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ABSTRACT For decades, microbiologists have considered uncertainties as an unde-
sired side effect of experimental protocols. As a consequence, standard microbial
system modeling strives to hide uncertainties for the sake of deterministic under-
standing. However, recent studies have highlighted greater experimental variability
than expected and emphasized uncertainties not as a weakness but as a necessary
feature of complex microbial systems. We therefore advocate that biological uncer-
tainties need to be considered foundational facets that must be incorporated in
models. Not only will understanding these uncertainties improve our understanding
and identification of microbial traits, it will also provide fundamental insights on mi-
crobial systems as a whole. Taking into account uncertainties within microbial mod-
els calls for new validation techniques. Formal verification already overcomes this
shortcoming by proposing modeling frameworks and validation techniques dedi-
cated to probabilistic models. However, further work remains to extract the full po-
tential of such techniques in the context of microbial models. Herein, we demon-
strate how statistical model checking can enhance the development of microbial
models by building confidence in the estimation of critical parameters and through
improved sensitivity analyses.

KEYWORDS modeling, simulation, uncertainty

Since the work of Monod (1), simple biological modeling has been prominent in
microbiology. Because of their experimental tractability and purported simplicity,

microbial experimental systems have fostered the rise of several cross-scale modeling
approaches from the gene to the population level, which have been extended to test
ecoevolutionary hypotheses. These modeling approaches proposed and addressed
foundational hypotheses that developed into new biological paradigms such as growth
rate or identification of functional units. The first microbial models were driven by
reductionist assumptions (e.g., intracellular quota combined with kinetics mimicking
biochemistry rules) yet demonstrated remarkable predictive power for portraying the
growth of microbes in simple systems such as chemostats (1). Similar quota assump-
tions were used to model phytoplankton physiology (2) and later for modeling simpli-
fied global ocean ecosystems (3).

Reductionist modeling approaches have generally been parameterized from data
gleaned from laborious bench experiments. However, contemporary next-generation
sequencing (NGS) approaches provide unprecedented characterization of the diversity
of microbial communities, yet because feedbacks between biotic and abiotic systems
are inherently nonlinear and complex, mathematical models of microbial guilds inter-
acting with their environment are required. Current models have been developed
along the lines of systems biology approaches (4, 5) or trait-based models (6). Further-
more, NGS provides a large amount of data that represent one experiment alongside
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its associated uncertainties. It is also worth noting that increasing the data set provides
a concomitant increase in the number of uncertainties that must be considered.

Within microbial models, these uncertainties can be accounted for by machine
learning techniques (see Libbrecht and Noble [7] for a review) that produce automat-
ically predictive (deterministic) models from experimental measurements. Uncertainties
are accounted for in the modeling process (e.g., via averaging) but are hidden in the
model itself. Moreover, despite the great predictive power of such modelings, the
resulting models are not necessarily biologically meaningful. In particular, once param-
eterized, a model could be overfit to a data set without reflecting emergent properties
and precluding or reducing knowledge discovery. Considering that a single microbial
system could produce several distinct data sets through several experimental ap-
proaches, several different models are built accordingly (8, 9). All corresponding models
must then be investigated via automatic learning and verification techniques to take
into account their common properties rather than considering each model in isolation
(10). Conversely, other probabilistic modelings consider uncertainties but make the
parameterization difficult or advocate the use of multiple models that are difficult to
validate (11). Despite the aforementioned challenges, uncertainties must be accounted
for and integrated into microbial modeling approaches. Such an issue remains a
general problem across biology, and even in ecology despite a long tradition of dealing
with quantitative uncertainties (12). Herein, as previously done in engineering (13), we
advocate that the proper use of dedicated verification techniques could support efforts
to capture the complexity of microbial systems within models by promoting a com-
putational convergence on uncertainties rather than simple simulations. Below we
present a short overview of current modeling approaches for studying microbial
systems, after which we discuss the computational challenges that must be overcome
to better take into account uncertainties and verify the resulting models.

