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Computational methods have played an important role in health care in recent years, as determining parameters that affect a
certain medical condition is not possible in experimental conditions in many cases. Computational fluid dynamics (CFD) methods
have been used to accurately determine the nature of blood flow in the cardiovascular and nervous systems and air flow in the
respiratory system, thereby giving the surgeon a diagnostic tool to plan treatment accordingly. Machine learning or data mining
(MLD) methods are currently used to develop models that learn from retrospective data to make a prediction regarding factors
affecting the progression of a disease. These models have also been successful in incorporating factors such as patient history
and occupation. MLD models can be used as a predictive tool to determine rupture potential in patients with abdominal aortic
aneurysms (AAA) along with CFD-based prediction of parameters like wall shear stress and pressure distributions. A combination
of these computer methods can be pivotal in bridging the gap between translational and outcomes research in medicine. This paper

reviews the use of computational methods in the diagnosis and treatment of AAA.

1. Introduction

Rapid improvements in computational power coupled with
better understanding of hemodynamics have spawned the
interdisciplinary science of computational medicine. A mul-
tidisciplinary effort with clinicians, radiologists, and biolo-
gists on the one hand and engineers and computer scientists
on the other hand has greatly increased the ability to diagnose
medical conditions and has improved delivery of healthcare.
Computational methods have played a very important role
in this, as experimentally determining parameters that affect
a certain medical condition is not possible in many cases.
CFD methods can be used to accurately determine the
nature of blood flow in the cardiovascular system [1] and the
nervous system [2] and air flow in the respiratory system [3].
Machine learning/data mining methods have also been used
to develop models that learn from retrospective data to make
a prediction on factors affecting progression of disease [4-
6]. These models have also been successful in incorporating

factors such as patient history and occupation. Some of these
variables (patient history, occupation, and family history) are
difficult to quantify directly and so, using methods such as
machine learning, they can be incorporated into predictive
models.

AAA is a condition affecting the aorta usually in its infra-
renal segment and involves the abnormal dilatation of this
artery (Figure 1). The infrarenal aorta is a site predisposed to
aneurysmal widening. The cyclic stress caused by the pulse
wave in conjunction with factors which decrease the strength
of the wall may lead to dilatation and ultimately to rupture [7].
It is the 13th most common cause of death in the United States
[8]. The condition occurs mainly in patients over 65 years of
age and affects approximately 2% of the elderly population
[9]. There are several risk factors that have been known to
affect the genesis, growth, and rupture of AAA: advanced age,
greater height, coronary artery disease, atherosclerosis, high
cholesterol levels, hypertension [10], and smoking [11, 12].
AAAs are known to have an incidence that is approximately
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FIGURE 1: Abdominal aortic aneurysm.

four to six times higher in men than in women. However, the
incidence in women also rises with age, although it starts later
in life than in men [13].

Surgical repair of AAA can be performed in two ways,
by traditional open surgery or endovascular aortic aneurysm
repair (EVAR). Initially, open surgery was the norm but since
the introduction of EVAR [14], there has been a widespread
acceptance of the procedure. This is a less invasive proce-
dure with a decrease in 30-day mortality in patients when
compared to open surgical repair. In addition, the current
generation of devices approved has smaller delivery system
profiles, tracks better, and can be used to treat difficult AAA
morphology more easily [15]. EVAR has rapidly become the
preferred method of AAA repair amongst vascular surgeons.
Vascular surgeons have used lumen diameter as a metric
to guide surgical intervention for some time now. A cutoft
diameter of about 5-5.5 cm is used as a base to recommend
surgery for patients with AAA [16]. Some studies like The UK
Small Aneurysm Trial Participants, 1998 [17], have reinforced
this value as a reasonable measure of the risk to benefit ratio
between the risks of aneurysm rupture and those of surgical
intervention.

