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Abstract: In this work, the method of selective laser reductive sintering was used to fabricate the
sensor-active copper and nickel microstructures on the surface of glass-ceramics suitable for non-
enzymatic detection of glucose. The calculated sensitivities for these microsensors are 1110 and
2080 µA mM−1·cm−2 for copper and nickel, respectively. Linear regime of enzymeless glucose
sensing is provided between 0.003 and 3 mM for copper and between 0.01 and 3 mM for nickel.
Limits of glucose detection for these manufactured micropatterns are equal to 0.91 and 2.1 µM
for copper and nickel, respectively. In addition, the fabricated materials demonstrate rather good
selectivity, long-term stability and reproducibility.

Keywords: selective laser sintering; femtosecond laser; copper; nickel; microsensors; non-enzymatic
sensing; glucose

1. Introduction

At present, significant progress in the treatment of many human diseases including
diabetes and cancer has been made. Nevertheless, the problem of timely diagnostics of
a disease at the initial stages [1,2] and further adequate treatment have become more
important. In this regard, particular attention attracts selective identification of various
bioanalytes (chemical biomarkers) in human biological fluids and tissues; biosensors are
the most effective devices applied for this purpose. Among the many different types of
biosensors, electrochemical biosensors are the most distinguished exhibiting low cost, rapid
analysis and simple sample preparation [3–5]. These devices are useful in sensing of such
analytes as folic acid [6], DNA [7], D- and L-amino acids [8], uric acid [9], choline [10],
many cancer biomarkers, e.g., cancer-embryonic antigen [11], glucose [12], hydrogen
peroxide [13] and others. A large number of works deal with design and development
of electrochemical and optical sensors, in which electrocatalytic activity is revealed by
the enzyme-free compounds and materials. Indeed, the enzyme-free sensors allows for
avoiding the problems in biosensorics caused by the utilization of enzymes (instability
in aggressive environments, high cost and the need to immobilize enzymes on some
carriers) [14]. The variety of materials can be applied for non-enzymatic sensing [15–23].
In this paper, we discuss sensors based on metals and their alloys and/or composites that
have deserved a great interest in this scientific field.

It is necessary to mention the methods that are typically used for fabrication of such
materials. In recent, 3D printing technologies have become a popular tool for solving
a number of scientific problems [24]. Selective laser sintering (SLS) and selective laser
manufacturing (SLM) for 3D microstructures are very promising representatives of such
modern techniques [25]. In general, SLS is an additive manufacturing method that can
be implemented for formation of 3D structures of a given size and shape by heating pow-
ders of various materials (plastic, glass, ceramics, metals) with the focused laser beam up
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to temperature, at which the powder-like particles fuse together providing the porosity
control regime. In contrast to SLS, in SLM a powder is heated before the melting point
that allows for decreasing the porosity and obtaining a homogeneous system. Therefore,
as a rule, SLM is commonly used for fabrication of metallic materials. In this case, this
method is recognized as direct laser metal sintering (DLMS). SLM is already actively
applied in production of the electrochemical sensors based on metals and their alloys
suitable for detection of phenols [26] or explosives and nerve agents [27]. Other noticeable
techniques that can be utilized for the aforementioned purposes are: roll-to-roll printing
(R2R) [28], inkjet printing [29], screen printing [30], chemical vapor deposition (CVD) [31],
laser-induced metal deposition (LCLD) [32], femtosecond laser reductive sintering of metal
oxide nanoparticles [25,33–35], etc. At some level all these methods demonstrate different
drawbacks mostly related to cost, maintenance, complexity, efficiency and others. In turn,
selective laser sintering, despite its own disadvantages, provides rather good reproducibil-
ity, rapidity and efficiency in fabrication of metallic structures reliable for non-enzymatic
sensing. Femtosecond laser reductive sintering is a promising candidate for fabricating the
metal patterns because the thick metal patterns can be formed in air by simulatenously met-
alizing and sintering of metal oxide nanoparticles. In comparison with LCLD, thicker metal
patterns are formed by femtosecond laser pulse-induced thermochemical reaction because
the intense laser pulses achieve the local heating of the raw metal oxide nanoparticles.

