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Purpose: To digitally stain spectral-domain optical coherence tomography (OCT)
images of the optic nerve head (ONH), and highlight either connective or neural tissues.

Methods: OCT volumes of the ONH were acquired from one eye of 10 healthy
subjects. We processed all volumes with adaptive compensation to remove shadows
and enhance deep tissue visibility. For each ONH, we identified the four most
dissimilar pixel-intensity histograms, each of which was assumed to represent a tissue
group. These four histograms formed a vector basis on which we ‘projected’ each OCT
volume in order to generate four digitally stained volumes P1 to P4. Digital staining
was also verified using a digital phantom, and compared with k-means clustering for
three and four clusters.

Results: Digital staining was able to isolate three regions of interest from the
proposed phantom. For the ONH, the digitally stained images P1 highlighted mostly
connective tissues, as demonstrated through an excellent contrast increase across the
anterior lamina cribrosa boundary (3.6 6 0.6 times). P2 highlighted the nerve fiber
layer and the prelamina, P3 the remaining layers of the retina, and P4 the image
background. Further, digital staining was able to separate ONH tissue layers that were
not well separated by k-means clustering.

Conclusion: We have described an algorithm that can digitally stain connective and
neural tissues in OCT images of the ONH.

Translational Relevance: Because connective and neural tissues are considerably
altered in glaucoma, digital staining of the ONH tissues may be of interest in the
clinical management of this pathology.

Introduction

Structural parameters of the optic nerve head
(ONH) measured with optical coherence tomography
(OCT), such as the thickness of the retinal nerve fiber
layer1 and the minimum rim width2,3 have been
recently considered for improving glaucoma diagno-
sis.4 It is believed that if other structural parameters
linked to ONH connective tissues could be extracted
in vivo, it could further increase the value of OCT in
glaucoma clinics.5,6 This is because ONH connective

tissues, such as the peripapillary sclera. Bruch’s
membrane, and the lamina cribrosa (LC) have been
identified as key players in this pathology.7–14

Unfortunately, OCT image quality is still greatly
hampered by the presence of artifacts and by poor
tissue visibility in the deepest layers.15 This is due to
signal attenuation, whereby signal strength diminishes
as a function of tissue depth. This phenomenon is a
clinical barrier to glaucoma applications due to the
poor visibility of deep ONH connective tissues with
commercial OCT devices.

To correct for signal attenuation and improve
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connective tissue visibility, we have recently proposed
several compensation technologies.15–17 These post-
processing techniques have allowed for significant
improvements in the visibility of ONH tissues, such as
enhanced choroid/scleral interface, anterior/posterior
LC surface, and LC insertion sites.18 While their uses
have considerably facilitated the manual delineation
of ONH connective tissues, automated detection/
segmentation has remained a challenge.

In this study, we propose a novel algorithm that,
when combined with adaptive compensation, can
digitally ‘stain’ ONH tissues from OCT images. While
several studies have tried to provide segmentation or
classification methods for ocular OCT,19–33 our aim
was primarily to highlight tissue groups (including
connective and neural tissues) and enhance their
visibility. Although the proposed approach does not
identify tissue boundaries or classes, it can facilitate
visual image analysis and offers great prior knowledge
for subsequent segmentation or classification. This
digital staining algorithm may be widely applicable to
other ocular tissues such as the trabecular meshwork,
Schlemm’s canal, and corneal scars.

Materials and Methods

OCT Image Acquisition

Spectral-domain OCT volume scans were acquired
from one eye of 10 healthy subjects using a
commercially available device (Spectralis; Heidelberg
Engineering, Heidelberg, Germany). Inclusion criteria
for these subjects were: intraocular pressure (IOP) less
than or equal to 21 mm Hg, healthy ONHs with
vertical cup disc ratio less than or equal to 0.5, and
normal visual fields. Imaging was performed at the
Singapore Eye Research Institute, Singapore, where
the Institution’s ethics committee approval was
obtained; all subjects gave written informed consent
and were treated in accordance with the tenets of the
Declaration of Helsinki. Each volume scan comprised
of 97 horizontal B-scans acquired over a 158 3 158

retinal window. There were 384 A-scans (of 496 pixels
each) per B-scan; each B-scan was averaged 20 times
for speckle noise reduction, and acquired in en-
hanced-depth imaging mode.