MICROBIAL STATE-OF-THE ART MODELINGS AND UNCERTAINTIES

Initial biological modeling efforts were inspired by models of physical systems and
formalized using nonlinear ordinary differential equations representing dynamic be-
haviors of gene activity or molecular concentrations. Interactions within these models
are driven by reaction rates associated with particular mechanistic behaviors such as
Michaelis-Menten or Hill functions. The need to use formal methods to analyze such
models has been discussed extensively in the last 15 years (see De Jong [14] for a
state-of-the-art review or Fisher and Henzinger [15]). However, their application mainly
results in a discretization of all interactions, such that the model becomes qualitative.
An advantage in this context is that the resulting qualitative models are computation-
ally scalable and do not need to incorporate an extensive number of parameters that
are mostly out of experimental reach, including parameters that show clear sensitivity
to experimental conditions (16). Nonetheless, even if such models are sufficient to
represent microbial gene regulatory networks, they are generally not sufficient for
modeling quantitative microbial behaviors as needed in the context of simulation of
microbial populations and communities, and subsequently, biogeochemical processes.

In order to represent complex quantitative microbial community responses to
environmental constraints, several studies postulate that the development of genome-
scale metabolic models that consider the whole set of metabolic reactions within a
microbial strain are necessary (17). In this context, the metabolic network consists of
stoichiometric coefficients and mass balance constraints. Herein, the rates are reduced
to fluxes that can be estimated via flux balance analysis (FBA) (18), which negates the
need for specific kinetic parameterization yet provides quantitative predictions. FBA
models are based on constraints, and solving the metabolic network analysis requires
the consideration of boundary conditions for all metabolic fluxes that take place within
the cell (see Bordbar et al. [19] for a review). In particular, recently, Basler et al. (20) have
shown that those boundaries that reflect uncertainties are necessary to better under-
stand intracellular metabolic flux distribution.

In order to simulate microbial communities, one can consider them at equilibrium
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by performing extensions of FBA (21, 22) or focus on dynamic quantitative behaviors by
representing kinetics of several microbial populations via traits. These trait-based
models use nonlinear differential equations and simplified complex dynamic behaviors
with a single parameter. However, because of the inherent complexity of the popula-
tion (23), estimating such a parameter is a difficult task without considering uncertain-
ties and intensive statistical analyses. Despite several attempts to identify those traits
from metagenomic experiments (24), estimating trait parameter values and automat-
ically building predictive models from ecosystem experiments remain key challenges
for the field.

NEED FOR DEDICATED MODEL-CHECKING TECHNIQUES

Following standard parameter estimation, whereby simulations satisfy the trends
and trajectories of experimental data, models are usually tested through sensitivity
analyses. Such analyses test the predictive accuracy of models across a wider range of
parameter values. However, while such testing is commonly used in practice because
of its computational scalability, sensitivity analysis does not provide a formal guarantee
of the correctness of the model but rather a synthesis of extensive number of simula-
tions. In several engineering fields, formal verification of models overcomes this short-
coming by performing model checking (25), which provides such guarantees. Unfor-
tunately, because standard model checking was originally designed to study artificial
systems, such as computer programs, it does not necessarily scale up to meet the
demands of complexity of microbial systems, in particular when dealing with uncer-
tainties. One must therefore combine model checking with sensitivity analyses, as
fostered by recent statistical model-checking (SMC) methods (26–28). Like sensitivity
analysis, SMC is based on simulations and executes the model several times to
converge on a probability for a given property to be satisfied (see Fig. 1 for an
illustration). In this case, the number of simulations that must be performed, and
satisfied, is not arbitrarily fixed by the modeler but rather precomputed in order to
ensure strong (formal) guarantees on the confidence and error levels of the analysis.
Because SMC methods are based on simulations, they do not rely directly on the model
structure (i.e., number of variables and constraints), only on the ability to run simula-
tions, regardless of the formalization used (i.e., ordinary differential equations [ODEs],
constraint-based, Boolean. . .). As a consequence, they are suitable for realistic mod-
elings, ensuring strong formal guarantees (29) despite the complexity inherent to
microbial systems.