Thus, this work is devoted to the conditions optimization for fabrication of copper
and nickel micropatterns using SLS method. We expect that the proposed approach can
be applied as a fast, efficient and cheap way to create sensor platforms for enzyme-less
detection of low concentrations of various bioanalytes. As a result, we fabricated the
glucose microsensors based on such metals as copper (Cu) and nickel (Ni), which are
widely used due to their low cost and high electrical conductivity.

2. Materials and Methods

The solution with CuO nanoparticles (NPs) (<50 nm particle size, Sigma Aldrich,
St. Louis, MS, USA), polyvinylpyrrolidone (PVP, Mw 10000, Sigma Aldrich, St. Louis, MS,
USA) and ethylene glycol (EG, 99.8%, Sigma Aldrich, St. Louis, MS, USA). First, PVP
were mixed with EG. Subsequently, CuO NPs were dispersed into the mixed solution. The
resulting CuO NP-based solution was cover by spin-coater on glass-ceramics substrates
(5 s—500 rpm, 30 s—7000 rpm). A similar approach was applied to obtain films based
on nickel oxide (NiO) nanoparticles. NiO NP (<50 nm particle size, Sigma Aldrich) were
used as a source of Ni. It has been demonstrated that NiO NPs were reduced to Ni by
femtosecond laser reduction of NiO NP solutions consisting of NiO NPs, PVP and EG 23.

All metal structures were produced on glass-ceramic. Glass-ceramic material consists
of silicon dioxide (60.5%), aluminum oxide (13.5%), calcium oxide (8.5%), magnesium
oxide (7.5%) and titanium dioxide (10.0%).

Surface preparation was carried out using ultrasonic cleaning in acetone, ethanol and
water (sequentially), then the dried substrates were treated by irradiating ozone for 1 min
to improve the wetting property of the prepared colloidal solution with polarity for each
substrate using the FLAT EXCIMER EX-mini (Hamamatsu, Japan), after which the solution
was deposited using a spin-coater (MS-B100, MIKASA CO. LTD, Tokyo, Japan).

A femtosecond fiber laser (TOPTICA Photonics AG, Munich, Germany), pulse dura-
tion: 120 fs, wavelength: 780 nm, repetition rate: 80 MHz) was used for direct patterning
of Cu and Ni microstructures. Femtosecond laser pulses were focused with an objective
lens with a numerical aperture of 0.45. First, a solution containing nanoparticles of CuO or
NiO was placed on glass ceramics using spin-coating technique. Then, the micropatterns
were directly produced by the focused femtosecond laser pulses. The raster pitch of the
micropatterns was decided to be 5 µm and 10 µm.

The crystal structures of the patterns formed by raster scanning of the focused fem-
tosecond laser pulses were examined by an X-ray diffraction (XRD) analysis (Rigaku RINT,
MiniFlex) (Rigaku Corporation, Tokyo, Japan) using Cu Kα radiation.
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The topology of Cu and Ni electrodes were investigated using scanning electron
microscopy (Zeiss Supra 40 VP, Oberkochen, Germany). The EDX-system was coupled with
a scanning electron microscope equipped with X-ray attachment (Oxford Instruments INCA
X-act) (Oxford Instruments, Abingdon, UK) was conducted to quantitatively investigate
the major chemical composition ratio in the Cu and Ni electrodes.

The electrocatalytic activity of the fabricated Cu and Ni-based materials towards glu-
cose was studied using voltammetric methods (potentiostat, Elins P30I) (Electrochemical
Instruments Ltd., Chernogolovka, Russia). In order to increase the adhesion and lifetime of
the synthesized materials, we drop-casted 10 µL of Nafion suspension (0.05 wt%) on the
Cu- and Ni-based electrodes. All measurements were carried out at room temperature in
a typical three-electrode system using a Pt wire as a counter electrode, a Ag/AgCl refer-
ence electrode, and pre-air-dried Cu and Ni-based microelectrodes as working electrodes.
The solutions of D-glucose of different concentrations were added to background solution
(0.1 M sodium hydroxide) with simultaneous stirring.