Adaptive Compensation – Shadow Removal
and Contrast Enhancement

In order to remove light-attenuation artifacts, all
OCT volumes were processed (post acquisition) using

adaptive compensation (AC).15,16 When applied to
OCT images of the ONH, AC has been demonstrated
to remove blood vessel shadows (cast by the central
retinal vessel trunk), to improve the visibility of the
anterior/posterior LC boundaries, to improve the
visibility of the LC insertions into the sclera, and to
significantly increase the visibility of the choroid and
peripapillary sclera.18,35 An energy threshold expo-
nent of six (to limit speckle noise over-amplification),
and a contrast exponent of two (to enhance ONH
tissue contrast) were both used for each compensated
volume.

OCT Digital Staining – Description of the
Algorithm

In this study, we developed a digital staining
algorithm that can classify (or isolate) different tissue
groups of the ONH. Our main assumption is that the
pattern distribution of reflectivity of the ONH tissues
(as measured by OCT and corrected with adaptive
compensation) varies according to tissue composi-
tion/type. For each OCT volume of the ONH, we
aimed to extract N pixel-intensity histograms to
represent the N different tissues (or tissue groups) of
the ONH. These N histograms can then be used to
digitally stain the OCT volumes.

The principle of OCT digital staining is as follows:
for each OCT volume of the ONH, we first manually
selected a region of interest (ROI) within the LC. The
selected ROI was assumed to exhibit pixel intensity
values representative of ONH connective tissues. The
ROI pixel intensities were then represented as a
histogram-vector h1 (vector size: 256 3 1), in which
each vector component was the number of ROI voxels
for a given gray scale value (from 1–256).

For our next step, we aimed to identify the
histogram-vector h2 that was the most dissimilar to
h1. We assumed that if h2 was highly dissimilar to h1,
it would be representative of an ONH tissue (or tissue
group) different from connective tissues. For simplic-
ity, we assumed that h2 was most dissimilar to h1
when a function of the scalar product h1 3 h2 was
minimum. Note that this process is similar to
minimizing a cross-correlation coefficient applied to
histogram-vectors.36 To this end, we first divided each
OCT volume into multiple partially overlapping (8 3

835 voxels) ROIs (3333335 voxels). For each ROI
(now represented as a histogram-vector h2), we
computed the scalar product h1 3 h2. We then
identified the ROI (and corresponding h2) that
provided the smallest scalar product value.
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Once the first two most dissimilar histogram-
vectors (representing tissues) were found the tech-
nique could be iterated. For instance, a histogram-
vector hn can be obtained when the function of its
scalar products with the n � 1 previous histogram-
vectors is minimum. Using the proposed approach,
we aimed to identify a basis of four histogram-vectors
(assumed to be representative of four tissues or tissue
groups, including background noise) for each OCT
volume of the ONH.

For a given OCT volume, the four histogram-
vectors can now be used to generate four digitally
stained volumes representative of four different tissue
types. To this end, each OCT volume was divided into
multiple overlapping ROIs (9 3 9 3 1 voxels). The
digitally stained image P1 was obtained by projecting
all histogram-vectors (representative of all ROIs; the
histograms are normalized and sorted in the base
according to maximum position, and extrema histo-
grams are maximized below and above their maxi-
mum values positions, respectively) on h1. In other
words, the voxel intensity of P1 with voxel coordi-
nates (i, j, k) was the scalar product of h1 with the
histogram-vector representing an ROI centered on (i,
j, k). The digitally stained images P2, P3, and P4 were
obtained by performing similar projections with h2,
h3, and h4, respectively.

