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Abstract 

Breast cancer patients are categorized into three subtypes with distinct treatment approaches. Precision oncology has increased patient out- 
comes by targeting the specific molecular alterations of tumours, yet challenges remain. Treatment failure persists due to the coexistence of 
se v eral malignant subpopulations with different drug sensitivities within the same tumour, a phenomenon known as intratumour heterogeneity 
(I TH). T his heterogeneity has been e xtensiv ely studied from a tumour-centric view, but recent insights underscore the role of the tumour mi- 
croenvironment in treatment response. Our research utilizes spatial transcriptomics data from breast cancer patients to predict drug sensitivity. 
We observ e div erse response patterns across tumour, interphase and microen vironment regions, un v eiling a sensitivity and functional gradient 
from the tumour core to the periphery. Moreo v er, w e find tumour therapeutic clusters with different drug responses associated with distinct bi- 
ological functions driven by unique ligand-receptor interactions. Importantly, we identify genetically identical subclones with different responses 
depending on their location within the tumour ducts. This research underscores the significance of considering the distance from the tumour 
core and microenvironment composition when identifying suitable treatments to target ITH. Our findings provide critical insights into optimizing 
therapeutic strategies, highlighting the necessity of a comprehensive understanding of tumour biology for effective cancer treatment. 
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ancer is a group of genetic diseases that has been classically
pproached with a one-size-fits-all strategy, which often re-
ulted in treatment inefficacy and adverse drug reactions ( 1 ),
nderlining the existence of intertumour heterogeneity ( 2 ).
ersonalized precision oncology is a novel therapeutic strat-
gy that aims to provide tailored treatments to cancer pa-
ients according to the molecular characteristics of individual
umours ( 3 ,4 ). Breast cancer research has contributed to the
oundations of personalized precision oncology by identifying
iomarkers to guide patient stratification and selection of tar-
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geted therapies. In the clinical setting, an immunohistochemi-
cal analysis determines the expression of the oestrogen recep-
tor (ER) and the progesterone receptor (PR) and the overex-
pression or amplification of the human epidermal growth fac-
tor receptor 2 (HER2). The status of these three hormone re-
ceptors guides the stratification of breast cancer patients into
three groups with different prognosis and treatment strategies:
luminal (ER+, PR ±, HER2 −); HER2+ (ER ±, PR ±, HER2+)
and triple-negative breast cancer (TNBC; ER -, PR -, HER2 −)
( 5 ). ER+ and HER2+ patients are treated with targeted ther-
apies against these biomarkers, including hormonal therapies
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like tamoxifen or HER2 inhibitors. On the contrary, TNBC
patients are usually prescribed chemotherapies since targeted
therapies are still unavailable ( 6 ). Since the adoption of this
strategy, breast cancer patient outcomes have improved. How-
ever, there is still a high number of treatment failure cases and
relapses, especially in TNBC patients ( 7 ). 

Several cancer cell subpopulations coexist within a single
lesion and display different epigenomics, genomics and tran-
scriptomics profiles. This variability, usually referred to as in-
tratumour heterogeneity (ITH), reflects the existence of dis-
tinct tumour subpopulations that may harbour different sen-
sitivities to anticancer therapies ( 8 ) and have been linked to
treatment failure and relapse ( 9 ). Until recently, ITH research
has mainly focused on cancer cells and their genomic and gene
expression variability, thus studying ITH at the subclone or
transcriptional cell state levels ( 10 ,11 ). In the last few years,
the role of the tumour microenvironment (TME) on ITH and
response to treatment has been acknowledged. The TME,
which aggregates cellular and non-cellular components, such
as immune cells or the extracellular matrix (ECM) ( 12 ), influ-
ences transcriptomics changes in the tumour compartment. At
the same time, the tumour hijacks the TME to favour its own
growth ( 13 ). Thus, this active cross-talk within the tumour
ecosystem is a source of selective pressure for cancer evolu-
tion and, ultimately, a key factor in treatment response ( 14 ).
Despite recent efforts, there is a lack of studies relating drug
response with the spatial organization of the tumour and the
cross-talk with the TME. 

Single-cell technologies, particularly single-cell RNA-seq
(scRNA-seq), have become a prominent method for studying
ITH and TME. scRNA-seq methods require sample disgre-
gation, causing cell stress ( 15 ) and death and not preserving
the spatial organization of the tissue. However, carcinomas
grow and evolve within a spatial context ( 16 ), so studying the
microanatomical niches within a tissue can illuminate unex-
plored ITH sources. In this scenario, an incipient sequencing-
based technology known as spatial transcriptomics (ST) is
becoming more relevant since it maps high-resolution tran-
scriptomics data on top of tissue slides, allowing the study of
the distribution of cell types and their cell-to-cell communica-
tions, the border between the tumour and TME compartments
and the localization of different tumour subpopulations ( 17 ).

In this work, we acquired ST data from nine patients with
invasive adenocarcinomas stratified into luminal, HER2+ or
TNBC subtypes. We predicted the sensitivity to > 1200 drugs
to explore the therapeutic heterogeneity of breast cancer while
accounting for the spatial context and the interaction between
the tumour and TME compartments. For this purpose, we
have exploited a new version of Beyondcell ( 18 ), a tool for
identifying tumour cell subpopulations with different drug re-
sponse patterns in scRNA-seq data that now allows users to
work with 10x Visium ST data. 

Materials and methods 

Visium ST data preprocessing 

We created Seurat v4.3.0.1 ( 19 ) objects from raw counts, the
corresponding metadata and tissue images. Spots marked as
‘Artefact’ were filtered out, as well as low-quality spots that
did not meet any of the thresholds specified in Supplementary 
Table S1 . Next, we normalized the filtered raw counts with
the SCTransform function ( vst.flavor = ‘v1’ ). We assessed the
cell cycle effect using the CellCycleScoring function and plot- 
ting a Principal Component Analysis ( npcs = 50 ). Based 

on this plot, we regressed the cell cycle when needed using 
the SCTransform function with vars.to.regress = c(‘S.Score’,
‘G2M.Score’) . In multi-region patients (CID44971, CID4465 

and CID4535), the effect of the region was also regressed. 