3. Results

The optimized compositions for deposition of Cu and Ni micropatterns on glass-
ceramic surfaces are presented in Table 1. The regimes of the composition optimization
for deposition were previously published for Cu patterns on the glass surface [34]. In the
current work, we proposed and optimized a technique for Cu and Ni manufacturing on
the surface of glass-ceramics. The main concept of the SLS experiment used in the current
study is shown in Figure 1.

Table 1. The optimized compositions for deposition of Cu and Ni micropatterns on glass-ceramic.

Material of Electrode CuO or NiO, g PVP, g EG, g

Cu 3 0.65 1.35
Ni 1.5 0.65 1.35

Materials 2020, 13, x FOR PEER REVIEW 3 of 11 

 

The crystal structures of the patterns formed by raster scanning of the focused femto-
second laser pulses were examined by an X-ray diffraction (XRD) analysis (Rigaku RINT, 
MiniFlex) (Rigaku Corporation, Tokyo, Japan) using Cu Kα radiation.  

The topology of Cu and Ni electrodes were investigated using scanning electron mi-
croscopy (Zeiss Supra 40 VP, Oberkochen, Germany). The EDX-system was coupled with 
a scanning electron microscope equipped with X-ray attachment (Oxford Instruments 
INCA X-act) (Oxford Instruments, Abingdon, UK) was conducted to quantitatively inves-
tigate the major chemical composition ratio in the Cu and Ni electrodes. 

The electrocatalytic activity of the fabricated Cu and Ni-based materials towards glu-
cose was studied using voltammetric methods (potentiostat, Elins P30I) (Electrochemical 
Instruments Ltd., Chernogolovka, Russia). In order to increase the adhesion and lifetime 
of the synthesized materials, we drop-casted 10 μL of Nafion suspension (0.05 wt%) on 
the Cu- and Ni-based electrodes. All measurements were carried out at room temperature 
in a typical three-electrode system using a Pt wire as a counter electrode, a Ag/AgCl ref-
erence electrode, and pre-air-dried Cu and Ni-based microelectrodes as working elec-
trodes. The solutions of D-glucose of different concentrations were added to background 
solution (0.1 M sodium hydroxide) with simultaneous stirring. 

3. Results 
The optimized compositions for deposition of Cu and Ni micropatterns on glass-ce-

ramic surfaces are presented in Table 1. The regimes of the composition optimization for 
deposition were previously published for Cu patterns on the glass surface [34]. In the cur-
rent work, we proposed and optimized a technique for Cu and Ni manufacturing on the 
surface of glass-ceramics. The main concept of the SLS experiment used in the current 
study is shown in Figure 1.  

 
Figure 1. Schematic process of fabrication of metal micropatterns using SLS. A solution containing 
copper or nickel nanoparticles deposited on a substrate is irradiated with a femtosecond fiber laser 
(120 fs, Toptica, FemtoFiber pro NIR (780 nm)). The unreacted solution is removed by washing 
with a solvent. 

Table 1. The optimized compositions for deposition of Cu and Ni micropatterns on glass-ceramic. 

Material of Electrode CuO or NiO, g PVP, g EG, g 
Cu 3 0.65 1.35 
Ni 1.5 0.65 1.35 

In our previous works, it was shown that the main parameters that significantly affect 
the composition and topology of materials fabricated by the reductive SLS are laser flu-
ence, scanning speed and pitch size. Therefore, by varying these parameters, it is possible 
to create materials with different functional properties. In this case, we have shown the 
possibility to produce the working electrodes for enzyme-free electrochemical detection 
of glucose. For this purpose, we optimized the conditions for synthesis of the conductive 
coatings on the surface of a dielectric with high adhesion and a developed surface. For 
fabrication of Cu electrodes on glass, we used the laser fluence varied from 0.0096 to 
0.0230 J/cm2, whereas the scanning speed was 1–10 mm per second and the distance be-
tween the deposited lines was varied between 5 and 10 μm. In turn, the analysis of SEM 

Figure 1. Schematic process of fabrication of metal micropatterns using SLS. A solution containing
copper or nickel nanoparticles deposited on a substrate is irradiated with a femtosecond fiber laser
(120 fs, Toptica, FemtoFiber pro NIR (780 nm)). The unreacted solution is removed by washing with
a solvent.