The digital staining algorithm was implemented in
MATLAB (Mathworks Inc., Natick, MA).

OCT Digital Staining –Verification of the
Algorithm

In order to test the performance and verify the
accuracy of our digital staining algorithm, we
generated a two-dimensional (2D) digital phantom
image (8 bits) that contained three texture patterns
(regions 1–3 in Fig. 1A), each of which followed a
randomly chosen Gaussian distribution. The histo-
gram-vector h1 was manually selected from region 1
(ROI size: 17 3 17 pixels). The digital phantom was
then processed with 17 3 17 pixels search ROIs in
order to identify a basis of three histogram-vectors h1,
h2, and h3 (vector size: 256 3 1, corresponding to the
256 image gray levels). Histogram-vectors (represen-
tative of 17 3 17 pixels ROIs in the digital phantom
image) were then projected on each histogram vector
basis to generate three digitally stained images: P1,
P2, and P3. To assess the performance of digital
staining, we: (1) computed contrasts across regions
(region 1 versus region 2 and region 1 versus region 3,
in the baseline and digitally stained images), and (2)

compared the three extracted histogram-vectors to
those used to generate the digital phantom image.

Digital Stain Contrasts for ONH Images

To verify that our algorithm can isolate different
tissues of the ONH, we computed the digital stain
contrast between the LC and the prelamina for the
compensated and digitally stained images. The digital
stain contrast is an indicator of whether a given tissue
has been isolated from other tissues that are different
in nature (e.g., connective versus neural tissue). The
digital stain contrast was calculated across the
anterior LC boundary because it separates connective
from neural tissues. The digital stain contrast was
defined as j(I1– I2) / (I1þ I2)j, where I1 was the mean
image intensity of a ROI (30 3 30 pixels) located
within an arbitrarily selected region of the LC, and I2
was that within the prelamina. The contrast was
estimated for three different slices in each transformed
dataset. By definition, the digital stain contrast varies
between 0 and 1, with values closer to 1 indicating a
high digital stain contrast (i.e., high LC visibility).

Comparison with K-Means Clustering

Although the proposed method is not a clustering/
classification one (the images are not transformed
into clusters/classes, but in intensity images), as no
algorithm equivalent to the proposed one is readily
available, a k-means clustering algorithm (function
kmeans_fast_color; Matlab) was also applied to the
compensated images to compare the ability of digital
staining to isolate tissue textures with that of a
common clustering method. Specifically, k-means
clustering was used to isolate three and four clusters,
and compared qualitatively with digital staining.

Statistical Analysis

Digital stain contrasts were reported as mean 6

SD. Statistical analyses to compare digital stain
contrasts were performed by using paired Student’s
t-test in Matlab, with P less than 0.05 indicating
statistical significance.

Results

Digital Staining – Algorithm Verification

We found that our digital staining algorithm was
able to isolate (i.e., digitally stain) the three ROIs
from the proposed digital phantom. Specifically, the
digitally stained image P1 (Fig. 1C) was able to isolate
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the background (region 1), the image P2 (Fig. 1D) the
lower left circle (region 2), and the image P3 (Fig. 1E)
the upper right circle (region 3). We also found that
contrasts across region boundaries (region 1 versus
region 2 and region 1 versus region 3) were excellent
in all digitally stained images and were always higher
than 0.97 (considerably higher than those in the
baseline image; e.g., region 1 versus region 2, baseline
contrast: 0.31; region 1 versus region 3: 0.58). Finally,
the histogram vectors that were extracted with digital
staining matched relatively well those that were used
to generate the digital phantom (Fig. 1B).

