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LETTER TO TH E EDITOR

Evolution of tumor microenvironment in colorectal liver
metastases under treatment stress

Dear editor,
The tumor microenvironment (TME) heavily impacts
disease biology and may influence responses to systemic
treatments, and thereby, affects patients’ prognosis. In our
previous study, we found that immune features could pre-
dict prognosis and guide the therapy choices for stage I-III
colon cancer [1,2]. Increasing evidence shows that therapy-
induced TME changes can promote tumor progression,
metastasis, and the development of resistance [3,4].
However, the TME dynamics in colorectal liver metastases
(CRLM) under treatment are still incompletely clear.
In this study, we surveyed the evolution of the TME

under treatment stress from 15 CRLM patients via RNA
sequencing (RNA-seq), T-cell receptor (TCR) sequencing
(TCR-seq), immunohistochemical (IHC) staining and
immunofluorescence (Supplementary Materials and
Methods) (Supplementary Figure S1A, and Supplemen-
tary Table S1). During treatment, the fraction of epithelial
tumor cells of regressive tumors (partial response [PR])
decreased significantly, whereas it increased in stable
and progressive tumors (SD and PD) (Supplementary
Figure S1B-D). Consensus molecular subtypes, which is
one of the most robust colorectal cancer classifications,
changed dramatically during treatment (Supplementary
Figure S1E).
Comparison of treatment-naïve patients with response

(PR) and non-response (SD or PD) showed that along with
the upregulation of interferon response, the expression
of immune checkpoint-related genes also increased (Sup-
plementary Figure S2A-C). Immune-related genes were
significantly enriched in sensitive tumors after treatment
whereas progressive tumors contained highly expressed
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genes involved in fatty acid, amino acid metabolism and
cholesterol homeostasis (Supplementary Figure S2D-F).
Analysis of matched pre- and post-therapy samples
revealed that upregulated genes in responders during
therapy were immune-related, whereas these genes
were downregulated in non-responders (Supplementary
Figure S2G-I). Gene Set Enrichment Analysis (GSEA)
revealed that the response of interferon and inflammation
was upregulated during treatment in responders, but
was downregulated in non-responders (Supplementary
Figure S2J).
Single sample gene set enrichment analysis (ssGSEA)

[5] indicated that immune infiltration in regressive
tumors was increased, whereas tumor cell cycle and
DNA metabolic processes were decreased during therapy
(Figure 1A, and Supplementary Figure S3A-B). Con-
versely, immune-activation relevant signature scores
decreased, whereas tumor cell-cycle processes fluctu-
ated in non-responders (Supplementary Figure S3A, C).
As shown in Figure 1B, with the application of gene
sets [6], immune infiltration in responsive tumors after
treatment was higher than before treatment. Dendritic
cells, antigen-presenting cells and T cells were upregu-
lated in shrinking tumors but not changed significantly
in progressive metastatic tumors. The good-prognosis
angiogenesis genes (GPAGs) score [7], which may reflect
vessel normalization, was increased after treatment in
responders, whereas it was decreased in non-responders.
Overall, the RNA-based immune signatures from tumor
tissue suggested that therapy remodeled TME, which
correlated with treatment benefits.
IHC analysis showed that the densities of CD8+ T cells

in tumors were significantly increased after treatment
in responders (P = 0.011; Figure 1C). However, in non-
responders, CD8+ T-cell densities were slightly but not
significantly decreased. TCR-seq indicated that four TCR
diversity indexes of tumors were significantly increased in
responders during treatment but were unchanged in non-
responders (Supplementary Figure S4A-C). TCR diversity
scores which were defined according to the sum of four
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diversity indexes, increased as the tumors shrank, and
decreased as the tumors progressed (Figure 1D-E, and Sup-
plementary Figure S4D). These findings confirmed respon-
sive tumors had immune remodeling, including elevated
T-cell infiltration and activation, increased TCR diversity,
as well as enhanced antigen presentation.
Deconvoluted by the CIBERSORT algorithm [8], the

fraction of neutrophils and monocytes were significantly
more numerous in progressive tumors (Figure 1F, and
Supplementary Figure S5A). IHC staining confirmed that
neutrophil density was significantly increased after treat-
ment in non-responders (P = 0.032; Figure 1G), whereas
there were no changes in tumor-associated macrophage
(Supplementary Figure S5B).Meanwhile,we deconvoluted
bulk RNA-seq profiles of the TCGA Pan-Cancer dataset
and validated the poor outcome of patients with high neu-
trophil infiltration (Supplementary Figure S5C). Remark-
ably, correlation analysis of the TCGA Pan-Cancer data
revealed a significant positive correlation between neu-
trophils and fatty acid metabolism, and a negative corre-
lation between neutrophils and T-cell immunity (Supple-
mentary Figure S5D-E). These results suggested a major
role of fatty acid metabolism–neutrophil crosstalk in treat-
ment resistance.
Transcriptome analyses showed that VEGF-A inhibition

increased intra-tumor T-cell abundance and upregulated
the expression of immune checkpoint-relevant genes