Spot deconvolution 

We used Robust Cell Type Decomposition v2.2.1 ( 20 ) to pre- 
dict the proportion of different cell types contained within 

each spot. First, we constructed three subtype-specific decon- 
volution references using annotated scRNA-seq data com- 
ing from 26 primary tumours (11 luminal, 5 HER2+ and 

10 TNBCs) ( 5 ). Labelled cell types comprised B cells,
cancer-associated fibroblasts (CAFs), cancer cells, endothe- 
lial cells, myeloid cells, normal epithelial cells, plasmablasts,
perivascular-like (PVL) cells and T cells. As part of qual- 
ity control preprocessing, we removed single cells that met 
any of the following criteria: (i) percentage of transcripts 
mapping to mitochondrial genes ≥15%; (ii) percentage of 
transcripts mapping to ribosomal genes ≥40%; (iii) number 
of transcripts ≤250 or ≥50 000; (iv) number of expressed 

genes ≤200 or ≥7500. Then, we merged the scRNA-seq 

datasets by breast cancer subtype and input the filtered raw 

counts to the Reference function to compute subtype-specific 
deconvolution references using a maximum of 500 cells per 
cell type. Finally, we deconvoluted the spots in each sample 
using the corresponding reference, the filtered raw counts, the 
coordinates and the default parameters of create.RCTD and 

run.RCTD functions. 

Estimation of tumour purity and spot categorization 

To estimate the tumour purity of each spot, we computed ES- 
TIMATE (Estimation of STromal and Immune cells in MA- 
lignant Tumours using Expression data) v1.0.13 scores ( 21 ) 
using the SCTransform-normalized and regressed counts ob- 
tained with Seurat v4.3.0.1. We scaled this score between 0 

and 1 across all patient spots. 
Then, we categorized each spot as either tumour or TME 

based on the agreement of three annotation sources: (i) the 
histopathological annotations when available (spots labelled 

as ‘Ductal carcinoma in situ ’ or containing the ‘cancer’ or ‘car- 
cinoma’ keywords), (ii) the scaled ESTIMATE score ( ≤0.4),
which is inversely proportional to tumour purity, and (iii) the 
proportion of deconvoluted cancer cells ( ≥0.6) in each spot.
The spots that did not meet at least two of these criteria were 
labelled as TME and assigned the non-malignant cell type with 

maximum deconvoluted proportion. 

Subclone inference 

We determined sample-wise clonal structures from in- 
ferred copy-number alteration (CNA) profiles using Sin- 
gle CEll Variational Aneuploidy aNalysis v1.0.1 ( 22 ).
Briefly, we input filtered raw counts to pipelineCNA func- 
tion ( beta_v eg a = 0.5, SUBCLONES = TRUE, Clon- 
alCN = TRUE, plotTree = TRUE ) using the spots labelled 

as TME as reference. TME spots were relabelled as tumour if 
their inferred CNA profile was similar to other tumour spots.
Moreover, tumour spots with no inferred CNAs were marked 

as diploid. 

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
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reast sensitivity signature collection generation 

he Breast sensitivity signature collection (SSc breast) con-
ains 1372 gene signatures that reflect the transcriptional dif-
erences between sensitive and resistant breast cancer cell lines
efore drug treatment. In order to obtain these signatures, we
erformed a differential expression analysis against the area
nder the curve with limma v3.54.0 ( 23 ) for all compounds
ested in ≥10 different breast cancer cell lines. We selected
he top 250 upregulated and downregulated genes in sensi-
ive versus resistant cancer cell lines, ranked by the t-statistic,
o create bidirectional gene signatures of 500 genes each. The
rea under the curve was used to measure drug response be-
ause, contrary to IC50, it can always be estimated without
xtrapolation from the dose-response curve and has shown
ore accuracy in predicting drug response ( 24 ). 
Expression and drug response data were retrieved from

hree independent pharmacogenomics assays: the Cancer
herapeutics Response Portal v2 ( 25–27 ), the Genomics of
rug Sensitivity in Cancer v2 ( 28–30 ) and the PRISM ( 31 ,32 )

epurposing compendium through the DepMap portal v22Q4
 33 ). As these sources are independent, several signatures re-
er to the same compound. Consequently, the 1372 transcrip-
omic signatures that form the SSc breast reflect the predicted
esponse to > 1200 drugs. To verify that the cancer cell lines
ncluded in the signature generation analyses were represen-
ative of breast cancer patients, we used the corrected lineage
eported in the Celligner project ( 34 ). 

eyondcell score calculation and correlation 

eyondcell Scores (BCS) constitute a spot-wise enrichment
etric that is normalized to penalize spots with many ze-

os or outliers. A positive BCS indicates enrichment in the
pregulated genes that comprise the signature. Conversely,
 negative BCS designates spots enriched in the downregu-
ated genes. BCS close to 0 indicate uncertainty on the enrich-
ent directionality. As the SSc breast was computed compar-

ng treatment-naive sensitive versus insensitive cells, the BCS
eflects the predicted sensitivity (normalized BCS > 0) or in-
ensitivity (normalized BCS < 0) to the corresponding drug.
imilarly, a normalized BCS > 0 indicates enrichment in the
henotype represented by a functional signature. 
BCS were computed using the SCTransform-normalized

ounts and the bcScore function ( expr.thres = 0.1 ) from the
eyondcell v2.2.0 package ( 18 ). The non-available values in
he normalized BCS matrix were transformed to 0. Then,
e combined all patient-wise results into a single object and

egressed the effect of patient identity with bcRegressOut 
unction. 

herapeutic cluster computation 

e computed therapeutic clusters (TCs) with the bcUMAP
unction from the beyondcell v2.2.0 package. This function
erforms a dimensionality reduction via Principal Component
nalysis ( npcs = 50 ) and constructs a K-Nearest Neighbors
raph ( k.neighbors = 20 ) based on the Euclidean distance in
he Principal Component Analysis space. The top principal
omponents ( pc ) for clustering are determined by drawing an
lbow plot, and the spots are grouped using the Louvain algo-
ithm, specifying different resolutions ( res ). The TCs and the
niform Manifold Approximation and Projection computed
y bcUMAP were visualized with the bcClusters function. We
selected a res = 0.5 and pc = 20 for all spots and a res = 0.15
and pc = 10 for tumour spots. 

To identify groups with similar drug sensitivity, we com-
puted a vector with the mean BCS per drug signature for each
patient and (i) major TC (for all spots) or (ii) tumour TC (for
tumour spots), excluding groups with less than 50 spots or
mixed TCs. Then, we calculated the Pearson correlation coef-
ficients between vectors and clustered the results according to
Ward’s method. 

Neighbourhood analysis 

For each patient, we selected the spots located at the inner and
outer edge of each patient’s major TC using the RegionNeigh-
bors function ( mode = ‘inner_outer’ ) from the semla v1.1.6
package ( 35 ). Then, we performed a neighbourhood enrich-
ment analysis to assess whether the spots belonging to two
major TCs co-localized more than expected by chance. Run-
NeighborhoodEnrichmentTest transforms the Visium data in
a network, with each spot constituting a node with a max-
imum of six edges with other spots. For each pair of major
TCs, this function randomly permutes the class labels a fixed
number of times ( n.perm = 1000 ), calculates a null distribu-
tion with the number of edges between spots from different
classes and returns a z-score computed with the number of
observed edges and the mean and standard deviation of the
null distribution. A z-score around 0 can be interpreted as
random spot localization. A positive z-score indicates an over-
representation of the label pair co-localization. In contrast, a
negative z-score can be viewed as a spatial repellent effect of
the label pair. Finally, we aggregated the results across samples
by computing the mean z-scores of each major TC pair. 