Digital Staining of ONH Tissues

Baseline, compensated, and digital stain images
(projections P1–P4) for a healthy ONH (subject #1)
can be found in Figure 2. We found that the digitally
stained image P1 was able to highlight predominantly
connective tissue structures including the peripapil-
lary sclera, the LC, Bruch’s membrane, the choroid,
and the central retinal trunk vessel walls. This was
true even in regions exhibiting high shadowing
artifacts (e.g., nasal side of the optic disc). In the
image P1, LC visibility was considerably enhanced,
which was highly consistent across all 10 subjects (6 of
10 subjects are represented in Fig. 3). This was
confirmed through calculations of the digital stain
contrast between the LC and the prelamina. On

average, our digital staining algorithm significantly
increased the digital stain contrast of the LC from
0.26 6 0.06 (compensated) to 0.91 6 0.07 (P , 0.001;
Table 1), indicating a drastic increase in anterior LC
visibility (33.6 6 0.6 improvement). In the image P1,
we also found that the visibility of the choroidal
vessels was excellent.

We also found that the digitally stained image P2
was able to highlight the nerve fiber layer and the
prelamina (Fig. 2), and in the digitally stained image
P3, the remaining layers of the retina. The digitally
stained image P4 was not representative of an ONH
tissue or tissue group, but instead highlighted the
image background (everything but ONH tissues). A
three-dimensional (3D) volume rendering of the
digitally stained volumes P1 and P2 can be visualized
in Figure 4 (subject #1) in order to illustrate the high
degree of separation that can be obtained between
connective and neural tissues.

Comparison with K-Means Clustering

Examples of k-means clustering for three and four
clusters are displayed in Figure 5 (subject #1) together
with the digital staining outputs for the same subject.

Using four clusters, k-means clustering was able to
isolate neural tissues (prelamina þ retina in 4C3) but
performed poorly to isolate connective tissues (sclera
and LC in 4C1 and 4C2 versus P1). Furthermore k-

Figure 1. (A) A digital phantom was generated with three regions, each of which had pixel intensities that followed a randomly
generated Gaussian distribution. (B) Predetermined histogram-vectors of the digital phantom for the three regions are compared with
those extracted with digital staining. A good agreement was obtained. (C–E) Digitally stained images P1, P2, and P3 that highlight
regions 1, 2, and 3, respectively.
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means clustering could not isolate the nerve fiber
layer (4C3 versus P2). The noise image (4C4) also
included retinal layers, which was not the case with
digital staining (P4).

Using three clusters, k-means clustering performed
well in identifying connective tissues (sclera þ LC in
3C1), but did not perform as well as digital staining in
identifying neural tissues (3C2 versus P2 and P3). In
addition, the noise image (3C3) included retinal
layers, which was not the case with digital staining
(P4).

Discussion

In this study, we have developed and tested a
digital staining algorithm for OCT images of the
ONH. Our algorithm was verified with a digital
phantom and tested with OCT data from 10 healthy
subjects. For OCT images of the ONH, we found that
our algorithm was able to isolate connective tissues,
prelaminar tissues and the nerve fiber layer, other
retinal layers, and the OCT background, as four
separate digitally stained volumes. Our method is as
attractive as it is simple and could have applications
for the clinical management of glaucoma using OCT.

To the best of our knowledge, no digital staining
techniques have yet been proposed for OCT images of
the eye.

In this work, we found that connective tissues of
the ONH (including the peripapillary sclera. the LC,
the choroid, Bruch’s membrane, and the central
retinal vessels) were highly visible in the digitally
stained images P1. This was confirmed quantitatively
by a marked increase in digital stain contrast across
the anterior LC boundary. The results were also
highly consistent for all 10 subjects. An improved
visibility of connective tissues of the ONH has
important clinical implication for glaucoma. Connec-
tive tissues are the main load bearing elements of the
ONH, and there is evidence to suggest that biome-
chanical and/or morphologic features of these tissues
may serve as strong biomarkers for glaucoma. For
instance, we recently reported that LC shape was
associated with several risk factors for glaucoma,36

and that LC strain relief following trabeculectomy
was associated with visual field loss.37 Furthermore, a
recent study by Yang et al.7 summarized the main
connective tissue changes associated with chronic IOP
elevation in a monkey model. The five connective
tissue changes included: post-laminar deformation,
laminar thickening, scleral canal expansion, laminar

