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Implications for Drug Characterization in Glucose
Tolerance Tests Without Insulin: Simulation Study of
Power and Predictions Using Model-Based Analysis

SM Sheikh Ghadzi1,2, MO Karlsson1 and MC Kjellsson1*

In antihyperglycemic drug development, drug effects are usually characterized using glucose provocations. Analyzing
provocation data using pharmacometrics has shown powerful, enabling small studies. In preclinical drug development, high
power is attractive due to the experiment sizes; however, insulin is not always available, which potentially impacts power and
predictive performance. This simulation study was performed to investigate the implications of performing model-based drug
characterization without insulin. The integrated glucose-insulin model was used to simulate and re-estimated oral glucose
tolerance tests using a crossover design of placebo and study compound. Drug effects were implemented on seven different
mechanisms of action (MOA); one by one or in two-drug combinations. This study showed that exclusion of insulin may
severely reduce the power to distinguish the correct from competing drug effect, and to detect a primary or secondary drug
effect, however, it did not affect the predictive performance of the model.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE

TOPIC?
� The power of drug characterization with pharmacomet-

ric analysis has been shown to be high. In antihypergly-

cemic drug development, pharmacometric analysis has

successfully been used to characterize various drug

effects and semimechanistic models are becoming used

more in translation from preclinical experiments to clinical

trials. Preclinical experiments are commonly small, thus,

pharmacometric analysis is attractive. However, insulin is

not always available and the impact of missing a bio-

marker for the analysis is unknown and may affect both

the power and predictive performance, as the high power

of pharmacometric analysis is related to the utility of mul-

tiple biomarkers.
WHAT QUESTION DID THIS STUDY ADDRESS?
� The implications of performing a model-based analy-

sis with an integrated glucose-insulin model without

insulin, both in terms of power to detect drug effect and
predictive properties were answered.
WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� Performing a pharmacometric analysis using the
integrated glucose-insulin model without insulin may
severely reduce the power to discriminate the correct
from the incorrect drug effects and detect a primary or
a secondary drug effect, however, the predictive perfor-
mance of the model was not affected.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
� The power for drug characterization, with a pharma-
cometrics analysis, may be severely reduced if insulin
is not available and, although the predictive perfor-
mance is unaffected, the model-building for translation
of drug effect from small preclinical experiments to clini-
cal trials may be affected as there is a risk of missing
an actual drug effect or selecting an erroneous mecha-
nism of action.

In early hyperglycemic drug development, glucose provoca-

tion studies are usually performed to characterize the drug

and learn about the mechanism of action (MOA). These

glucose challenges are typically performed after a single

dose of study drug/placebo or a short induction phase

(e.g., 7 days). After a period of fasting, blood sampling is

started with fasting blood sample(s), followed by glucose

administration, and then blood samples are taken periodi-

cally (for example, every 30 minutes for 3–8 hours).1–5

These samples are analyzed with regard to glucose and

insulin to generate dynamic profiles in the absence and

presence of the study compound. Preclinically, the glucose

protocols differ slightly from other glucose administrations

(e.g., intraperitoneal), different duration of, or no, fasting

prior to glucose challenge, but, most importantly, some-

times only measuring glucose.6–8

Pharmacometric analysis based on time-course data is
increasingly used in drug development, due to its integra-
tive nature and the ease with which it can handle
dynamic relationships.9–11 There are several examples in
which pharmacometric analysis has been shown to be
highly powerful in phase II trials.9,10 The high study
power with pharmacometric analysis is most probably
achieved by the simultaneous analysis of all subjects’
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longitudinal measurements and integration of several
biomarkers.12

Although mainly used in clinical drug development, phar-

macometric analysis is also becoming used more frequently

in preclinical drug development. Preclinical experiments are

commonly performed in few animals, thus, the high power of

pharmacometric analyses is attractive. In antihyperglycemic

drug development, protocol differences can be handled using

pharmacometric analysis and integrating several biomarkers

in a semimechanistic manner enables preclinical to clinical

translation. However, the lack of the insulin could potentially

impact the power and predictive performance significantly

and, thus, the benefits of a pharmacometric analysis in the

absence of insulin may not be as great as expected. To this

end, the impact of missing insulin in a pharmacometric

analysis with an integrated glucose-insulin model was inves-

tigated in this simulation study for seven drug MOAs. The

investigations were divided into four parts: (1) power to iden-

tifying a drug effect; (2) power to distinguish the correct

MOA from competing incorrect MOAs; (3) power to identify-

ing the secondary drug MOA in addition to the primary

MOA; and (4) the impact on glucose predictions in terms of

accuracy and precision with or without insulin.