Radial distances 

We computed the radial distances to the centre of the tumour-
rich TCs, which we designated as the tumour core, with the
RadialDistance function from the semla v1.1.6 package. This
metric is calculated from the border of the region of interest
(ROI). Thus, radial distances are equal to 0 at the tumoural
margin, and they become more positive or negative further
from or closer to the tumour core, respectively. 

We tested the correlation between functional or drug sensi-
tivity BCS and the radial distance to the tumour core in each
sequenced region. Negative Pearson correlation coefficients
indicate increased functional enrichment or drug sensitivity
at the proximity of the tumour core. In contrast, positive cor-
relation coefficients reflect increased functional enrichment or
drug sensitivity at the tumour periphery. The P -values were
adjusted using false discovery rate (FDR) correction for mul-
tiple testing. 

Functional enrichment analysis 

To compare spots from different patients, we performed a dif-
ferential expression analysis with the log-normalized counts
of the groups of interest (major TCs, tumour TCs or expres-
sion clusters from patient V19L29). We compared each group
against the rest using the FindMar k er s function ( min.pct = 0,
logfc.threshold = 0 ) from the Seurat v4.3.0.1 package, which
implements a non-parametric Wilcoxon rank sum test. This
function returns the log fold-change of the average expression
of each gene between the two groups, which was used to rank
all genes in the expression matrix. For each comparison, we
performed a pre-ranked gene set enrichment analysis (GSEA)
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with the fgsea function ( minSize = 15, maxSize = 500, nPerm-
Simple = 10 000 ) from the fgsea v1.26.0 package ( 36 ) us-
ing the Hallmark and Reactome v2023.1 collections ( 37–39 ),
the cancerSEA gene sets ( 40 ) and other functional signatures
( 41–47 ). 

Differential sensitivity analysis 

To determine the drugs that specifically target the groups of
interest (non-mixed major TCs or tumour TCs), we com-
pared each group against the rest using the bcRanks function
from the beyondcell v2.2.0 package. For each comparison,
this function ranks the drugs in the SSc breast according to
the residual’s mean and the switch point. The switch point is
a signature-specific Beyondcell metric that reflects the direc-
tionality and homogeneity of the drug response throughout
the experiment. An SP = 0 indicates a homogeneously sensi-
tive response to the drug, whereas an SP = 1 indicates a ho-
mogeneously resistant phenotype. Intermediate SPs represent
a heterogeneous response. 

We kept the drugs with intermediate switch points (between
0.4 and 0.6) and lowest or highest residual’s mean (5th per-
centile and 95th percentile for major TCs; 1st percentile and
99th percentile for tumour TCs). These drugs display a het-
erogeneous sensitivity pattern across the experiment and are
the most specifically effective or ineffective against the group
of interest. 

Cell-cell communication analysis 

We inferred spatially proximal cell–cell ligand-receptor in-
teractions using CellChat v2.1.0 ( 48 ). We created a spatial
CellChat object with the SCTransform-normalized expres-
sion counts, metadata and coordinates from all patients,
grouping the tumour spots by TCs and the TME spots by cell
type. Then, we performed a cell–cell communication analysis
using the Secreted Signaling, ECM-Receptor and Cell–Cell
Contact databases with the computeCommunProb function
( type = ‘truncatedMean’, trim = 0.1, distance.use = FALSE,
inter action.r ange = 250, contact.knn = TRUE, con-
tact.knn.k = 6, population.size = TRUE ). We filtered out
results for groups with < 10 spots and retrieved the significant
( thres = 0.05 ) interaction strengths for ligand-receptor pairs
of interesting signalling pathways [ signaling = c(‘PD-L1’,
‘IGF’, ‘DESMOSOME’) ] and cell groups [ sources.use = tar-
gets.use = c(‘TC1.1 

′′ , ‘TC1.2 

′′ , ‘TC2’, ‘TC3’, ‘T cells’, ‘CAFs’,
‘B cells’) ] using the subsetCommunication function. Finally,
we scaled the interaction strengths of each ligand-receptor
pair between 0 and 1. 

Tumoural ROI definition 

Using SCTransform-normalized expression counts and Find-
Neighbors(dims = 1:30) , we applied the FindClusters function
from the Seurat v4.3.0.1 package five times, progressively in-
creasing the resolution settings (0.1, 0.25, 0.5, 0.75 and 1).
To visualize the stability and relationships between clusters
across these different resolutions, we employed the clustree
v0.5.1 package ( 49 ), as illustrated in Supplementary Figure 
S5 C. Since we aimed to identify clusters corresponding to tu-
moural ROIs, we coloured the nodes based on the proportion
of tumour spots within each cluster. We selected a resolution
of 0.25 as the most suitable, as it identified seven clusters with
high tumour purity that remained stable across increasing

resolutions. 
All expression clusters but number 7 were confined within 

unique spatial regions. Thus, we subdivided cluster 7 into 

two subclusters using the FindSubCluster(resolution = 0.075) 
function. We defined eight initial ROIs from the expression 

clusters overlapping globular tumour ducts (3, 4, 5, 6, 7_1,
7_2, 8 and 9). Next, we refined each ROI by splitting spa- 
tially disconnected spots using the DisconnectRegions func- 
tion from the semla v1.1.6 package and keeping the main 

group of connected spots as ROI. Finally, we selected ROIs 
with at least 100 spots from any subclone. 

For each tumoural ROI, we defined the edge and inner 
regions with the RegionNeighbors function ( mode = ‘inner’ ) 
from the semla v1.1.6 package. The spots detected at the inner 
border of each ROI were labelled as ‘edge’, whereas the rest 
were categorized as ‘inner’. Then, we tested the differential 
TC proportion between the edge and inner regions for each 

ROI and subclone using Fisher’s exact test. The P -values were 
adjusted using FDR correction for multiple testing. 

Statistical analysis and visualization 

Statistical analysis, data manipulation and visualization were 
carried out using the R v4 programming language (R Core 
Team, 2023; https:// www.r-project.org/ ) and the packages 
specified in Supplementary Table S2 . 