As a criterion, the use of the maximum diameter metric
is a crude way to estimate the critical state of an AAA [18].
Vorp etal. [18] argued that, from a biomechanical perspective,
the use of wall stress in the lumen can more accurately
predict the rupture of AAA. They defined the critical state
of an AAA as that at which the mechanical stress within the
aneurysmal wall exceeds the tensile strength of the tissue.
Other parameters such as wall tensile strength, length of
aneurysm, and patient-specific pulsatile velocity and pressure
boundary conditions also play an important role in the
progress to rupture of the AAA. Biomechanics of rupture in
AAA is affected due to variations in a combination of these
parameters. Hence, to account for the contributions of several
parameters in what is essentially a patient-specific problem,
computational methods could play a crucial role. This paper
provides a summary of the different computational meth-
ods that can be used, a review of the literature that has
incorporated computational methods to account for several
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FIGURE 2: AAA geometry from CT images [19].

parameters that lead to rupture in AAA, and suggestions on
the direction that future research using these methods should
take in order to improve our understanding of the rupture of
AAA. Computational methods in imaging are left out of this
review as the focus is on the biomechanical analysis of AAA.

2. Computational Methods

2.1. CFD Methods. Biomechanical analysis of an AAA system
involves a series of steps to assess the factors that may
influence the risk of rupture. Firstly, preoperative com-
puted tomography (CT)/magnetic resonance imaging (MRI)
images of the diseased aorta are obtained. These are then put
through a process of image segmentation to convert what
are 2D slices into a 3D geometric model, suitable for use in
a CFD code (Figure 2). The pulsatile velocity and pressure
boundary conditions for use in the CFD model are obtained
during surgery. These are measured at the inlet and outlet of
the aneurysm and at any other suitable point of interest for the
researcher. CFD codes are then used to obtain the wall shear
stress, pressure distributions, and the flow physics of blood in
the aneurysm.

Computational methods in biomechanics incorporate the
parameters mentioned in the previous section. Models are
based on constitutive laws of continuum mechanics, such
as the Law of Laplace that had been originally used in the
analysis of bursting of cylindrical shells, the laws of rheology
to describe the properties of blood, fluid mechanics in the
analysis of vortex formation in the lumen, and material
properties of stent grafts in a postsurgical aorta. Most CFD
solvers are based on the Navier-Stokes (N-S) equations (1)
which form the basis for describing the flow of fluids. They
describe the momentum field of the flow under investigation
and need to be used in conjunction with the continuity
equation that describes mass transport
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where u is the velocity, P is the pressure and p is the density
of the fluid and f is the body force acting on the fluid.
The N-S equations are discretized using two methods: the
finite volume method (FVM) and the finite element method
(FEM). FVM is generally seen to approximate the solution
accurately to a large extent. But FVM may not be the best
way to understand the deformation of a tissue due to blood
flow. FEM has been used to solve fluid mechanics based
problems [20, 21] and specifically for AAA simulations as well
[22, 23]. It has the capability to incorporate the displacement
of the biological tissue in a medical simulation problem more
accurately than a FVM-based solver where the fluid becomes
the most important component in the solution unlike in FEM
where the solid displacement is more important.

The most accurate solutions to a biomechanics problem
would incorporate the material properties of the blood
vessel/tissue in question. This would allow a fluid-structure
interaction (FSI) model to be embedded in the resulting
physics. As the blood vessel/tissue is normally not rigid, it is
imperative that this aspect is accounted for in the computed
solution. FSI methods [24, 25] have been demonstrated to
be effective in the description of flow physics in aneurysms.
The coupling of the aneurysmal wall motion and blood
flow is commonly made by using the Arbitrary Lagrangian
Eulerian (ALE) method. The incompressible continuity and
N-S equations in ALE form can be expressed as

V-u=0
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where pg, p, u, and u, are the fluid density, the pressure,
the fluid velocity, and the moving coordinate velocity, respec-
tively. In ALE formulation, the term (u — ug), which is
the relative velocity of the fluid with respect to the moving
coordinate velocity, is added to the conventional Navier-
Stokes equation to account for the movement of the grid [26].
From a computational point of view, we have to incorporate
the moving interface between the fluid and the rigid body. The
ALE method has been successfully applied to such moving
boundary problems, which arise in free surface problems and
fluid-structure interaction problems.
The ALE method has been employed because

(i) it is convenient to describe the fluid motion on the
moving interface by the Lagrangian description in
order to treat the compatibility conditions and the
equilibrium conditions between the fluid and the
rigid body;

(ii) it is apparently impossible to employ the Lagrangian
description for the entire fluid domain because of
severe mesh distortion due to vortex shedding or
flows through outer boundaries.

Therefore it is natural to employ the mixed viewpoint of the
Lagrangian and Eulerian descriptions [27]. Whilst the above
method has been used for a rigid tissue, the ALE has been
extended to the FSI problem as well [28]. Hirt et al. provide
further detail of the ALE method [29] wherein they describe

the applications of ALE to problems involving different flow
speeds using the finite element method.

