
the genera level, 9 of the 30 genera identified were affected by
S. boulardii treatment. Importantly, most of them are poorly char-
acterized and could be novel bacteria to study in the future in the
context of obesity, because we cannot rule out that these specific
changes in genera are involved in the beneficial effects of S. bou-
lardii on host metabolism. Because some of the genera affected by
S. boulardii are correlated with metabolic parameters, we postu-
late that these specific changes in the gut microbiota may contrib-
ute to the beneficial effects of S. boulardii on host metabolism.
However, whether these genera directly contribute to the pheno-
type warrants further investigation. For instance, we found a de-
crease in Prevotella in S. boulardii-treated mice and a positive cor-
relation between Prevotella and adipose tissue weight (EAT).
These data were in accordance with data reported elsewhere in the
literature, because Zhu et al. found an increase in these bacteria in

human obese and nonalcoholic steatohepatitis patients, thereby
suggesting a link between the presence of these bacteria and fat
mass (51).

Interestingly, our results showed that Bacteroides was dramat-
ically increased by S. boulardii treatment. Moreover, we found an
inverse correlation between Bacteroides and the fat mass, suggest-
ing a potential beneficial effect of this bacterium in host physiol-
ogy. This result was in accordance with our recent study that
showed that a prebiotic-enriched diet is associated with an in-
crease in Bacteroides compared to a high-fat diet (52), and this
result was also in accordance with a second study that revealed
that treatment with alkaloid berberine, a plant that prevents obe-
sity, is associated with an increase in this genus (53). In addition to
its probiotic effect and immunomodulatory properties, S. boular-
dii could act as a prebiotic, which would explain the impressive
increase of the Bacteroides genus in db-Sb mice. The cell walls of
yeasts are made up of various proportions of �-glucans (54).
These polysaccharides are poorly digested by the host due to a lack
of specific enzymatic tools necessary for their digestion, but they
can be fermented by intestinal bacteria (55). The genus Bacteroides
has been recognized for a long time for its ability to metabolize this
particular class of polysaccharides and could benefit greatly from
an additional presence of this compound in the intestine for
growth (56–58). Whether this specific effect on Bacteroides is re-
stricted to the strain S. boulardii requires further investigation.

In conclusion, our results demonstrated that S. boulardii inter-
vention in mice may change the gut microbiota and reduce fat
mass, hepatic steatosis, systemic inflammation, and hepatic in-
flammation in obese and type 2 diabetic mice. We identified a
novel potential therapeutic role of S. boulardii treatment that pro-
foundly affects numerous host metabolic parameters. Moreover,
this is the first study that has provided a deep analysis of the gut
microbiota modulations that occur after S. boulardii supplemen-
tation. In addition, we observed putative correlations between
genera and several metabolic markers. Thus, our results provide
new insights into the complex relationships that exist between
S. boulardii yeast and several taxa on metabolism in the context of
metabolic inflammation and obesity.

MATERIALS AND METHODS
Mice and treatment. A set of 6-week-old db/db mice (n � 15/group)
(BKS.Cg-Dock7m �/�Lepdb/J; Jackson Laboratory, Bar Harbor, ME) were
housed in a controlled environment (12-h daylight cycle; lights off at
6 p.m.) in groups of two or three mice/cage. The mice were fed a control
diet (CT; AIN93M; Research Diet, New Brunswick, NJ). Saccharomyces
boulardii was provided by Biocodex (France). S. boulardii was suspended
in sterile saline and immediately administered by oral gavage (120 mg;
db-Sb), and the control group (db-CT) received the same volume of ster-
ile saline solution. The treatment was continued for 4 weeks. Body com-
position was assessed by using a 7.5-MHz time domain nuclear magnetic
resonance (TD-NMR) apparatus (LF50 Minispec; Bruker, Rheinstetten,
Germany). The experiment was approved by and performed in accor-
dance with the guidelines of the local ethics committee. Housing condi-
tions were specified by the Belgian Law of 29 May 2013 regarding the
protection of laboratory animals (agreement number LA1230314).

Tissue sampling. The animals were anesthetized with isoflurane
(Isoba; Schering-Plough Animal Health, Uxbridge, Middlesex, United
Kingdom) before exsanguination and tissue sampling, and the mice were
then killed by cervical dislocation. Visceral (corresponding to the mesen-
teric fat), brown, epididymal, and subcutaneous (corresponding to the
inguinal and fat pads located on the lower back) adipose tissues were
precisely dissected and weighed. The adiposity index corresponds to the

FIG 6 Specific genera are correlated with several host markers. The heat map
shows the Spearman r correlations between the bacterial genera detected in the
cecal contents of db/db mice treated with the vehicle (saline; db-CT; n � 15) or
S. boulardii (db-Sb; n � 15). Square cells depict significant differences in
treated and control animals following a Spearman correlation analysis. *, P �
0.05. BAT, brown adipose tissue; EAT, epididymal adipose tissue; SAT, sub-
cutaneous adipose tissue; VAT, visceral adipose tissue weight.
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sum of the different adipose tissue weights (visceral, epididymal, subcu-
taneous, and brown). Liver tissue was weighed, snap-frozen in liquid ni-
trogen, and stored at �80°C until further analysis. The cecum was
weighed, and the cecal content was collected for microbiota analyses, im-
mersed in liquid nitrogen, and stored at �80°C until further analysis.
Cecal tissue was washed in cold saline, dried, and weighed.