Figure 2. Baseline, compensated, and digitally stained images (projections P1–P4) for a healthy ONH (subject #1). P1 mostly captured
connective tissue structures, P2 isolated the nerve fiber layer and the prelaminar tissue, P3 highlighted the other retinal cell layers, P4
identified the background noise and provided a ‘mask’ of the ONH tissues.
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migration, and scleral bowing. It is highly plausible
that some or all of these phenomena will hold true in
humans (as already demonstrated for some),38,39

emphasizing the importance of monitoring connective
tissue behavior in vivo. Our digital staining algorithm
may help serve that purpose.

Digital staining, as proposed herein, should also
considerably facilitate the automated segmentation of
connective tissues. While automated segmentation of
retinal cell layers in OCT images is robust,40

automated segmentation of the LC and of the
choroidal vessels has remained a challenge, and only
a few solutions, sometimes complex, have been
proposed.41–44 While this is beyond the scope of the
present work, simple segmentation algorithms should
be able to be combined with digital staining to
automatically identify structures such as the anterior
LC surface or the choroidal vessels and this is the
focus of ongoing work within our group.

In this study, we found the digitally stained images
P2 represented the nerve fiber layer and the prelami-
nar tissue, while the digitally stained images P3
represented all other retinal layers. These tissues were
identified because they were found to be the most
dissimilar to connective tissues (through the minimi-
zation of scalar products between histogram vectors).
We believe that digital staining opens the door to

robust and automated quantification methods to
assess nervous tissue damage/changes in glaucoma.
For instance, automated characterization of nervous
tissue parameters, such as nerve fiber layer thickness,
prelaminar volume, and minimum rim width should
become facilitated with digital staining.

Interestingly, the digitally stained images P4
highlighted the image background, that is, the
vitreous humor above the inner limiting membrane
and the OCT noise in the deepest part of the images.
In other words, the images P4 provided a mask of all
visible ONH tissues, P4 images could eventually be
used to detect the inner limiting membrane, and/or to
filter deep OCT noise, which may be useful as the first
step of a segmentation algorithm.

It is worth noting that the performance of digital
staining was optimum only when combined with
adaptive compensation. If digital staining were to be

Table 1. Digital Stain Contrasts Computed across the
Anterior LC Surface (Using 3 B-Scans Per Subject) for all
10 Subjects

Subject

Lamina to PreLamina
Contrasts Ratios

Comp. (6r) P1 (6r) P1/Comp

1 0.21 6 0.02 0.99 6 0.01 4.8
2 0.43 6 0.10 0.99 6 0.01 2.3
3 0.26 6 0.01 0.91 6 0.02 3.5
4 0.30 6 0.05 0.99 6 0.02 3.3
5 0.24 6 0.01 0.83 6 0.08 3.5
6 0.27 6 0.01 0.96 6 0.01 3.6
7 0.27 6 0.31 0.96 6 0.03 3.5
8 0.20 6 0.03 0.84 6 0.09 4.2
9 0.22 6 0.02 0.90 6 0.02 4.1
10 0.23 6 0.00 0.84 6 0.07 3.7
Mean 6r: 0.26 6 0.06 0.92 6 0.06 3.6 6 0.6

 
Figure 3. Baseline, compensated, and digitally stained images (projections P1) for 6 (of 10) healthy ONHs. P1 consistently stained for
connective tissues (mostly sclera, choroid, and lamina cribrosa). In the P1 images, the lamina cribrosa was even stained in the nasal region
even though strong blood vessel shadowing was observed in the baseline images.

Figure 4. Three-dimensional volume rendering of the digitally
stained volumes P1 (red/orange) and P2 (green/blue) for subject #1.
A high degree of separation can be observed between connective
(P1) and nervous tissues (P2).
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directly applied to baseline OCT images of the ONH,
typical OCT artifacts, such as blood vessel shadows
and poor connective tissue visibility at high depth
would still remain in the digitally stained images (data
not shown). As discussed in our prior publication,16

this illustrates that adaptive compensation may be a
necessary first step toward a simple solution to
automatically segment the ONH tissues.