2.2. Machine Learning Methods. Significant experience over
many years in the management of AAA amongst hospitals
and clinicians has led to the availability of a large volume
of data on patients who have undergone treatment for the
condition. Statistical techniques such as univariate and mul-
tivariate logistic regression analyses have been successfully
applied to risk prediction in clinical medicine. A commonly
used instrument is the use of a prognostic score derived from
logistic regression to classify a patient into a potential risk
category [30]. This suggests that, using these techniques, an
estimate of the associations between the various risk factors
that cause rupture in an AAA can be encoded.

Many techniques have been used for data mining in
medical and biomedical studies. A popular data mining
technique is decision tree induction. The dataset is recursively
partitioned into discrete subcategories. These subcategories
are based on the value of an attribute in the dataset. The
criteria for selecting these attributes in the dataset are based
on its predictability within a certain subcategory. As a result
of this, the final outcome is a set of series of categories based
on values of the attributes. Each of these series generates
a classification value. There are many algorithms developed
for decision tree induction. Some clinical examples that
apply this approach are diagnosis of central nervous system
disorders [31], posttraumatic acute lung injury prediction
[32], and acute cardiac ischemia [33].

Some of the parameters that may affect the ability to
predict rupture risk in an untreated aneurysm are listed here.
These parameters can be used in a model that learns from
retrospective data and can be used in a prospective tool for
patients.

(1) Diameter of lumen.

(2) Length of aneurysm.

(3) Aneurysm neck angle and length.

(4) Wall thickness.

(5) Presence and volume of intraluminal thrombus (ILT).
(6) Wall shear stress (WSS).

(7) Calcification of the aortic wall and calcium volume
and percentage of aneurysm sac volume.

(8) Gender.
(9) Age of patient.

(10) Patient history (smoking, diabetes, specific occupa-
tions, and family history of aneurysms).

(11) CT scan slice thickness.

(12) Aortic and iliac vessel tortuosity.
(13) Imaging system used for diagnosis.
(14) AAA ILT index.

(15) Patient ethnicity.

(16) Body mass index (BMI).
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FIGURE 3: Inlet velocity and pressure outlet waveforms [43].

(17) AAA surface area.

(18) Aneurysm neck length/height and supra- and infra-
renal neck angles.

Whilst these may be some of the input variables for a
machine learning model, the output is the risk of rupture
that can be obtained as a result of training the model on
such retrospectively gathered data. The said model will learn
about the parameters that play a part in the rupture or
nonrupture of a patient-specific AAA. A great amount of
classified data, that is, a suitable spread of ruptured and
nonruptured retrospective cases, will allow the model to
gauge the parameters that are the most important factors
among many that lead to rupture in an AAA case. This model
can then be applied prospectively where the model, having
learnt from a large amount of data in the past, can to a degree
of accuracy make a prediction of rupture risk in the patient.

When comparing different classifiers [34, 35] the key
issues to address in such a model are

(1) predictive accuracy;

(2) interpretability of the classification models by the
domain expert;

(3) handling of missing data and noise;

(4) ability to work with different types of attributes (cate-
gorical, ordinal, and continuous);

(5) reduction of attributes needed to derive the conclu-
sion;

(6) computational cost for both induction and use of the
classification models;

(7) ability to explain the clinical decisions made when
models are used in decision making;

(8) ability to perform well with hitherto unseen (prospec-
tive) cases.

3. Computational Methods in AAA Analysis

The risk of rupture of an AAA has been studied in several dif-
ferent ways. Some researchers have performed experiments
on phantoms made of silicone rubber [36] and distensible
tubes [37-39], on cadavers, and during surgery to ascertain
the properties of the AAA configuration [18]. Some of them
have come up with analytical approaches of a simplified AAA
problem [40-42]. But CFD approaches have dominated the
landscape in the analysis of risk of rupture of AAA. Experi-
ments are difficult to set up due to ethical considerations of
sample retrieval from patients. Material properties need to
be accurately obtained for the simulation to be of any use
clinically. This has been a major challenge in AAA rupture
studies.