METHODS
Study design
The design used in this simulation study resembled the

design used by Jauslin et al.2 in which an oral glucose tol-

erance test (OGTT) was used in early drug development. A

Table 1 Value of parameters used in simulation and analysis

Typical value Interindividual variability

Glucose

VG, L Central volume of distribution 9.33a 30b

Vp, L Peripheral volume of distribution 8.56a 30b

CLG, L/min Insulin-independent clearance 0.0287 59

CLGI, L/min Insulin-dependent clearance 0.0059 46

Q, L/min Intercompartmental clearance 0.442a 85b

KGE, min21 Effect delay rate constant, glucose on insulin secretion 0.0289a 8b

IPRG Shape and magnitude of effect, glucose on insulin secretion 1.42a 35b

BIOG, % Bioavailability 0.811a -

KABS, min21 Absorption rate constant 0.0364a 19b

INCRmax Maximal incretin effect 1.47a 55b

INCR50 Absorbed glucose at 50% incretin 14.8a 114b

Gss, mg/dL Baseline glucose concentration 169 14

Insulin

VI, L Volume of distribution 6.09a 41b

CLI, L/min Insulin clearance 1.22c 29c

KIE, min21 Effect delay rate constant, insulin on CLGI 0.0213a 58b

Iss, mU/L Baseline insulin secretion 8.71c 49c

Drug

KaD, min21 Rate constant, drug absorption 0.0365a 68a

CLD, L/min Drug clearance 0.682a 15a

VD, L Volume of distribution, drug 155a 29.6a

EC50D Drug effect at 50% Emax 0.1 30

EmaxD(Incr) Maximal drug effect, INCR activity 1.0 -

EmaxD(BINS) Maximal drug effect, basal insulin secretion 0.5 -

EmaxD(CLG) Maximal drug effect, CLG 2.0 -

EmaxD(CLGI) Maximal drug effect, CLGI 0.5 -

EmaxD(EGP) Maximal drug effect, glucose production 0.7 -

EmaxD(GABS) Maximal drug effect, glucose absorption 0.02 -

EmaxD(GSEN) Maximal drug effect, glucose sensitivity 1.5 -

Residual error

RESG, % Residual error, glucose 0.0732 -

RESI, % Residual error, insulin 0.252 -

Parameter correlations

CorrVG-Q Correlation between VG and Q 20.19 -

CorrVG-VI Correlation between VG and VI 0.7225 -

CorrQ-VI Correlation between Q and VI 20.122 -

CorrCLD-VD Correlation between CLD and VD 0.0311 -

aFixed for analysis. b Fixed to zero for analysis. c Fixed for analysis without insulin measurements.
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crossover design was used with two arms: placebo and

50 mg of the study compound. At either occasion, the pla-

cebo or study compound was administered at time 0, fol-

lowed by the administration of oral glucose (75 g) at time

30 minutes. Blood samples were taken at times 0, 30, 60,

90, 120, 150, 180, 210, and 240 minutes.

Simulation of data
Datasets with glucose and insulin and only glucose were

simulated according to the above described design using

the integrated glucose-insulin (IGI) model for OGTT with

parameters as reported by Jauslin et al.2 (listed in Table 1).

The model, developed by Jauslin et al.,2 was chosen

because it is a closed-loop system, enabling integrated sim-

ulations of glucose and insulin, and it has shown good esti-

mation and prediction performance as well as the ability to

characterize drug effects.3,13–16

The pharmacokinetics (PKs) of the study compound was

described using an oral one-compartment model with first

order elimination, parameterized in terms of absorption rate

constant, clearance (CLD), and volume of distribution (VD).

The PK parameters were chosen such that the time of

maximum plasma concentration (Tmax) was observed after

1 hour and the 4-hour postdose concentration was half of

peak plasma concentration (Cmax), ensuring a compound

eligible for twice daily dosing (b.i.d.; see Table 1). The

parameters chosen resulted in Cmax around 0.243 mg/L at

65 minutes and a 4-hour concentration of 0.127 mg/L after

a dose of 50 mg. The drug concentrations were used in

simulating glucose and insulin in the presence of the drug;

however, it was not used in the analysis, where PK was

kept fixed.