Results 

Tumour and TME dissection in ST breast cancer 
samples 

In order to spatially dissect the therapeutic and functional 
heterogeneity in breast cancer samples, we analysed Visium 

ST data retrieved from public repositories ( 5 , https://www. 
10xgenomics.com/ resources/ datasets [last accessed 16 Jun 

2023]) coming from nine breast cancer patients stratified into 

luminal (n = 2), HER2+ (n = 3) and TNBC (n = 4) subtypes.
Of these nine patients, seven had histopathological annota- 
tions, and sample V19L29 (HER2+) contained two consec- 
utive slides. In addition, two TNBC patients (CID4465 and 

CID44971) and one ER+ patient (CID4535) had two or three 
regions sequenced into the same slide. 

To classify each spot as either tumour or TME, we used 

four independent annotation sources with high overlap (Fig- 
ure 1 A and B): the pathologist annotations (Figure 1 C), the 
ESTIMATE score, which is inversely proportional to the tu- 
mour purity (Figure 1 D), the proportion of cancer cells per 
spot (Figure 1 E) and the clonal composition of each sample 
based on CNA profiles (Figure 1 F). In total, we successfully 
annotated 18 207 malignant and 11 858 non-malignant spots 
(Figure 1 G and Supplementary Figure S1 A) coming from all 
nine patients. Notably, deconvolution analysis revealed that 
epithelial cancer cells, CAFs and myeloid cells were present in 

all samples ( Supplementary Figure S1 B–D). 

Spatial compartmentalization of drug response in 

the tumour ecosystem 

To predict the drug sensitivity of each spot, we created the 
SSc breast (see the ‘Materials and methods’ section), which 

contains 1372 gene signatures that reflect the transcriptional 
change between treatment-naive sensitive and resistant breast 
cancer cell lines to > 1200 compounds. With Beyondcell ( 18 ),
we computed a matrix of enrichment scores for each spot and 

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
https://www.r-project.org/
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
https://www.10xgenomics.com/resources/datasets
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
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Figure 1. Tumour and TME dissection in ST breast cancer samples. ( A ) Schematic representation of the analysis workflow followed to label each spot as 
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signature that was subsequently used to obtain 16 TCs with
different predicted drug sensitivities (Figure 2 A). 

We defined three major groups of TCs according to the ob-
served proportion of tumour spots: tumour-rich (tumour pro-
portion ≥0.95), mixed (tumour proportion > 0.65 and < 0.80)
and TME-rich (tumour proportion ≤0.15) (Figure 2 A and
B). Interestingly, in mixed TCs, tumour and TME spots were
grouped together, suggesting that therapeutic heterogeneity is
not entirely driven by cell type identity ( Supplementary Table 
S3 ). We confirmed that these three major TCs were present
in all patients, implying similar drug responses independent
of the breast cancer subtype (Figure 2 C and Supplementary 
Table S4 ). 

Next, we studied the spatial organization of these major
TCs. We observed that mixed TCs tended to co-localize with
both tumour-rich and TME-rich TCs. Moreover, we noticed a
clear repellent effect between spots in tumour-rich and TME-
rich TCs (Figure 2 D–E). These results indicate that the drug
responsiveness defined by these major TCs is spatially orga-
nized and might overlap with the main compartments of the
tumour ecosystem: the tumour and the TME regions and the
interphase that physically separates them. 

To assess whether drug response patterns were conserved
across patients, we generated a correlation matrix from
the BCS within the tumour and TME regions of each patient
(Figure 2 F). Interestingly, these two spatial regions displayed
opposite drug response patterns within the same patient, as
indicated by their high anticorrelation, revealing the existence
of intratumour therapeutic heterogeneity. At the same time,
we identified two correlation clusters that perfectly matched
our tumour and TME-rich annotations, suggesting recurrent
response patterns within the same region across the whole co-
hort. Nevertheless, within the same cluster, the correlations
that involved TNBC samples were lower than the rest, imply-
ing a higher interpatient therapeutic heterogeneity in TNBC
samples. 

Altogether, these results point to the existence of therapeu-
tic heterogeneity between the spatial compartments of the tu-
mour ecosystem. These different drug response patterns are
conserved in all breast cancer patients independently of the
subtype. Nevertheless, interpatient therapeutic heterogeneity
exists and is particularly evident in TNBC tumours, in con-
cordance with previous knowledge ( 50 ). 

A functional and drug sensitivity gradient exists 

between the tumour and TME compartments 

In order to functionally characterize the major TCs, we first
deconvoluted their cellular composition and confirmed that
the tumour-rich compartment was almost exclusively formed
by cancer cells, together with a minority of CAFs and myeloid
cells (Figure 3 A). The interphase also contained endothelial
cells, while the TME region displayed the highest cellular di-
versity. Overall, T cells appeared in the interphase and TME
compartments, but interestingly, patient CID4465 (luminal)
showed lymphocyte infiltration in the tumour region. 

We applied Beyondcell to compute enrichment scores for
expression biomarkers (Figure 3 B), cancer-related drugs like
doxorubicin (Figure 3 C) and well-known tumoural biologi-
cal processes such as cell proliferation (Figure 3 D). Taking
advantage of the spatial information associated with each
spot, we also calculated the radial distance to the core of
the tumour-rich compartment (Figure 3 E). Positive radial dis-
tances correspond to spots far away from the tumour core,
whereas negative radial distances indicate proximity to the 
centre of the tumoural mass, and a distance of 0 denotes the 
tumoural margin. We then computed the region-wise corre- 
lation between radial distances and functional or sensitivity 
BCS ( Supplementary Tables S5 –S7 ), discovering a functional 
and therapeutic gradient from the tumour core to the periph- 
ery of the tumoural regions (Figure 3 F). 

Notably, the spots within the tumour region were enriched 

in a ductal-like phenotype and predicted to be sensitive to 

standard hormonal therapies and HER2 inhibitors such as ta- 
moxifen, afatinib and allitinib. We also observed an enrich- 
ment in proliferation and stemness functions closer to the tu- 
mour core. Accordingly, this region was more sensitive to cell 
cycle arrest agents (BI-2536 and KW-2449), telomerase in- 
hibitors (MST-312), PI3K / Akt / mTOR inhibitors (piperlongu- 
mine, PI-103, PF-4 708 671) and WNT inhibitors (LGK974).
Moreover, the tumour core was more hypoxic and paradox- 
ically more sensitive to VEGFR inhibitors (BMS-690 514,
nintedanib, foretinib and sunitinib) since hypoxia triggers 
the expression of VEGF , a key regulator of angiogenesis.
Interestingly, we observed a decreased sensitivity to DNA- 
related agents and olaparib within the tumour region, de- 
spite displaying a higher enrichment in DNA damage and 

BRCAness. This lower sensitivity can be due to an enrich- 
ment in DNA repair functions, which may help cancer cells 
repair DNA damage efficiently, contributing to treatment re- 
sistance. Indeed, upregulation of DNA repair mechanisms 
and hypoxia have been linked to chemoresistance in breast 
cancer ( 51 ,52 ). On the other hand, the tumour periphery 
was more enriched in an invasive phenotype, inflamma- 
tion, ECM stiffness and epithelial-to-mesenchymal transition 

(EMT). Consistently, these spots displayed increased sensitiv- 
ity to JAK-ST A T signalling inhibitors, statins and immunosup- 
pressants or anti-inflammatory agents, drugs that mainly tar- 
get the immune component and the inflammatory response of 
the TME. 