3.1. Boundary Conditions. Unsteady boundary conditions of
velocity and pressure are generally obtained from phase
contrast MRI methods. There is a paucity of such studies
and, in most instances, a few waveforms that are available
in literature are reused by others, thereby taking away the
patient-specific nature of the problem being solved. Figure 3
shows such a sample waveform that has been used by Soudah
et al. [43], which in itself has been adapted from Ouriel et al.
[9].

Flow in the aorta is pulsatile in nature. Hence, time
varying waveforms of velocity and pressure are needed in
order to accurately model the flow physics. The inlet flow
velocity profile has two peaks as seen in Figure 3, each
visualizing the systolic and diastolic phases in a pulse. The
outlet pressure shows only one peak in the pulse.

Several different kinds of outlet boundary conditions have
been used in literature such as constant pressure [44, 45] and
flow specification at particular instances [46]. The boundary
conditions for the velocity V are imposed as follows: (i) no
slip at the walls, (ii) uniform (slug) profile at the inlet, and
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(iii) zero-traction outflow at the exit. For pulsatile flow, the
inflow mean velocity is time dependent and the volume flow
rate is oscillatory as suggested by Finol and Amon, 2003 [47].
Although newly developed imaging methods, such as 4D
MRI, have proved to be successful in measuring the flow, they
still have limited spatial resolution (of the order of 2 mm),
which restricts their applicability in calculating WSS param-
eters, and do not provide pressure information. Therefore, in
the usage of Windkessel parameters based on patient-specific
clinical data, the simulation takes into account the essential
characteristics of the rest of the vasculature, which can be
expected to improve the correlation between the simulation
results and the true in vivo characteristics [48].

The Womersley number is a nondimensional number that
describes the ratio of pulsatile flow to viscous effects and is
used extensively in computations related to biofluids. Wom-
ersley profiles generally regard only the centerline velocity
of the inlet. They incorporate the Bessel functions to derive
the velocity profile in the inlet. But, it is not accurate as
the geometry of the artery is patient-specific and affects the
velocity values. The Womersley number is as shown below
[49]:

oczr(g)l/z, 3)

v

where « is the Womersley number, 7 is the radius of the artery,
w is the angular frequency of flow oscillation, and v is the
dynamic viscosity of the fluid.

Flow boundary conditions are critical to computing
the flow solution in AAA. Hardman et al. [49] surmise
that the Womersley number-based studies are inaccurate in
computing solutions of flow fields and hence an axial velocity
component is needed. They suggest that it is sufficient for
the axial component to be used in the simulation and radial
components are needed only when it is needed to understand
the secondary flow components in the flow, such as particle
tracking. Multiple outlet systems are, however, more complex
and need better description of boundary conditions. Though
this seldom occurs in the case of AAA, scalability, simplicity,
and accuracy are paramount as there could be multiple outlets
in an arterial network [50].

3.2. Material Properties. There are other boundary condi-
tions to be considered in the simulation of AAA fluid
mechanics. These are the material properties of the arterial
wall. This requires the arterial wall material to be properly
modeled, an issue which is complex given that the wall
stiffness increases when lumen diameter increases and calci-
fication and medial sclerosis occur with aging and in disease.
Furthermore, the aneurysmal wall has been found to be
mechanically anisotropic, a factor to be taken into account
if a rational estimate of the wall stresses is to be made [51].
Generally, an isotropic properties assumption is made of
the arterial wall when carrying out an analysis of the AAA.
Whilst this may be a reasonable assumption in most cases,
a more accurate constitutive model is needed to describe
the properties of the wall. Constitutive models are obtained
from experimental tests of actual tissue specimens. A uniaxial

test specimen is generally made from two rectangular strips
of tissue that has been cut out from the arterial layer. The
flat arterial tissue layer is assumed to be a fiber-reinforced
material with relatively stiff collagenous fibers embedded in a
homogeneous isotropic (soft) ground matrix [56].

Most elastic tissues studies in literature have used the
strain energy function approach. But arterial tissue exhibits
highly nonlinear, nonisotropic, and possibly hyperelastic
properties, and a computational model needs to incorporate
all these properties as the elastic modulus is inadequate.
Also, the assumption of strain energy functions holds good
only for single continuous medium tissues. This is not
the case with arterial tissue [57]. Since the mechanical
properties of soft biological tissues depend greatly on their
microstructure, proposing a reliable mechanical model for
these tissues, including the arterial wall, depends on the
level of microstructure integration attained in the constitutive
model [58]. Taghizadeh et al. [58] proposed a new biaxial
constitutive model based on microstructural properties as
opposed to the simple uniaxial tests carried out by Sokolis
et al. [59] and Karimi et al. [60]. The uniaxial tests only
look at a single layer of the tissue that is in contact with
the blood flow. The biaxial tests however consider a second
layer as well, which is important in assessing the response
of the arterial wall in a fluid-structure interaction scenario.
In general, whilst using the simplified boundary conditions
is computationally inexpensive and is accurate in most cases,
incorporation of the nonlinear properties when custom codes
are written makes the solution more accurate.