Seven drug MOAs were investigated: stimulation of (1)
incretin (INCR); (2) basal insulin secretion (BINS); (3) insu-

lin-independent glucose clearance (CLG); (4) insulin-depen-
dent glucose clearance (CLGI) and (5) glucose sensitivity

(GSEN), as well as inhibition of (6) endogenous glucose
production (EGP) and glucose absorption (GABS). Figure
1 illustrates the IGI-OGTT model with MOAs and Supple-

mentary Figure S1 shows the typical profiles of glucose
and insulin in relation to placebo. Each of the investigated

MOAs correspond to the expected primary MOAs of drugs or
compounds: dipeptidyl peptidase-4 inhibitors (DPP-4i)17 pro-

longing the action of INCR hormones; sulfonylureas18

increasing insulin secretion; sodium-glucose cotransporter-2

inhibitors (SLGT2i)19 increasing insulin-independent glucose
elimination; peroxisome proliferator-activated receptor ago-

nists20 increasing insulin sensitivity; metformin21 decreasing
EGP; a-glucosidase inhibitors22 decreasing glucose absorp-

tion; and G-protein-coupled receptor 40 (GPR40) agonists23

increasing glucose-stimulated insulin secretion.
The pharmacodynamics (PDs) were simulated with the

concentration of drug giving half-maximal effective concen-
tration (EC50) set to 0.1 mg/L, which the study compound

concentrations exceeded 10 minutes after the administra-
tion and throughout the experiment. The maximum effect

EmaxD, was titrated for each MOA to produce the same
effect: 10% reduction in glucose area under the curve

(AUCG). Glucose exposure (i.e., AUCG) is the main driver
of HbA1c formation. However, HbA1c, as measured with

the National Glycohemoglobin Standardization Program
assay, also contains an additive, nonglucose-related binding

of 2.15%.24 Thus, a 10% reduction of glucose exposure
corresponds to an approximate reduction in HbA1c from

Figure 1 Schematic presentation of integrated glucose-insulin oral glucose tolerance test model in type 2 diabetes mellitus (Jauslin
et al.2) with seven drug mechanism of actions. BINS, basal insulin secretion; CLG, insulin-independent glucose clearance; CLGI,
insulin-dependent glucose clearance; CLI, insulin clearance; EGP, endogenous glucose production; GABS, glucose absorption; GSEN,
glucose sensitivity; INCR, incretin activity.
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8.7% to 8.0%, which corresponds with the minimum

required drug effects of a compound eligible as an antihy-

perglycemic drug.25 All the parameter values are summa-

rized in Table 1.
For part 1 (identify a drug effect) and part 2 (distinguish-

ing the correct MOA), data were simulated using one MOA

at a time of the seven MOAs. In part 3 (identifying a sec-

ondary drug MOA on top of the primary), two MOAs were

combined in the simulations. The drug effects in part 3

were simulated as independent of each other and only a

selection of combinations was simulated. The selected

combinations of MOAs were inspired by the reported sec-

ondary effects of DDP-4is, sulfonylureas, SLGT2is, PPAR

agonists, metformin, and GPR40 agonists. Secondary

effects of GPR40 agonists are sparsely reported and, thus,

this MOA was arbitrarily investigated together with increas-

ing CLG (peripheral glucose disposal) and decreasing EGP,

as well as increased CLGI as insulin increases by the pri-

mary effect. No secondary effects were investigated with

GABS, as the effect of a-glucosidase inhibitors is local in

the gastrointestinal tract with no systemic effects. The detail

information on the study setup is summarized Supplemen-

tary Table S1.