Compartment-wise functional analysis and drug rank- 
ing confirmed these functional and therapeutic differences 
( Supplementary Figure S2 A and B, and Supplementary Tables 
S7 –S9 ). We assessed that the interphase displayed medium 

sensitivities to all these drugs [(mean BCS and standard de- 
viation for Tumour-specific therapies: Tumour-rich = 7.74 

(7.67), TME-rich = −7.27 (7.64), Interphase = −0.52 (4.74); 
mean BCS and standard deviation for TME-specific therapies: 
Tumour-rich = −7.92 (7.25), TME-rich = 7.44 (6.70), Inter- 
phase = 0.53 (5.18)], suggesting the existence of a therapeutic 
continuum from the tumour core to the TME and vice versa. 

Using Beyondcell, we checked these predicted trends in 

three examples of breast cancer clinical subtypes. As ex- 
pected, only a normal epithelial tissue patch in region A of 
the TNBC sample expressed ESR1 (ER gene), PGR (PR gene) 
and ERBB2 (HER2 gene) biomarkers (Figure 3 B). The triple- 
negative tumour-rich region displayed specific sensitivity to 

first-line treatment doxorubicin (Figure 3 C), which can be ex- 
plained by an enrichment in cell cycle activity in the same 
region (Figure 3 D). Conversely, in luminal and HER2+ sam- 
ples, the high expression of ESR1 and ERBB2 biomarkers in 

the tumour-rich region was correlated with the predicted re- 
sponse to standard-of-care therapies like tamoxifen or HER2 

inhibitors ( Supplementary Figure S3 A–C). Furthermore, for 
each TME spot, we computed a single sample bidirec- 
tional enrichment score ( 53 ) depicting its protumour ( > 0) or 

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
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Figure 2. Spatial compartmentalization of drug response in the tumour ecosystem. ( A ) UMAP projection of spots from nine breast cancer patients 
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from all patients. ( E ) Spatial projection of the three major TCs on top of tissue slides from different breast cancer subtypes. ( F ) Correlation heatmap 
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ntitumour ( < 0) status, according to the BCS ranking of 22
an-cancer microenvironment signatures ( 54 ). We observed
ME heterogeneity among samples ( Supplementary Figure 
3 D). The TME of the luminal example was predominantly
ntitumoural and thus did not need chemical inhibition. In
ontrast, the HER2+ patient displayed a dual TME whose
rotumoural region could also be targeted with the HER2 in-
ibitor afatinib. 

he interaction with the TME influences cancer 
rug response 

o determine whether there was therapeutic heterogeneity
ithin the tumour region, we reclustered the spots labelled as

umour with Beyondcell. From this unsupervised clustering,
e obtained five TCs (Figure 4 A) and, to determine whether

hese drug response groups were conserved across patients,
e once again generated a correlation matrix from the BCS
ithin the tumour TCs of each patient (Figure 4 B, see the

Materials and methods’ section). TC4 and TC5 were patient-
pecific and displayed high correlations with TC3. Since these
wo clusters likely resulted from over-clustering of TC3, we
egrouped them into TC3. On the other hand, we noticed
hat TC1 could be subdivided into two correlation subclus-
ers. After this refinement process (Figure 4 C), we obtained
hree TCs (TC1, TC2 and TC3), one divided into two subclus-
ers (TC1.1 and TC1.2), that were conserved across patients
 Supplementary Figure S4 A and Supplementary Table S10 ). 

We verified that these TCs were different in terms of
roximity to the tumour core and compartment affiliation
 Supplementary Figure S4 B and C). TC2 was the closest to
he centre of the tumoural mass and displayed the highest per-
entage of tumour-rich spots (TC1.1 = 68%, TC1.2 = 33%,
C2 = 90% and TC3 = 4%). In contrast, TC3 was the
ore distal cluster, mainly composed of interphase spots

TC1.1 = 25%, TC1.2 = 66%, TC2 = 10% and TC3 = 84%).
hus, we hypothesized that TC2 constituted the tumour core,
hereas TC3 comprised the tumoural margin. 
Functional enrichment analysis (Figure 4 D, and

upplementary Tables S7 and S11 ) revealed that TC2
as the least invasive TC (e.g. downregulation of invasion

ene set or collagen formation). Furthermore, ligand-receptor
nalysis ( Supplementary Figure S4 D) confirmed that TC2
pots were in close contact via DSC2 / DSG2 interactions.
hese cadherins are primary constituents of the desmosome,
 cell–cell junction that maintains the integrity of normal
pithelia. Thus, these results convey that the tumour core rep-
esented by TC2 is in a pre-invasive state. The remaining TCs
ere enriched in functions that suggested communication
ith the TME. TC3 was characterized by B cell activation,
hagocytosis and triggering of MAPK signalling. TC1.1 was
efined by the triggering of the complement cascade, cytokine
ignalling (TNF α and IFN α, β and γ) and functions that
ndicated a T-cell suppressive state via PD-1 signalling. Con-
ersely, TC1.2 displayed an increased translational activity
riggered in response to starvation, as well as upregulation
f Nonsense-mediated mRNA decay (NMD), Slit / Robo
ignalling and collagen formation, which might be related to
CM reorganization, contributing to its invasive phenotype.
he upregulation of these functions points to nutrient depri-
ation due to inadequate blood supply, which may favour a
ypoxic niche. Some authors have proposed intron retention,
an aberrant splicing event which can introduce premature
stop codons and lead to NMD, as a possible mechanism
by which hypoxia can promote angiogenesis, cancer cell
migration and invasiveness in breast cancer ( 55 ). Ligand-
receptor analysis ( Supplementary Figure S4 D) confirmed that
TC1.1 interacted with suppressed T cells via PD-1 / PD-L1
binding and TC1.2 with CAFs via IGF signalling, which
has been related to invasiveness, EMT and resistance to
EGFR inhibitors such as gefitinib and chemotherapies like
gemcitabine and paclitaxel in breast cancer ( 56 ). Collectively,
these results imply that each TC exhibits distinct functional
states conditioned by interactions with different components
of the TME. 