Wall thickness is another aspect that is central to the
response of the blood vessel to flow. Since aneurysmal rupture
occurs at a specific site of the aortic lumen, the properties
of the wall affect the computed solution. This is because the
wall thickness is seen to reduce as the disease progresses. In
general, the aortic wall thickness in computational methods
is assumed to be in the range of 1.5-2mm. While this
may be largely accurate for most simulations, it has been
acknowledged as a major limitation in the completeness of
the prediction solution [61]. Some previous measurements of
thickness are listed in Table 1 [52].

The thickness from Thubrikar et al. [55] has been exten-
sively used in literature as the value that accounts for the
posterior and anterior sections of the AAA. Most ruptures
are seen to occur in the proximal posterior part of the AAA.

Hence, this value is assumed to accurately describe the wall
thickness.

Rautetal. [52] suggest that the wall thickness as a constant
value is not accurate and described a novel method that
incorporated the regionally varying wall thickness, especially
in the area of rupture. A comparison of uniform thickness,
patient-specific uniform thickness, and the varying thickness
was carried out in 28 samples. This showed a statistically
significant difference on FE analysis with principal stresses
and strains and strain energy density being the output
parameters. As stated previously, rupture does not occur at
the region of the aortic wall with maximum lumen diameter.
This method can thus be used to obtain the carrying wall
thickness that reflects the true thickness at the site of rupture.
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TaBLE 1: Wall thickness measurements as reported in literature [52].
Author Reported thickness Method of Remarks
(mm) measurement
v Ana 2501 ks e o i
Di Martino et al., 2006 [53] Ruptured AAA 3.6 +0.3 Optical (laser) gt only W
Mean 2.9 tested; use of laser measurement
’ eliminates compression due to caliper
No discernible difference in thickness
Min 0.23 for small and large aneurysm;
Raghavan et al., 2006 [54] Max 4.26 Caliper thickness slightly lower in posterior
Median 1.48 and right walls; thickness low in
ruptured aneurysm near site of rupture
Posterior 2.73 + 0.46 Customized Thickness decreases from posterior to

Thubrikar et al., 2001 [55] Lateral 2.52 + 0.67

Anterior 2.09 + 0.51

micrometer with
resistivity meter

lateral to anterior walls; accuracy
0.05mm

3.3. Flow Physics. The physics of blood flow through the
AAA is perhaps the most important aspect of the analysis
of rupture risk. Data about material properties from experi-
mental studies and boundary conditions from advanced MRI
and CT technology have led to CFD methods being used
to understand the flow fields in AAA. Accurate hemody-
namic simulations can lead to better treatment planning and
improved stent design for the diseased aorta. The interaction
between blood flow and the arterial wall is a challenging
problem. The studies reported below have used the rigid wall
assumption to overcome the computational expense of the
fluid-structure interaction solution.

Blood flow in the normal aorta can be ascribed to be
laminar, similar to that in a pipe. Flow development is also
well understood. In contrast to the normal aorta however,
the flow in an aneurysmal segment is highly disturbed
and maybe nonlaminar. Specifically in the aortic segment
immediately beyond the aneurysm neck, flow separation
involving regions of high streaming velocities and high
shear stresses is observed [62]. At the expanded aneurysmal
segment, average flow velocity and wall shear stress are
much lower compared to those in the normal aorta [62].
Early studies used steady flow computations as the norm as
pulsatile boundary conditions were hard to obtain. Taylor
and Yamaguchi in 1994 [63] were amongst the earliest to
compare the steady and unsteady flows in aneurysms. A
set of symmetric vortices that were different in behavior
downstream were observed in both the steady flow and the
unsteady flow conditions. Symmetric vortices induce high
pressure at certain locations in the lumen and were seen later
on to be possible sites of rupture of the aneurysm.