Study power
Analysis of data, both with and without insulin, was per-

formed using the IGI model with many parameters fixed

and greatly reduced interindividual variability (IIV). When

analyzing with insulin, the estimated parameters were CLG

and CLGI, insulin clearance (CLI), baseline glucose (GSS),

baseline insulin, EmaxD, and EC50D, with IIV on all estimated

parameters, except for the EmaxD. All remaining parameters

of the IGI model were fixed to the published values with

removed IIVs. In the absence of insulin, baseline insulin

and CLI with associated IIVs were fixed to the published

values.
A full and a reduced model were fitted to the data to

assess the power for the drug MOAs, as shown in Figure 1

and listed in Supplementary Table S1. The NONMEM code

for the implementation of the drug effects can be found in

Supplementary Table S1. In part 1, the full model contained

the correct drug MOA, whereas the reduced model contained

no drug effect. In part 2, the full (i.e., correct model) con-

tained the drug effect at the correct MOA (as in part 1) with

the reduced (i.e., competing) model containing the drug effect

at any of the incorrect MOAs. In part 3, the full model con-

tained the two correct MOAs and the reduced model con-

tained only the correct primary MOA.
The calculation of study power of part 1 and part 3 was

done using the likelihood ratio test (LRT) with the chosen

significance level (a) of 5%, and the degree of freedom (df)

set to the number of differing parameters between the com-

peting models. The critical value, according to the LRT, was

7.81, at a 5 5% with df 5 3. For part 2, where the compet-

ing models were nonhierarchical, the LRT could not be

used. To determine superiority between the competing

models, an arbitrary critical value of 10 was used (i.e., the

difference in delta objective function value (DOFV) had to

be larger than 10 in favor for the correct model to be

deemed superior, or else the competing models were
deemed to be of similar quality).

The difference in study power between analyses with and
without insulin was assessed using the relative power (i.e.,
ratio of the DOFV for analysis with and without), denoted
DOFVgi/g.

DOFVgi=g5
OFVfull ;gi2OFVred ;gi

OFVfull ;g2OFVred ;g
(1)

In which OFVfull,gi and OFVfull,g are OFVs of full models,
including and excluding insulin, respectively, and OFVred,gi

and OFVred,g are OFVs of reduced models, including and
excluding insulin, respectively. The df will be the same for
the nominator and denominator as the only parameters dif-
fering between the full and reduced models are the drug
effect parameters. The ratio reflects the fraction of subjects
needed to achieve the same study power when analyzing
with and without insulin (i.e., DOFVgi/g 5 2.0 means that
twice as many subjects are needed to achieve an equal
power when analyzing without insulin compared to with
insulin). The relative power was assessed with simulations
of 500 subjects.

To support the interpretation of the DOFVgi/g, the Monte
Carlo Mapped Power (MCMP) method9 was used in addi-
tion to the DOFVgi/g in part 1 to assess the number of sub-
jects needed for 95% power at a 5 5%, 1%, and 0.1%.

Accuracy and precision
In part 4, estimation of accuracy and precision was per-
formed for AUCG and assessed as the ratio with and with-
out the drug:

AUGCD=PL5
AUGCD

AUGCPL
(2)

The true AUCGD/PL,true’s were determined from 15 subjects
simulated 500 times using the parameter estimates of
Table 1 (simulation values). These AUCGD/PL,true’s are
expected to be around 0.9, as set by PK and PD simulation
parameters. These 500 datasets were estimated with the
full models, including and excluding of insulin data. Each of
the 2 3 500 sets of estimates were then used to simulate
datasets with 15 subjects, producing 500 AUCGD/PL,gi

(including insulin) and 500 AUCGD/PL,g (excluding insulin).
The relative estimation errors (REEs) with and without insu-
lin were calculated as shown in the Eqs. 3a and 3b.

REEðAUGCgi Þ5
AUGCD=PL;gi2AUGCD=PL;true

AUGCD=PL;true
(3a)

REEðAUGCgÞ5
AUGCD=PL;g2AUGCD=PL;true

AUGCD=PL;true
(3b)

Software
Simulation and estimation of data were done using nonlin-
ear mixed-effects modeling with first-order conditional esti-
mation method in NONMEM version 7.326 with the
differential equation solver ADVAN13. Datasets for NON-
MEM and all graphs were prepared and produced using

Model-Based Drug Characterization Without Insulin
Sheikh Ghadzi et al.

689

www.psp-journal.com



R27 with the ggplot2 package.28 The SSE29,30 and
MCMP,31 as implemented in PsN, were used for data simu-
lation, power estimation, and estimations of AUCG. The
calculation of REE was done using R.27

RESULTS
Part 1: power to identify a drug effect
As shown in Table 2, the power to detect a drug effect was
higher when including insulin for all drug-investigated
MOAs. The largest difference in power was observed for
detecting the drug effect on glucose sensitivity, DOFVgi/g 5

2.1. This was followed by equal improvement for incretin
effect and insulin secretion, thereafter glucose absorption,
and the lowest improvement for glucose clearance and
EGP.