When compared with k-means clustering, it was
observed that digital staining was able to extract four
different layers of tissue textures, whereas k-means
clustering generated mixed results. With four clusters,
k-means clustering was not able to isolate the anterior
LC boundary (4C1versus P1 in Fig. 5), and the nerve
fiber layer (4C2 and 4C3 versus P2). In addition, 4C4
contained both nerve tissues and noise (whereas P4

only highlighted noise). With three clusters, k-means
clustering was able to produce a ‘connective-tissue’
image (3C1) with similarities to P1, but other features
such as the nerve fiber layer and the noise could not
be extracted. On the other hand, k-means clustering is
relatively faster than digital staining, and it may prove
useful when extracting the ‘connective-tissue’ image
3C1. However, it remains important to emphasize
that digital staining is able to isolate several tissue
textures and does not simply separate gray levels as
clusters in the compensated images.

Several limitations in our work warrant further
discussion. First, we were unable to provide an
additional validation of our algorithm by comparing
our digitally stained images to those obtained from
histology. This is, unfortunately, extremely difficult to

Figure 5. Comparison of digital staining with k-means clustering with four and three clusters. Digital staining is able to separate ONH
tissue layers (e.g., prelamina, nerve fiber layer, noise) that are not well separated by k-means clustering.

8 TVST j 2017 j Vol. 6 j No. 1 j Article 8

Mari et al.



achieve as one would need to image an ONH with
OCT, process it with 3D histology, and register both
volumes. Note that the broad understanding of OCT
ONH anatomy to histology has been based on a
single comparison with a normal monkey eye scanned
in vivo at an IOP of 10 mm Hg and then perfusion
fixed at time of sacrifice at the same IOP.45 The tissue
typing delineated by our digital staining techniques
matches the expected relationships observed in this
canonical work. At the time of writing, there have
been no published experiments matching human
ONH histology to OCT images. While the absence
of this work prevents an absolute validation of our
technique, the same shortcoming necessarily applies
to every other in vivo investigation of deep OCT
imaging of the human investigation, many publica-
tions of which predate even the publication of the
comparison with the monkey ONH.

Second, we limited our analysis to a small group
(10 subjects). We did not include cases with ‘complex’
ONH morphologies such as glaucoma, papilledema,
peripapillary atrophy, and ONH drusen. However, it
is encouraging to note that our data were highly
consistent across these subjects. Current work is
ongoing to further test the performance of digital
staining in larger groups of subjects, with various
disorders, and using additional commercially avail-
able OCT devices.

Third, digital staining was only tested for a given
number of histogram vectors (here, 4) and a given
set of ROI values. Note that other parameters
values were explored and led to similar digital stain
results (data not shown). It should be emphasized
that as long as the chosen ROIs are representative
but smaller than the tissues of interest that need to
be detected, digital stain results will remain consis-
tent.

Fourth, our digital staining algorithm requires an
initial manual input to generate the first histogram
vector h1 (representative of connective tissues). This
meant that the user of the algorithm had to first
identify a small ROI within the LC. We chose such an
implementation because it helped considerably reduce
computational time, and because in practice, the user
may be interested in selecting a specific tissue that
needs to be digitally stained. Future research may
offer the possibility to fully automate the process if
needed.

Fifth, digital staining is currently unable to
differentiate the LC from the retrolaminar tissues.
We believe this is because current commercial OCT
technology (wavelength in the range of 800–1000 nm)

fails to properly identify the posterior surface of the
LC. In our previous work, we found that the posterior
LC was poorly visible and only visible in 6.3% to
13.5% of patients in a population of 60 healthy and 60
glaucoma patients imaged with 3 commercial OCT
devices.18 The visibility of the posterior LC boundary
was only slightly improved when enhanced-depth
imaging and/or adaptive compensation was combined
with OCT (visible in 12.3%–21% of patients). Because
digital staining is highly dependent on the original
OCT signal, an improvement in OCT hardware would
likely be required to differentiate the LC from the
retrolaminar tissues.