Blood flow induces wall shear stress (WSS) in the
aneurysm. This is the main parameter that determines the
risk of rupture in an AAA lumen. WSS is related to the
properties of the blood flowing through the lumen. Apart
from blood pressure, WSS in AAA is also influenced by the
aneurysm diameter, shape, wall thickness, wall mechanical
properties, and the presence of intraluminal thrombus (ILT)
[64].

ILT is an important component of AAA that is difficult to
incorporate into any computational model. Most aneurysms

have ILT within their lumen. Stenbaek et al. [66] argued that
the development of ILT may be a better predictor than the
maximum diameter of the AAA as a rupture risk parameter.
But Di Martino and Vorp [67] postulated that ILT might
protect the AAA wall from the pressure applied by blood flow.
A finite element study by Li et al. [68] on the effect of ILT on
wall shear stress showed that the non-ILT models had higher
stress development than the ILT models. This is in keeping
with Laplace’s Law, which is often applied in fluid mechanics
studies on AAA. It must however be emphasized here that
Laplace’s Law was originally used to describe bursting stresses
in cylindrical shells and to apply it in this situation may not be
wholly accurate. Thus, the role of ILT in the biomechanics of
AAA is yet to be ascertained clearly. This might be because
of the different types of ILTs that develop inside the AAA.
O’Leary et al., 2014 [69], performed mechanical tests on 356
samples and classified them into 3 morphologies, type 1 which
was a multilayered ILT whose strength and stiffness decreased
gradually, type 2 whose strength decreased abruptly, and a
single layered ILT with lower strength and stiffness compared
to the other two types. This may partially explain why there is
a difference of opinion amongst researchers about the effect
of ILT in AAA. There are differences that crop up in ILT even
due to gender. This aspect has been brought out by Tong et al.
in 2013 [70] when they carried out biomechanical behavioral
studies on 90 AAA samples (78 men and 12 women). They
observed that the female ILT luminal layer showed a lower
stiffness in the longitudinal direction than the males and,
consequently, the thrombi may have different wall weakening
effects in males and females.

While most methods have assumed laminar flow regimes
in the aneurysm, there is a possibility that turbulent flow can
also develop due to the presence of ILTs or wall calcification.
Turbulent flow is common in the heart and the upper
airway unlike the smaller diameter aorta where a discernible
turbulent regime of flow is not seen. However, turbulence
may well be a factor in very large aneurysms where there
is the possibility for a turbulent mixing phenomenon to
occur. In a study using a rigid wall Newtonian fluid approach
considering turbulent conditions carried out on 3 symmetric
aneurysm geometries with different diameters, the smallest
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FIGURE 4: Velocity and pressure distribution along with wall displacement in a FSI calculation. (Adapted from Di Martino et al., 2001 [65].)

aneurysm did not show transition while the biggest diameter
aneurysm shows flow separation and turbulent vortices [71].
It was seen that the vortex that impinges on the distal wall
of the AAA generates secondary vortices, which then break
up further. In the small aneurysm where flow remained
laminar throughout the cycle, the high stress region was only
seen in a relatively thin layer attached to the aortic wall.
The large aneurysm, however, was seen to have islands of
high stress in the middle of aneurysm due to the impact
of turbulence transition [71]. This study on the impact of
turbulence transition on WSS concluded that, with the onset
of flow turbulence as seen in the large aneurysm models,
the surface stress appeared to point to all directions and no
dominant direction could be identified. The temporal and
spatial gradient of WSS is significantly larger than the laminar
flow (small aneurysm) situation. It is however important to
consider the effect of turbulence as well which is seen to
occur in larger aneurysms, especially above 5 cm. Given the
inherent nature of flow, the transition to turbulence can occur
even at resting conditions in large aneurysms.

3.4. Fluid-Structure Interaction (FSI). In computed solutions
where the aneurysmal wall is assumed to be rigid, pressure
values do not vary in time inside the lumen as the wall and
blood flow are not coupled in the solution. But, in reality, the
wall is not rigid and interacts with the flow during every pulse.
The nature of this fluid-structure interaction is bidirectional;
that is, the wall responds to blood flow pressure, shown by
its displacement, and this in turn affects the flow through
the aneurysm. FSI methods most accurately describe the flow
physics occurring inside the aneurysm and in theory can
precisely predict the site of rupture with the wall shear stress
values reflecting the most realistic conditions.