Using the SCSubtype gene signatures from Wu et al. ( 5 ),
we classified the tumour spots into intrinsic subtypes (Lu-
minal A, Luminal B, HER2+ or Basal) based on the maxi-
mum BCS, with ties resulting in an ‘Undetermined’ annota-
tion. Next, we identified drugs specifically targeting each tu-
mour TC, but no TC was enriched in a particular intrinsic sub-
type (Figure 4 E and Supplementary Table S12 ). The tumour
core depicted by TC2 displayed sensitivity to non-apoptotic
cell death agents and kinase inhibitors, whereas TC3 appeared
to be differentially sensitive to MAPK inhibitors. Interestingly,
both TC1 subclusters displayed lower sensitivity to their spe-
cific drugs compared with the other clusters [mean BCS and
standard deviation for specific therapies: TC1.1 = 2.35 (6.81),
TC1.2 = 1.08 (4.26), TC2 = 6.15 (5.77), TC3 = 7.95 (4.66)].
Still, cancer cells in an immunosuppressive microenvironment
defined by PD-1 / PD-L1 binding or interacting with CAFs via
IGF signalling exhibited specific sensitivity to cell cycle arrest
agents and PI3K / AKT / mTOR inhibitors. Our analysis also
indicated that TC1.1 and TC1.2 were sensitive to SKI-II, a
sphingosine kinase (SK) inhibitor and simvastatin. Upregula-
tion of sphingosine kinase 1 ( SK1 ) has been associated with in-
vasiveness and chemoresistance in breast cancers, and target-
ing SK1 could have therapeutic potential ( 57 ). Moreover, sim-
vastatin has been proposed to attenuate breast cancer metas-
tases and recurrence ( 58 ,59 ). Of note, none of these subclus-
ters was predicted to be sensitive to the standard-of-care ta-
moxifen, whereas the rest of the TCs displayed high sensitiv-
ity to this drug. This result highlights the relevance of study-
ing ITH to identify pre-resistant tumour subpopulations that,
if overlooked, can lead to treatment failure and relapse. We
hypothesize that the interacting TME influenced the low drug
sensitivity observed in TC1. We confirmed that TC1.1 was sig-
nificantly enriched in the tumour inflammation signature gene
set ( 44 ), which reflects a suppressed adaptive immune re-
sponse and has been associated with sensitivity to anti-PD-
1 therapies ( 44 ,60 ) ( Supplementary Figure S4 E). On the other
hand, TC1.2 was significantly enriched in ECM stiffness com-
pared to the rest of the TCs ( Supplementary Figure S4 F). ECM
stiffness is linked to CAF activity, constitutes a mechanical
barrier for treatment diffusion and promotes treatment resis-
tance by triggering different signalling pathways in tumour
cells ( 61 ). 

Altogether, these results support the idea that intratumoural
therapeutic heterogeneity does exist in breast cancer, and some
niches may display decreased sensitivity, or even insensitivity,
to standard-of-care treatments. These differences may be re-
lated to distinct transcriptomics states triggered by the interac-
tion with specific components of the TME, which can sensitize
to immunotherapies or protect cancer cells from drugs. 

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
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Figure 4. The interaction with the TME influences cancer drug response. ( A ) UMAP projection of tumour spots clustered by their predicted sensitivity to 
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ubclones display heterogeneous responses 

epending on their location in tumour ROIs 

e asked ourselves whether different subclones drove ther-
peutic heterogeneity within the tumour region. In order to
xplore this hypothesis, we selected patient V19L29 (HER2+)
ecause it was the sample with more sequenced tumour spots
n = 4713; Supplementary Figure S1 A), granting higher sta-
istical power. We defined six tumoural ROIs based on well-
elimited globular ducts (Figure 5 A and Supplementary 
igure S5 A). We confirmed that ROIs had a biological iden-
ity, as they were identified as different expression clus-
ers ( Supplementary Figure S5 B and C) enriched in differ-
nt functions (FDR < 0.25), such as invasion in ROI5 or
ypoxia in ROI4 among others ( Supplementary Figure S5 D,
nd Supplementary Tables S7 and S13 ). These ROIs con-
ained six cancer subclones defined by CNA profiles (Figure
 B), grouped into TC1.1, TC2 and TC3 (Figure 5 C). Sub-
lones showed ROI-specificity (i.e. were localized in one or
ew ROIs), but the same subclone belonged to different TCs,
uggesting intra-subclonal therapeutic heterogeneity (Figure
 D). We asserted that, for some subclones and ROIs, the pro-
ortion of TCs was significantly different (FDR < 0.05) be-
ween the edge and inner regions (Figure 5 E), TC2 being more
bundant in the inner region and TC1.1 and TC3 overrepre-
ented at the edge. This result implies that the spatial loca-
ion of spots, even with the same genetic background, con-
itions their transcriptomic profile and might ultimately re-
ult in different response patterns, highlighting the importance
f studying ITH in its spatial context. When analysing all
atients, we confirmed that tumour TCs consisted of mix-
ures of subclones sharing similar interactions with the TME
 Supplementary Figure S5 E), indicating that TME interactions
ay shape varying transcriptional profiles affecting drug sen-

itivity. Therefore, we propose that therapeutic heterogeneity
s more likely driven by convergent transcriptional phenotypes
haped by specific TME interactions rather than distinct mu-
ations defining subclones. 

In the clinic, HER2+ patients are typically classified based
n average ERBB2 overexpression or amplification. How-
ver, some authors have described molecular subtype hetero-
eneity between cancer cells within the same tumour. No-
ably, subclones 1 and 6 within ROI5 were diploid for ERBB2
nd exhibited lower ERBB2 expression than the rest of the
issue (Figure 5 F and G). HER2+ patients typically receive
rastuzumab as a first-line treatment. However, based on a
ublicly available gene signature ( 62 ), Beyondcell predicted
hat none of the tumour spots of patient V19L29 would re-
pond to this therapy ( Supplementary Figure S5 F). For pa-
ients unresponsive to trastuzumab, current guidelines recom-
end tyrosine kinase inhibitors ( 63 ). Beyondcell reported in-

ensitivity to the HER2 inhibitor varlitinib in ROI5, whereas
he rest of the tumour was predicted to be responsive (Fig-
re 5 H). If patient V19L29 were given HER2 inhibitors as
onotherapy, ROI5 would survive to regenerate a HER2

nhibitor-resistant tumour. Beyondcell identified doxorubicin
s a complementary therapy specifically targeting ROI5 (Fig-
re 5 I). Thus, we propose a combination of varlitinib and dox-
rubicin to target the major subpopulation of HER2+ cancer
ells and the minor HER2 − subclones to eliminate the tumour
nd avoid relapse. 