STATISTICAL MODEL CHECKING OF MICROBIAL MODELS

Because uncertainties are central to SMC methods, our hypothesis is that its use will
be central for microbial model validation. SMC will indeed build formal confidence
(trust) in the validation process while improving standard validation techniques. Stan-
dard validation is usually performed using a sufficiently large number of model
simulations, but the precise number is left to the acumen of the modeler, which is not
a satisfying guarantee with respect to the precision and correctness of the analyses. In
contrast, the precision and correctness of SMC methods are formally certified by using
statistical results to compute the required number of model simulations. Moreover,
SMC methods are tailored for the analysis of models that incorporate uncertainties per
se and therefore take into account parameter variations as standard characteristics of
the models studied. Thus, two potential SMC applications in the context of microbial
system validation could be emphasized.

Model certification rather than sensitivity analysis. Instead of fixing parameter
values to their mean observed values and performing sensitivity analysis of one
parameter at a time (Fig. 1A), we propose to embed the uncertainty of the parameter
values into the models by assigning each parameter to a probability distribution based
on its potential values informed by lab or field experiments (Fig. 1B). Consequently, a
trait must then be considered a distribution on a range of values instead of a single
value that represents multiple experiments. The distribution of values over a given
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range can thus be set as Gaussian, or as another distribution, in order to fit experi-
mental uncertainties. In SMC, model simulations can be performed by picking param-
eter values within their attached distributions (i.e., by considering the variances of all
parameters) and executing standard simulations. Following a simulation, deciding
whether one prediction is valid can be done by computing the deviation of predicted
values from existing observations. Since several simulations are performed (for several
parameter values), SMC outputs a score representing the ratio of valid simulations.
Thus, the SMC method performs a generalization of standard sensitivity analyses, not
by analyzing the sensitivity of a single average simulation but by analyzing all feasible
simulations and proposing general statistics of the whole; i.e., accurate statistical
guarantees to perform predictive simulations while taking into account experimental
uncertainties. By extension, considering uncertainties also allows us to certify all
simulation behaviors (i.e., average of simulations) for the sake of model validation,
rather than validating a single behavior (i.e., simulation of an average).

Model parameter estimation with uncertainties. Model parameters are often
difficult to measure because microbial communities encapsulate an array of trait data
leading to wide ranges in parameter values. Moreover, identifying a distribution of
parameter values, for instance, trait parameter values for models of microbe-mediated
biogeochemical processes remains a difficult task. One could overcome this difficulty by
considering a slight modification of the SMC paradigm to decipher the global set of
parameters (with uncertainties) that best fit the experimental data (Fig. 2). While the
global range of potential parameter values is often known, the aim here is to identify,
within this range, the “ideal” parameter values (i.e., those that produce the highest rate
of valid simulations). In this context, a partition of the global range of parameter values
(alongside the variance) is produced (Fig. 2B), and simulations are performed for each
of the obtained “subranges” (Fig. 2C). SMC can then provide a certified score for each
of those subranges, which represent an evaluation of their adequacy with respect to
experimental data (Fig. 2D and E). When performed on all subranges from the partition,
this method allows us to identify the parameter subranges that best fit the experimen-
tal data.

CONCLUSION

Uncertainties in parameter values are inherent to models built from experimental
data. Instead of doing our best to rule out these uncertainties through deterministic

FIG 1 Illustration of model checking without and with uncertainties. Following a range of experiments,
standard data analysis highlights the distribution of values for a given parameter �. (A) Along a standard
model-checking protocol, one assumes a single value for �, usually the mean. Such a value is then used
for model calibration, which allows a simulation. Simulation results are then compared with observations
for the sake of model verification (e.g., usually via linear regression between prediction and observa-
tions). (B) An example of a model-checking protocol that considers uncertainties per se. Instead of
considering a single parameter value, one considers a range of values and precision guarantees and
performs a range of simulations accordingly (one per color). Altogether, this SMC approach validates the
models while taking into account intrinsic uncertainties and guarantees the desired precision (90% here).
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modeling, we advocate that they should be incorporated into the models via the
development of dedicated probabilistic modelings. Originally developed for software
applications, statistical verification of such models will enhance the accuracy of model
validation while also bringing formal evidence of the correctness of the approach. In
addition, the future development of dedicated SMC methods will be the necessary
steps to estimate parameter values with uncertainties, ensuring the satisfaction of
desired properties, which represents the next methodological block for modeling
quantitatively microbial systems from genes to ecosystems.
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