Di Martino et al. [65] first carried out a FSI calculation
on a realistic geometry obtained from segmentation of CT
images (Figure 4). They were able to establish local stresses on
the wall due to the structural and blood flow conditions. An
ALE based FSI numerical method was used in commercial
software Fidap to obtain the solution. The motion of the
wall was not homogenous as would be seen in a rigid wall
calculation. The asymmetry of the aneurysm also seemed to
play a part in the development of wall stresses. They found

that a larger area of maximum velocity corresponds to the
systolic peak and that a flow deceleration is always discernible
at the site where the aneurysm is larger, suggesting a higher
pressure at these sites. This along with a weakening of the wall
itself may be the genesis of continued aneurysm enlargement.

These studies have shown that a FSI method would be
most accurate in predicting wall motion in the aneurysm
as against only a FEM or a fluid dynamics model [75, 76].
This was further demonstrated by Scotti et al., who compared
the FEM with a FSI method on 10 aneurysm models. It was
observed that applying a realistic fluid pressure distribution
to the arterial wall resulted in wall stresses that were 20%
higher than if only peak systolic pressures were considered.
This was in direct correlation with previous results that
also showed a 21% increase in wall shear stresses when FSI
methods were used [73, 77]. A limitation of this study was
that this was an idealized model with asymmetry built into
the geometry.

Using FSI methods, the various geometrical changes and
material characteristics in patient-specific aneurysms can be
accounted for. Scotti et al. compared aneurysm geometries
having uniform wall thickness and variable wall thickness
and also investigated the effect of 5 levels of asymmetry in the
model. They observed that varying wall thickness increases
the von Mises stress by up to 4 times as compared to when it
is uniform. For asymmetrical variations too, the variation of
thickness caused stresses to increase. This reinforces the fact
that accurate thickness and FSI considerations will make the
computed solution more accurate.

Li and Kleinstreuer [74] reinforced this by comparing
different asymmetrical aneurysm geometries in a FSI solver.
They concluded that assumption of symmetry leads to under-
estimation of wall shear stress. An iliac bifurcation angle
also seems to have an effect. For iliac bifurcation angles
less than 90 degrees, the wall shear stress is in the range
of 0.57 to 0.63 mPa. But as it goes beyond 90 degrees, the
stress increases by about 8%. At aneurysm neck angles of 12
degrees or so, the region with the higher wall stress is at the
asymmetric bulge with the maximal stress being at the distal
point of the bulge. As the neck angle increases, the proximal
stresses move away from the bulge but the maximum point of
stress remains the same. This, they argue, is due to the fact that
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TaBLE 2: Comparison of parameters investigated using FSI methods.
Reference Method Parameter Remarks
Di Martino et al., 2001 [65] FSI (ALE) Maximum pressure First accurate calculation of FSI
Scotti et al., 2008 [72] FSI Wall shear stress 20% more WSS if FSI method is used
Scotti et al., 2005 [73] ESI Asymmetry and wall thickness Yarylng wall th1§kness and asymmetry
increases von Mises stress

Neck anele. asvmmetry: and Large neck angle leads to elevated von

Li and Kleinstreuer, 2007 [74] ESI gic, asy ¥ Mises stress; lateral asymmetry has

bifurcation angle

higher stress

neck angles influence strong surface curvatures in the AAA
neck leading to changes in the location of wall stress regions.

A summary of the different studies using FSI methods is
listed in Table 2.

3.5. Machine Learning Methods. As described in the pre-
vious section, fluid-structure interaction methods greatly
increase accuracy of simulations of AAA, leading potentially
to more accurate surgical planning for clinicians. But FSI
computations can take several days to complete depending
on the computational power available. In addition, carrying
out these computations needs an expert in fluid dynamics
and programming to interpret the simulation results for the
clinician. Clinicians are often unable to obtain this kind of
expertise or do not have the lead time to go through the
detailed process to assess the prognosis of AAA in a particular
patient. CFD is crucial in understanding the mechanics of
aneurysm formation and rupture but it needs to be used in
conjunction with other methods that can be faster than CFD
to obtain a conclusion quickly. This can be done by the use of
machine learning methods.

A summary of the machine learning method has been
described before. It uses a combination of statistical methods,
probability and optimization methods, to predict the direc-
tion of movement of a system. A “learning” model is created
with the available retrospective data. A large quantity of such
retrospective data is available at hospitals and this is helpful
in developing learning models that can make prospective
predictions having “learnt” from retrospective data. There are
numerous statistics based machine learning methods that can
be used along with CFD simulations so that more accurate
and faster conclusions can be drawn for clinicians [78].