In our previous works, it was shown that the main parameters that significantly affect
the composition and topology of materials fabricated by the reductive SLS are laser fluence,
scanning speed and pitch size. Therefore, by varying these parameters, it is possible to
create materials with different functional properties. In this case, we have shown the
possibility to produce the working electrodes for enzyme-free electrochemical detection
of glucose. For this purpose, we optimized the conditions for synthesis of the conductive
coatings on the surface of a dielectric with high adhesion and a developed surface. For
fabrication of Cu electrodes on glass, we used the laser fluence varied from 0.0096 to
0.0230 J/cm2, whereas the scanning speed was 1–10 mm per second and the distance
between the deposited lines was varied between 5 and 10 µm. In turn, the analysis of
SEM images of Cu patterns on glass-ceramics has shown that the most optimal conditions
for producing homogeneous materials are the following: laser fluence of 0.0192 J/cm2,
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scanning speed of 5 mm per second and distance between lines of 5 µm (Figure 2a).
Thus, we were able to produce the metallic film consisting of the 50–300 nm Cu particles.
It is important that the most homogeneous film on the surface of glass-ceramics can be
deposited at a laser fluence of 0.0192 J/cm2 (Figure 2); presumably, due to the more resistant
to temperature nature of glass-ceramics in opposite to glass, for which the same value
was equal to 0.0154 J/cm2. Analysis of the electronic microphotographs of Ni patterns on
the surface of glass-ceramics showed that the most homogeneous layer of metal could be
obtained at laser fluence of 0.0192 J/cm2 (Figure 3). In this regard, we have conducted the
SLS experiments at laser fluence varied between 0.0096 and 0.0230 J/cm2. At 0.0192 J/cm2,
Ni is deposited as a thin film consisting of particles with size of 100–500 nm. EDX analysis
confirms that the main component of the patterns is Ni.
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Figure 3. SEM images and results of EDX analysis (right top corner in each panel) of Ni patterns fabricated on glass-
ceramics using SLS at the following laser fluences (J/cm2) and scanning speeds (mm s−1): (a) 0.0192 and 5; (b) 0.0154 and 5;
(c) 0.0192 and 10; (d) 0.0154 and 10.
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Summarizing the results of SEM and EDX studies, we found the most optimal condi-
tions for Cu and Ni sintering (Table 2).

Table 2. The optimized SLS experimental conditions used for synthesis of Cu and Ni on glass-
ceramics surfaces.

Material of Electrode Laser Fluence, J/cm2 Scanning Speed, mm/s Pitch Size, µm

Cu (Glass) [35] 0.0154 5 5
Cu (Sitall) 0.0192 5 5
Ni (Sitall) 0.0192 5 5

Furthermore, we carried out the phase analysis of Cu and Ni materials obtained using
the conditions mentioned before (Figure 4). XRD shows that the synthesized deposits
contain metallic Cu and Ni together with a small amount of their oxides. Besides, we
also observe peaks associated with the material of a substrate (glass-ceramics). Figure 3a
illustrates XRD diffractograms of Cu patterns. As is shown here, for fabrication of patterns
enriched with Cu, we need to apply the following conditions: laser fluence of 0.0192 J/cm2,
scanning speed of 5 mm per second and distance between the lines of 5 µm (Figure 4a, 1).
XRD of the sample obtained at a scanning speed of 10 mm per second (Figure 4a, 2) reveals
the presence of Cu(I) oxide indicating that the reduction reaction of Cu(II) to its metallic
state was incomplete. According to phase studies shown in Figure 4b, we can conclude
that the most optimal conditions for fabrication of Ni-rich homogeneous patterns are the
following: laser fluence of 0.0192 J/cm2 and scanning speed of 5 mm per second.
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Figure 4. XRD patterns of (a) Cu (samples 1, 2 and initial mixture (CuO ink) are shown in the legend)
on glass-ceramics and (b) Ni (samples 1–4 and initial mixture (NiO ink) are shown in the legend) on
glass-ceramics sintered at the following laser fluence (J/cm2), scanning speed (mm s−1) and pitch
size (µm): 0.0192, 5, 5 for 1; 0.0154, 5, 5 for 2; 0.0192, 10, 5 for 3; 0.0154, 10, 5 for 4.