We present another relevant case study of a TNBC patient
n Supplementary Figure S6 . For TNBC patients, anthracy-
 

cline and taxane-based therapies are the only proven adjuvant
systemic treatments preventing recurrence and improving sur-
vival ( 64 ). Patient CID44971 exhibited differential predicted
responses to the taxane docetaxel, likely due to subclonal pop-
ulations with distinct regional distribution within the primary
tumour. Specifically, subclones 2 and 4 in region C showed de-
creased sensitivity to docetaxel but increased sensitivity to ox-
aliplatin. This platinum-based chemotherapy has proven ben-
eficial in TNBC patients resistant to taxanes or anthracyclines
( 65 ). These two case studies illustrate pre-existing treatment
resistance and highlight the value of using ST data to dissect
ITH for therapy design. 

Discussion 

Personalized precision oncology faces a significant challenge
in addressing ITH to boost treatment efficacy and avoid re-
lapse ( 8 ,66 ). Extensive research has focused on characteriz-
ing cancer subpopulations and identifying drug vulnerabili-
ties across samples ( 18 ,67–69 ). However, the impact of the
TME on the tumour ecosystem has been usually overlooked.
Current research indicates that the interactions with the TME
are critical for tumour progression, favouring vascularization,
ECM remodelling, immune exclusion and suppression ( 70 ).
The selective pressure exerted by the local TME leads to the
diversification of malignant and non-malignant cell subpop-
ulations within the same tumour, thus enhancing ITH and
increasing the chances of therapeutic resistance ( 71 ). More-
over, the TME components exhibit some conservation across
breast cancer subtypes, providing a comprehensive therapeu-
tic target ( 72 ). Sequencing-based ST provides new opportuni-
ties to study tissue organization and cancer–TME interactions
( 73 ). Leveraging ST and Beyondcell ( 18 ), this study identifies
therapeutic niches based on drug sensitivity predictions across
over 1200 drugs. Results reveal compartmentalization of drug
response in breast cancer, unveiling sensitivity and therapeu-
tic gradients relative to the distance from the tumour core.
Moreover, we dissected therapeutic heterogeneity within the
tumour region, which appears to be related to different TME
interactions conserved across patients. Notably, we observed
different response patterns within the same cancer subclone
depending on its spatial location, underscoring the importance
of considering spatial context in therapeutic decision-making.

We reported enrichment in cell proliferation, stemness and
hypoxia near the tumour core, whereas inflammation, in-
vasiveness, and EMT were enriched in the periphery. This
functional gradient could result from the co-existence of di-
verse molecular gradients, including oxygen, nutrients, pH,
chemokines and growth factors ( 74–77 ). They arise from the
leaky vasculature of solid tumours and the rapid cancer cell
proliferation. Anaerobic glycolysis is a cellular adaptation to
hypoxia and low nutrient concentrations in regions far from
blood vessels. In this metabolic process, pyruvate is converted
to lactate and released to the extracellular space, acidifying
the medium and generating a pH gradient. The secretion of
growth factors and chemokines by TME cells generates addi-
tional biochemical gradients that, together with hypoxia and
an acidic medium, favour cell migration and EMT ( 78 ). More-
over, these gradients also influence drug susceptibility. Hy-
poxia has been associated with increased DNA repair activ-
ity and subsequently reduced efficacy of multiple chemother-
apeutic agents. Moreover, hypoxia induces the expression of

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae046#supplementary-data
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Figure 5. Subclones display heterogeneous responses depending on their location in tumoural ROIs. Spatial projection of ( A ) ROIs, ( B ) tumour 
subclones and ( C ) tumour TCs on top of patient V19L29 (HER2+) tissue slides. ( D ) Sank e y diagram outlining spots’ ROI, subclone and tumour TC 

membership. ( E ) Barplots depicting the different TC compositions between the edge and inner regions of each subclone and ROI. Differences in 
proportions were tested with a Fisher’s exact test. The P -values were adjusted using FDR correction for multiple testing (ns FDR ≥ 0.05, *FDR < 0.05, 
**FDR < 0.01, ***FDR < 0.001, ****FDR < 0.0 0 01). Spatial projection of ( F ) the CNAs and ( G ) the expression for ERBB2 biomarker, ( H ) the predicted 
sensitivity to the HER2 inhibitor varlitinib and ( I ) the predicted sensitivity to do x orubicin. T his patient constitutes an e xample of pre-e xistent treatment 
resistance and the usefulness of dissecting ITH for therapy design. A combination of varlitinib and doxorubicin would target both HER2+ and HER2 −
cancer cells to eliminate the tumour and a v oid relapse. ROI, region of interest; TC, therapeutic cluster; HER2+, human epidermal growth factor receptor 
2 positive; FDR, false discovery rate; ns, not significant; CNA, copy-number alterations; ERBB2 , Erb-B2 Receptor Tyrosine Kinase 2 gene; ITH, 
intratumour heterogeneity; SC, subclone; BCS, B e y ondcell Score. 
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BC transporters that decrease the intracellular concentra-
ion of chemotherapeutic agents, favouring resistance ( 79 ).
n addition, an acidic microenvironment can ionize weakly
asic chemotherapies such as mitoxantrone, reducing their
ellular uptake and cytotoxicity ( 80 ,81 ). Accordingly, we ob-
erved an enrichment in DNA repair activity in the hypoxic tu-
our core and a decreased sensitivity to different chemother-

pies, including mitoxantrone. This hypoxic state could also
xplain the increased sensitivity to VEGFR inhibitors near
he centre of the tumour. On the other hand, the enrichment
n inflammation at the periphery of the tumour is coherent
ith an increased sensitivity to immunosuppressants and anti-

nflammatory agents. These sensitivity and functional gradi-
nts defined three therapeutic regions that overlapped with
he three main compartments of the tumour ecosystem: the tu-
our, the TME, and the interphase that physically separated

he previous two. 
We also dissected the therapeutic heterogeneity of spots la-

elled as tumour and characterized the resultant TCs, which
ere conserved across patients, linking function and ligand-

eceptor interactions to drug response within the tumour com-
artment. The tumour core, characterized by a non-invasive
henotype and active metabolism, was predicted to be sensi-
ive to kinase inhibitors and non-apoptotic cell death agents.
n contrast, cancer cells at the region’s periphery and close
o B lymphocytes were sensitive to MAPK inhibitors. The
emaining TC was subdivided into subclusters with differ-
nt biological functions and TME interactions. TC1.1 cancer
ells inhabited an immunosuppressive microenvironment pro-
oted by PD-1 / PD-L1 interactions, suggesting sensitivity to