Sixth, while compensation can significantly im-
prove image quality, in some instances, it may
generate its own artifacts. These artifacts will
naturally remain during the digital staining step, as
digital staining does not modify the images but rather
highlight tissue groups. Next-generation compensa-
tion algorithms are required to further improve digital
staining.

Seventh, it should be noted that the present
method is not a segmentation method nor a clustering
method, but indeed a texture staining approach where
specific tissues are highlighted. Future work could
consider using more complex texture features or seek
to combine the digital staining outputs with segmen-
tation algorithms to automatically delineate the
boundaries of the different tissue types.

Eighth, digital staining when combined with
swept-source OCT (instead of spectral-domain
OCT) may provide improved tissue visibility. How-
ever, our previous study demonstrated that swept-
source OCT (with adaptive compensation) performed
as well as spectral-domain OCT (with enhanced-depth
imaging and adaptive compensation) in identifying
the anterior LC surface and the LC insertions into the
peripapillary sclera. The visibility of the posterior LC
surface remained poor with either swept-source or
spectral-domain OCT.18 Further studies are required
to assess the performance of digital staining when
combined with swept-source OCT.

Ninth, digital staining will not be able to provide
direct information about changes in neural and/or
connective tissues. To assess such changes, digital
staining will need to be combined with other
segmentation algorithms that can quantify (e.g.,
thickness, volume, curvature, and morphology).

Tenth, digital staining approximately took 60
minutes to process a 3D OCT volume composed of
100 B-scans (,1 minute per slice) on a standard
computer (Intel Processor i5; Intel Corporation,
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Santa Clara, CA) using Matlab. K-means clustering
was faster and only took several seconds for a single
B-scan. However, please note the following: (1) k-
means clustering was not implemented in 3D (only
2D) and a 3D implementation is likely to be more
computationally expensive, (2) digital staining was
not optimized for code efficiency, (3) digital staining
will run significantly faster (several orders of magni-
tude) in a different language such as Cþþ, or if
implemented in a Graphics Processing Unit environ-
ment.

Finally. It would have been ideal to quantitatively
compare the results from digital staining with those
from k-means clustering, but such a comparison
would be arbitrary as the results are different in
nature. Indeed, the k-means algorithm returns infor-
mation about clusters (binarized information) while
digital staining the ‘likeliness’ (in %) of a given pixel
to belong to a specific tissue or tissue group. As the
cluster information is either one or zero, either a
distance measure (measure of differences) would be
based on arbitrary values, or the comparison of
binarized images with both approaches would depend
on a selected binarization threshold value (for digital
staining). Furthermore, as there is currently no OCT
ground truth information to assess both results
independently, it is difficult to determine a quantita-
tive level of success for each approach. One could
argue that the comparison could be performed on
synthetic data; however, the results would be excellent
for both approaches, and a quantitative distance-
based comparison would provide inconclusive results.
Nevertheless, we still believe a qualitative compari-
son, as presented herein, is useful in assessing both
approaches.

In conclusion, we have described a novel algorithm
that can digitally stain connective and neural tissues in
OCT images of the ONH. Our algorithm was verified
with a digital phantom, compared with a modern
clustering algorithm, and tested in 10 subjects with
consistent digital stains. Because ONH connective and
neural tissues are altered in glaucoma, digital staining
(when combined with segmentation algorithms to
derive measures of ONH morphology) may be of
interest in the clinical management of glaucoma.
Digital staining may also have wide applicability in
other areas of ophthalmic interest, such as the
identification of corneal scars in anterior segment
images.17 Furthermore, it will also be of interest in
other fields of medicine in which there is clinical
application of OCT, such as in cardiology for the
identification of atherosclerotic plaques.46
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