Data mining is a popular method used to derive con-
clusions in hemodynamic simulations. Kolachalama et al.
[79] proposed a data mining technique that accounted for
the geometric variability in patients for predicting cardio-
vascular flows. A Bayesian network-based algorithm was
used to understand the influence of key parameters through
a sensitivity analysis. Although Monte Carlo methods are
suitable for output statistical analysis, the Bayesian approach
brings out the relationships between the parameters using a
multivariate approach. They tested the method on the human
carotid artery bifurcation. A range of automated geometries
were created for steady state 3D flow analysis. After CFD
analysis was carried out, the output maximum wall shear
stress was approximated as a function of the geometric
variables. The data from the runs was used as a training data

set to build the Bayesian model. A probability plot of the
maximum wall shear stress could then be generated.

Geometric parameters (especially diameter of the
aneurysm) are critical in defining the risk of rupture and
have undergone most investigation in the field of data
mining. The variation of geometric parameters amongst
patients gives an opportunity for models to be developed to
predict the characteristics of disease progression. Martufi
et al. [80] carried out a geometrical characterization of the
wall thickness distribution in AAA. They were able to train
a model to differentiate the wall thicknesses in ruptured and
unruptured AAA. The thickness difference was seen to be
7.8% between ruptured and unruptured AAA. This could be
an important parameter to determine the risk rupture and
plan early intervention.

This work has been extended by Shum et al. [81] who
developed a model from 66 ruptured data sets and 10
nonruptured data sets and their geometric indices and wall
thickness variations. The results of this study showed that,
in addition to maximum diameter, sac length, sac height,
volume, surface area, bulge height, and ILT volume were all
highly correlated with rupture status. It was also observed that
parameters such as volume of ILT were also highly correlated
with rupture in addition to the size of the AAA. In this
study, the overall classification accuracy was 86.6%. It used
a decision tree algorithm that is one of the possible machine
learning methods that can be used for large data sets requiring
a decision output.

The above mentioned studies have been limited by the
use of geometric parameters and, in particular, the maximum
diameter of lumen alone as factors contributing to the rupture
of an AAA. But other parameters such as patient history
and comorbidities and presence of stents or other geometric
parameters such as the aneurysm neck angles, tortuosity,
or even genetic factors could well play a significant part in
contributing to the determination of rupture risk of an AAA.
Here, machine learning methods in parallel with CFD can be
used to develop a tool that can be of practical use to clinicians
as a predictive tool in the management of an AAA.

4. Conclusions

This review of the computational methods used in the
prediction of rupture risk in AAA reveals that several aspects
of the problem need to be understood before computational
methods can be used to reliably predict rupture. These
include the boundary conditions and material properties
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that weave in the patient specificity of the problem to be
solved. These parameters are difficult to obtain in real clinical
situations and have been approximated to a large extent in
the literature. A suitable combination of these properties
could lead to better prediction of the risk of rupture. But,
given that measurement of boundary conditions and the
material properties of the aortic wall in a particular patient is
a very invasive process, computational methods have played
a very big role in the biomechanical analysis of AAA. The
combination of CFD and FEM has led to understanding of
the flow pressure distribution, wall shear stress quantification,
and effect of material properties and geometrical parameters.
Computational methods have made patient-specific analyses
possible, a feature essential for understanding the progression
of AAA in a particular patient. Each patient has their own
unique anatomy and pathophysiology that affects material
properties and boundary conditions that can influence their
management significantly.

Unfortunately, CFD/FEM methods, whilst providing cru-
cial information on the pathophysiological mechanics of the
aneurysm, can be very time consuming to undertake. This
is made worse by the fact that FSI is a computationally
expensive and complex method for routine use in real-life
clinical situations. A much simpler interface therefore needs
to be developed wherein the vascular clinician is in a position
to assess the prognosis of the patient, rupture risk of the
aneurysm and proceed to planning surgical, endovascular, or
conservative treatments custom-made for that patient. This
can be possible through the use of machine learning methods.
The use of machine learning models in parallel with FSI
computations can bridge the gap between translational and
outcome research, thereby improving healthcare delivery and
saving lives in aortic aneurysms.
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