mmune checkpoint inhibitors ( 70 ) that we confirmed. TC1.2
isplayed increased collagen production and an invasive phe-
otype, potentially due to interactions with CAFs via IGF sig-
alling. This interaction may contribute to ECM remodelling,
hich can reduce the sensitivity to targeted therapies by (i)

reating a protective niche that physically impedes the de-
ivery of drugs, (ii) mechano-transduction of proliferation or
nti-apoptotic signals mediated by integrins, or (iii) metabolic
hanges induced in cancer cells due to the internalization of
CM components. These mechanisms have been observed in
reast cancer in vivo and in vitro models, which displayed in-
reased resistance to HER2 and multi-kinase inhibitors ( 82 ).
ccordingly, TC1.2 was significantly enriched in ECM stiff-
ess, which may explain the overall low sensitivity of this sub-
luster to the entire collection of tested drugs. Our findings,
n line with previous studies ( 83 ,84 ), suggest that therapeutic
eterogeneity within a single tumour is driven by distinct TME
nteractions that drive conserved biological functions across
atients. Arora et al. identified the leading edge of oral squa-
ous cell carcinoma as invasive, neighbouring CD8 + T cells

nd CAFs, while the tumour core retained an epithelial pheno-
ype. In our study, TC2 mirrors the core, while TC1’s subclus-
ers resemble the invasive leading edge, which was conserved
cross different tumour types. 

Finally, based on the results of a single patient, we propose
hat the TME also modulates the expression of cancer cells
ith identical genetic backgrounds. Although we would need
 higher sample size to extract robust conclusions, therapeu-
ic heterogeneity in single-cell-derived clones has been previ-
usly linked to different cell states before drug administration
 85 ). Other authors have noted that spatially distinct cancer
ell states are not primarily driven by distinct subclones but
ather by different TME interactions ( 83 ). Thus, studying the
subclonal composition alone without considering the interact-
ing TME may not be enough to dissect and understand thera-
peutic heterogeneity. Patient outcomes are likely driven by the
least sensitive subclone ( 86 ). Thus, to address therapeutic het-
erogeneity and avoid relapse, some researchers have proposed
adaptive therapy, which allows sensitive cells to survive, com-
pete and eliminate resistant subpopulations ( 87 ), or clonether-
apy, which targets both major cancer subpopulations and mi-
nor pre-resistant cells using combination therapy ( 88 ). While
inferring clinical trajectories remains challenging, our findings
suggest that therapeutic heterogeneity is lower than ITH. Fo-
cusing on heterogeneity from a therapeutic perspective could
improve our understanding of cancer evolution, help predict
resistance, and guide more effective treatments. 

This analysis highlights several areas for improvement and
future considerations. Spots in 10x Visium technology corre-
spond to groups of one to ten cells, necessitating scRNA-seq
references for cell type deconvolution and spot labelling ac-
cording to arbitrary proportion thresholds. Moreover, these
spots are discrete, thus leaving a large portion of the tissue
unmeasured. Here, we categorized spots as tumour or TME
based on the agreement of four highly overlapping annota-
tion sources. Although tumour spots contained minor pro-
portions of non-cancer cells, we detected ITH and therapeu-
tic heterogeneity using tools designed for single-cell technolo-
gies. Nevertheless, leveraging new spatial sequencing tech-
nologies that allow single-cell resolution ( 89 ,90 ) would en-
hance the precision of these methodologies. Moreover, the
spatial organization of drug response that we observed en-
courages the use of spatial-informed clustering methods ( 91–
93 ) in future analyses. Additionally, integrating data from ad-
jacent (horizontal) and serial (vertical) tissue sections may
provide a comprehensive understanding of 3D tumour organi-
zation and therapeutic differences between the tumour’s core
and periphery. We expect these 3D models to aid in studying
how complex microanatomical structures, like blood vessels
or lymph nodes, may influence drug sensitivity. Still, observ-
ing spatial organization solely through expression clustering
implies that gene expression alone can explain most spatial
variability. Thus, a potential application of these ST analy-
ses is to extract geographic expression signatures that can be
remapped onto scRNA-seq data to clarify expression differ-
ences between clusters of the same cell type. Furthermore, ITH
is a multi-level phenomenon that includes genomics, epige-
nomics, transcriptomics, proteomics and the interaction with
the TME. Multi-omics analysis facilitated by tools like Seu-
rat v5 ( 94 ) would further our understanding of ITH and its
relationship with therapeutic response. Finally, our collection
of drug signatures derives from screenings in cancer cell lines
with no tissue context and we lack specific drugs to target
the TME. Incorporating drug signatures derived from screen-
ings in co-cultures could elucidate the TME’s role in drug ac-
tion. On top of that, we must recognize the importance of
non-cellular constraints like ECM stiffness in understanding
treatment diffusion and efficacy. Thus, future efforts to char-
acterize the effect of non-cellular TME components on cellular
function and drug response would benefit therapeutic hetero-
geneity dissection in breast and other cancer types. 

Overall, our results provide valuable insights into the com-
plex dynamics of therapy response, which depends on the
genetic background and transcriptional state of cancer cells,
their position in the tissue and their interactions with the
TME. This study showcases the potential of integrating ST



14 NAR Cancer , 2024, Vol. 6, No. 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

data into clinical decision-making to guide personalized ther-
apy selection based on the tumour molecular characteristics
and microenvironmental interactions. 

Data availability 

We downloaded luminal and TNBC Visium ST data
(CID4290, CID4535, 1142243F , 1160920F , CID4465
and CID44971) ( 5 ) from Zenodo (DOI: 10.5281/zenodo.
4739739 ). HER2+ Visium ST data (738811QB, 1168993F
and V19L29) were downloaded from the 10x Genomics
Datasets portal [ https:// www.10xgenomics.com/ resources/
datasets (last accessed on 16 Jun 2023)]. All these data
included raw counts and matching tissue images. Wu et al.
dataset also included metadata information with patholo-
gist annotations for each spot. 10x Genomics provided an
image with pathologist annotations for patient 738811QB,
and we manually labelled each spot using Loupe Browser
v5.0.1 (10x Genomics, 2021; https://www.10xgenomics.com/
products/visium- analysis#loupe- browser ). Additionally, we
downloaded scRNA-seq data ( 5 ) from the Single Cell Portal
(ID: SCP1039) to construct the spot deconvolution reference.

The SSc breast and Beyondcell objects generated in this
work and the code used to create and analyse them can
be found on Zenodo (DOI: 10.5281/zenodo.14247036 ).
The beyondcell ( https:// github.com/ cnio-bu/ beyondcell ) and
ggseabubble ( https:// github.com/ mj-jimenez/ ggseabubble )
packages are available on GitHub. 

Supplementary data 

Supplementary Data are available at NAR Cancer Online. 
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