It should be pointed out here that increasing the pitch size and the scanning speed
(up to 10 mm per second) during laser irradiation leads to formation of non-uniform
deposits with numerous defects containing metal oxides and, as a result, having a poor
electrical conductivity. This could be related to the lack of time and laser fluence to complete
metal reduction reaction (for both Cu and Ni). On the other hand, a too-low scanning
speed (less than 1 mm per second) contributes to formation of smoother films due to a more
complete fusion of the original NPs, resulting in deformation of a deposit and decrease of
the surface area and the number of available active electrocatalytic centers.

Thus, using SLS, it is possible to fabricate the electrodes of various shapes and ge-
ometries relying on the optimized parameters. Figure 5 illustrates different geometries of
copper microelectrodes obtained on the surface of glass-ceramics. Potentially, these geome-
tries can be used to create a sensor platform based on the three-electrode electrochemical
cell (Figure 5a).
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The electrocatalytic activity of the synthesized Cu and Ni micropatterns towards
enzyme-free glucose sensing was tested using voltammetric methods. Figures 6a and 7a
demonstrate cyclic voltammograms (CVs) of these materials measured in the background
solution containing 1 mM D-glucose. The shape of CVs for Cu sintered on glass-ceramics
have very broad range of potentials between 0.35 and 0.65 V corresponding to anodic glu-
cose oxidation (Figure 6a). In turn, electrooxidation of glucose on Ni microelectrode takes
place within the region of potentials of 0.45–0.7 V, which shifts toward larger potentials
with an increase of the glucose concentration (Figure 7a).

All electrochemical characteristics such as sensitivity, limit of detection (LOD), linear
range of glucose detection and selectivity were obtained using amperometry. Figures 6b
and 7b illustrate the amperometric response to the consecutive additions of D-glucose to
0.1 M NaOH at potentials of 0.51 V for Cu and 0.6 V for Ni. Then, we obtained the linear
dependence of the analytical signal (Faraday current) vs. D-glucose concentration for each
material (Figures 6c and 7c). According to this data, linear regime of enzymeless glucose
detection is provided between 0.003 and 3 mM for Cu, whereas for Ni linear range lies
between 0.01 and 3 mM. The sensitivity of the electrodes were estimated by calculating the
slopes of a linear curves shown in Figures 6c and 7c. As a result, the calculated sensitivities
for Cu and Ni are 1110 and 2080 µA mM−1·cm−2, respectively. In addition, limits of
glucose detection for all manufactured materials were calculated as LOD = 3 S/b, where S
is the standard deviation from linearity and b is the slope of the calibration curve indicated
in Figures 6c and 7c, and are equal to 0.91 and 2.1 µM for Cu and Ni, respectively. The
measurement error does not exceed 7%. In addition, the error in the calculated sensitivities
is also very small (R2 is close to unity and is 0.9996 and 0.9994 for copper and nickel
samples, respectively). Rather high sensitivity values can be explained by the close contact
between the electrocatalytically active material and the current collector, since they are
a single structure in contrast to the electrodes deposited on a conductive substrate by
dropcasting or similar methods. This leads to an increase in electric conductivity and,
as a result, sensitivity. The values of the electrochemical parameters observed for Cu
and Ni micropatterns in this work in comparison with characteristics of the analogical
non-enzymatic sensors are shown in Table 3.
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Figure 6. (a) Cyclic voltammograms of Cu patterns (electrode) measured in the solution of 0.1 M NaOH with addition
of 1 mM D-glucose; (b) Amperogram of Cu electrode recorded at potential of 0.51 V in 0.1 M NaOH solution containing
of D-glucose of various concentration; (c) Linear range of D-glucose concentrations for enzyme-less sensing using the
fabricated Cu electrode; (d) Selectivity of Cu electrode towards 100 µM D-glucose (Glu) detection in the presence of 20 µM
4-acetamidophenol (AP), 20 µM uric acid (UA) and 20 µM ascorbic acid (AA) observed in the background solution of 0.1 M
NaOH. In these experiments, we used Cu electrodes sintered on glass-ceramics.