Plasma cytokine measurement. Plasma contents of IL-1, IL-6, IL-4,
and TNF-� were determined in duplicate by using Bio-Plex Pro cytokine
assays kit (Bio-Rad, Nazareth, Belgium) and measured using a Luminex
instrument (Bio-Plex; Bio-Rad) following the manufacturer’s instruc-
tions.

RNA preparation and real-time qPCR analysis. Total RNA was pre-
pared from tissues by using TriPure reagent (Roche). Quantification and
integrity analysis of total RNA were performed by analyzing 1 �l of each
sample in an Agilent 2100 bioanalyzer (RNA 6000 Nano kit). cDNA was
prepared by reverse transcription of 1 �g of total RNA by using a reverse
transcription system kit (Promega, Leiden, The Netherlands). Real-time
PCR was performed with the StepOnePlus real-time PCR system and
software (Applied Biosystems, Den Ijssel, The Netherlands) and Mesa Fast
quantitative PCR (qPCR; Eurogentec, Seraing, Belgium) for detection
according to the manufacturers’ instructions. RPL19 RNA was chosen as
the housekeeping gene. All samples were performed in duplicate in a
single 96-well reaction plate, and data were analyzed according to the
2�	CT method. The identity and purity of the amplified product were
assessed by melting curve analysis at the end of amplification. The primer
sequences for the targeted mouse genes are presented in Table S1 in the
supplemental material.

Liver lipid content. Total lipids were measured in the liver tissue after
an extraction in CHCl3-methanol (MeOH) according to the method of
Folch et al. (59), adapted as previously described (60). Briefly, 100 mg of
liver tissue was homogenized in 1 ml of phosphate buffer (pH 7.4) by
using an Ultra-Turrax instrument (IKA, T10 basic; IMLAB, Boutersem,
Belgium) until complete tissue lysis. Lipids were extracted by mixing
125 �l of lysate sample with 1 ml of CHCl3-MeOH (2:1). The chloroform
phase was evaporated under nitrogen flux, and the dried residue was
weighed to determine the total lipid content.

DNA isolation from mouse cecal samples. Metagenomic DNA was
extracted from the cecal contents by using a QIAamp-DNA stool minikit
(Qiagen, Hilden, Germany) according to the manufacturer’s instructions
and the adapted procedure previously described (61). The quantity and
the quality of the DNA extracted from the samples were checked before
sending the samples for sequencing.

Sequencing. The 16S rRNA gene from the cecal microbiota of the mice
was amplified using the universal Eubacterial primers as follows: 27Fmod
(5= AGRGTTTGATCMTGGCTCAG 3=) and 519Rmodbio (5=-
GTNTTACNGCGGCKGCTG-3’). Purified amplicons were sequenced
utilizing Roche 454 FLX titanium instruments and reagents following the
manufacturer’s guidelines.

Sequencing was performed at MR DNA (Shallowater, TX).
The Q25 sequence data derived from the sequencing process were

analyzed with the QIIME 1.7 pipeline. In summary, sequences were de-
pleted of bar codes and primers. Sequences of �200 bp or �1,000 bp were
then removed, and sequences with ambiguous base calls and with ho-
mopolymer runs exceeding 6 bp were also removed. Sequences were de-
noised, and operational taxonomic units (OTUs) were generated. More-
over, chimeras were removed. OTUs were defined by clustering at 3%
divergence (97% similarity). Final OTUs were taxonomically classified
using BLASTn against a curated GreenGenes database. PCoA was gener-
ated with QIIME using the unweighted UniFrac distance matrix between
the samples (62, 63).

Yeast cell quantification. Yeast cells were quantified using the primers
YEASTF (5= GAGTCGAGTTGTTTGGGAATGC 3=) and YEASTR (5= T
CTCTTTCCAAAGTTCTTTTCATCTTT 3=) following the method de-
scribed by Hierro et al. (64). Saccharomyces was quantified using primers
SC1 (5= GAAAACTCCACAGTGTGTTG 3=) and SC2 (5= GCTTAAGTG

CGCGGTCTTG 3=) according to the method described by Zott et al. (65).
Detection was achieved with the StepOnePlus real-time PCR system and
software (Applied Biosystems) and Mesa Fast qPCR (Eurogentec) accord-
ing to the manufacturer’s instructions. Each assay was performed in du-
plicate in the same run. The cycle threshold (CT) of each sample was then
compared with a standard curve (performed in triplicate) made by dilut-
ing genomic DNA (5-fold serial dilution) extracted from a pure culture of
S. boulardii (Biocodex). The data are expressed as the log10 of bacteria per
g of cecal content.

Statistical analysis. Data are expressed as means � SEM unless oth-
erwise indicated. Differences between two groups were assessed using the
unpaired two-tailed Student’s t test. Data were analyzed using GraphPad
Prism version 5.00 for Windows (GraphPad Software, San Diego, CA).
Data related to the gut microbiota were analyzed using JMP 8.0.1 (SAS
Institute, Inc., Cary, NC) and R 3.0.2 (The R Foundation) with the RStu-
dio 0.97.310 package and gplots for the heat map. The results were con-
sidered statistically significant at P level of �0.05. Correlation results were
corrected by an FDR test according to the Benjamini-Hochberg proce-
dure, with an � of �0.05.
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