after treatment (Supplementary Figure S6A). GSEA and
ssGSEA analysis indicated that tumors treated with
bevacizumab plus chemotherapy significantly upregu-
lated the interferon response, TNF-α signaling pathways
and T-cell receptor signaling pathway (Supplementary
Figure S6B-C), suggesting that chemotherapy with beva-
cizumab promoted tumor T-cell infiltration and activation.
Analysis of responders who had received chemotherapy
plus bevacizumab revealed that VEGF-A inhibition
activated T cells, facilitated leukocyte migration, and
upregulated inflammatory responses (Supplementary
Figure S6D-E). Responders had decreased vessel density
(P= 0.043) and increased proportion of normalized vessels
(α-SMA+ vessels; P = 0.023) after treatment (Figure 1H).
The HIF1α expression in responders after treatment was
lower than before treatment (P = 0.023) and in non-
responders after treatment (P = 0.016; Supplementary
Figure S6F). These results suggested that the infiltra-
tion of T-cell was associated with tumor vasculature
normalization.
In conclusion, under treatment stress, the TME was

remodeled to promote T-cell immunity and vasculature
normalization in responders, whereas in non-responders,
both lipid metabolism in the tumor and neutrophil infil-
tration in the TME increased (Figure 1I). Based on
the dynamic analysis of clinical samples, our findings
are closer to the clinical settings, contributing to the

F IGURE 1 Tumor microenvironment evolution in colorectal liver metastases during treatment. (A) Heatmap-depicted metabolism
activity and immune signatures. The related signatures were obtained from Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway from the MSigDB database of Broad Institute. Then, the gene set was scored by the ssGSEA method and
statistically analyzed. (B) Changes in T cell activation and cell cycle-related signature scores, and GPAGs of non-responders and responders
from pre-treatment to post-treatment. (C) Representative IHC images and density quantification of CD8+ T cells in the tumor before and after
treatment. Total magnification, × 400/ × 800. (D) Changes in the TCR diversity score in patients. (E) Changes of TCR diversity with various
treatment outcomes. (F) Neutrophil differences from responders and non-responders after treatment. (G) Representative IHC images and
density quantification showing neutrophil infiltration during treatment. Total magnification, × 400/ × 950/ × 1 800. (H) Representative
vascular morphology images (triangle and arrows). Vessel density and α-SMA+ vessels change during treatment. (I) Schematic of the TME
dynamics during treatment. Bars show the Mean ± SD. P value is based on a two-tailed paired Student’s t-test (B, C, G and H), and a
two-tailed Student’s t-test (H). * P < 0.05, ** P < 0.01, *** P < 0.001. Abbreviations: (A) BOR: best overall response; PR: partial response; SD:
stable disease; PD: progressive disease; a: KEGG DNA replication; b: GO DNAmetabolic process; c: GO Cell cycle; d: GO Cell cycle process; e:
GO Glycer ophospholipid metabolic process; f: GO Regulation of insulin like growth factor receptor signaling pathway; g: GO Brown fat cell
differentiation; h: GO Positive regulation of lipid storage; i: KEGG Lysine degradation; j, GO Regulation of glucose metabolic process; k, GO
Positive regulation of triglyceride metabolic process; l, GO Tetrahydrofolate metabolic process; m, KEGG Fatty acid metabolism; n, GO Fatty
acid metabolic process; o, GO Positive regulation of steroid metabolic process; p, GO Positive regulation of fatty acid metabolic process; q, GO
Regulation of fatty acid biosynthetic process; r, GO Positive regulation of cellular response to insulin stimulus; s, GO Hemoglobin metabolic
process; t, GO Regulation of cellular response to insulin stimulus; u, GO Regulation of insulin receptor signaling pathway; v, GO Amino sugar
metabolic process; w, GO Unsaturated fatty acid biosynthetic process; x, GO Antigen processing and presentation; y, GO Cellular response to
lipoprotein particle stimulus; z, GO Leukocyte migration; aa, GO Endocytosis; ab, GO Positive regulation of response to stimulus; ac, GO
Positive regulation of inflammatory response; ad, GO Regulation of activated T cell proliferation; ae, KEGG JAK STAT signaling pathway; af,
GO Adaptive immune response; ag, GO Cytokine metabolic process; ah, KEGG Lysosome; ai, GO Positive regulation of mast cell activation;
aj, KEGG Chemokine signaling pathway; ak, GO Leukocyte proliferation; al, GO Regulation of alpha beta T cell differentiation; am, GO
Negative regulation of nitric oxide metabolic process; an, KEGG T cell receptor signaling pathway; ao, GO Regulation of B cell proliferation; P:
patient; pre: pre-treatment; post: post-treatment. (B) GPAGs: good-prognosis angiogenesis genes; (D) TCR: T-cell receptor; (F) B1, the first
best overall response; B2, the second best overall response; (I) DC: dendritic cell
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improvement of therapy, and providing valuable clues for
further exploration into the relationship between resis-
tance, lipid metabolism and the TME.
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