The selectivity of the fabricated materials with respect to glucose sensing was in-
vestigated in the presence of such interfering compounds as 4-acetamidophenol (AP),
ascorbic acid (AA) and uric acid (UA) that usually coexist with glucose in the human blood
(Figures 6d and 7d). Thus, Cu and Ni micropatterns have a good selectivity for glucose
sensing exhibiting much more significant analytical response towards D-glucose opposite
to other analytes.

We also studied the long-term stability and reproducibility of the fabricated microelec-
trodes. Rather good stability was confirmed by testing five samples of each material for
10 days. We observed that during this period all samples maintained ~92–95% their initial
electrocatalytic activity with respect to non-enzymatic glucose sensing. On the other hand,
the great reproducibility was supported by low values of the relative standard deviation
(~5–8% for all samples) of the analytical response to 1 mM D-glucose.
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Figure 7. (a) Cyclic voltammograms of Ni micropatterns (electrode) measured in the solution of 0.1 M NaOH with addition
of 1 mM D-glucose; (b) Amperogram of Ni electrode recorded at potential of 0.6 V in 0.1 M NaOH solution containing
of D-glucose of various concentration; (c) Linear range of D-glucose concentrations for enzyme-less sensing using the
fabricated Ni electrode; (d) Selectivity of Ni electrode towards 100 µM D-glucose (Glu) detection in the presence of 20 µM
4-acetamidophenol (AP), 20 µM uric acid (UA) and 20 µM ascorbic acid (AA) observed in the background solution of 0.1 M
NaOH. In these experiments, we used Ni electrodes sintered on glass-ceramics.

Table 3. Different electrode materials for non-enzymatic glucose sensing in comparison with those fabricated in this work.

Electrode Material Sensitivity (µA mM−1 cm−2) Linear Range (mM) Limit of Detection (µM) Ref.

Cu on glass-ceramics 1110 ± 6,45 0.003−3 0.91 This work
Ni on glass-ceramics 2080 ± 18,53 0.01−3 2.1 This work

Cu MPs 2432 0−4.711 0.19 [36]
Cu coating 2149.1 0.001−4.6 0.03 [37]

carbon electrode/nanoporous Cu 33.75 0.0006−3.369 2.6 [38]
Cu NPs 412 0−0.7 2.76 [39]

Ni NPs on carbon nanotubes 1438 0.001−1 0.5 [40]
rhizobia-like Ni NPs 50.97 0.001−7 0.18 [41]

Ni NP/chitosan 318.4 0−9 4.1 [42]
3D porous carbon/Ni NPs 207.3 0.015−6.45 4.8 [43]
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4. Conclusions

In this work, we found the optimal parameters for manufacturing Cu and Ni mi-
cropatterns on the surface of glass-ceramics using reductive selective laser sintering (SLS).
In order to increase the adhesion and lifetime of these materials on the surfaces of the
substrate used in the current study, they were treated with Nafion solution. The fabri-
cated Cu and Ni electrode materials can be used for non-enzymatic glucose sensing. It
was confirmed by the electrochemical experiments that revealed their high sensitivity
(1110 and 2080 µA mM−1·cm−2), low limit of detection (0.91 and 2.1 µM), broad linear
range (0.003–3 mM and 0.01–3 mM), as well as good selectivity and long-run stability. Thus,
it is possible to conclude that high speed reductive SLS allowing for obtaining electrodes of
various geometries is a quite promising technique for the design and fabrication of reliable
materials for enzyme-free sensing purposes that can compete with existing technologies
used for the production of microelectronic devices and sensors.
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