The relative power, DOFVgi/g, assessed using the number
of subjects from the MCMP method and the DOFV, gave
similar results (Table 2). For a drug effect on glucose sen-
sitivity, the study power was extremely high when including
insulin; 99% study power was achieved with three subjects
at a 5 0.1%, thus, the granularity to assess the ratio of sub-
jects was too small. In general, a high power (95%) was
achieved with few subjects when using pharmacometrics
model-based analysis.

Part 2: power to distinguishing the correct MOA from
an incorrect
As seen in Table 3, the power to identify the correct MOA
effects was largely affected by the exclusion of insulin for
most scenarios. The most pronounced was the difference in
power for identifying correctly the MOAs on CLGI when com-
peting with incretin effect and secretion. In these cases,
>100 subjects were needed when insulin was lacking, indi-
cating perhaps a nonidentifiability of drug effect without insu-
lin. In addition, more than four times the sample size was
needed when analyzing without insulin compared to with
insulin to achieve equal power in distinguishing drug MOAs
of INCR from insulin secretion and insulin-dependent glu-
cose clearance, insulin secretion from insulin-dependent glu-
cose clearance, insulin-independent glucose clearance from
insulin secretion, and glucose sensitivity from incretin effect

and insulin secretion. For most of other drug MOAs, at least
1.5 times fewer subjects were needed to distinguish correct
from incorrect MOAs with the inclusion of insulin. However
distinguishing insulin-dependent glucose clearance from
insulin-independent glucose clearance, EGP and glucose
absorption, or distinguishing EGP from glucose absorption
was not influenced by exclusion of insulin. Furthermore, the
insulin-independent glucose clearance could not be discrimi-
nated from EGP even when including insulin.

Part 3: power to identify the secondary drug MOA on
top of the primary MOA
As shown in Table 4, the overall power to detect secondary
drug MOAs was higher when including insulin and most
pronounced for detecting insulin secretion on top of incretin
effect and insulin-dependent glucose clearance on top of
insulin secretion. In these cases, >100 subjects were
needed to detect the secondary drug MOAs on top of the

Table 2 Part 1: the relative study power to detect a drug effect, presented as ratio of individuals needed for the same power with and without insulin

Assessed with DOFVgi/g INCR BINS CLG CLGI EGP GABS GSEN

Ratio of subjects (with/without insulin) 1.5 1.5 1.2 1.2 1.2 1.3 2.1

Assessed with MCMP at 95% power

No of subjects, a 5 5% with insulin 4 4 10 6 11 5 <3

No of subjects, a 5 5% without insulin 5 6 13 7 14 6 4

Ratio of subjects (with/without insulin), a 5 5% 1.3 1.5 1.3 1.2 1.3 1.2 >1.3

No of subjects, a 5 1% with insulin 4 5 11 7 12 5 <3

No of subjects, a 5 1% without insulin 6 7 15 8 14 6 5

Ratio of subjects (with/without insulin), a 5 1% 1.5 1.4 1.4 1.1 1.2 1.2 >1.7

No of subjects, a 5 0.1% with insulin 5 6 13 9 15 7 <3

No of subjects, a 5 0.1% without insulin 7 8 17 10 17 9 6

Ratio of subjects (with/without insulin), a 5 0.1% 1.5 1.3 1.3 1.1 1.1 1.3 >2.0

The table lists the ratio of DOFV for the analysis with insulin relative to without insulin, DOFVgi/g as well as the number of subjects needed to achieve a power

of 95% at 5%, 1%, and 0.1% significance levels for all investigated drug effect MOAs.

BINS, basal insulin secretion; CLG, insulin-independent glucose clearance; CLGI, insulin-dependent glucose clearance; DOFV, delta objective function value;

EGP, endogenous glucose production; GABS, glucose absorption; GSEN, glucose sensitivity; INCR, incretin activity; MCMP, Monte Carlo Mapped Power.

Table 3 Part 2: the relative study power to distinguish correct drug mecha-

nism of action from incorrect represented as ratio of subjects needed for

same power without and with insulin

Competing incorrect MOA

Correct MOA INCR BINS CLG CLGI EGP GABS GSEN

INCR - 4.7 1.7 4.1 2.5 2.5 1.6

BINS a - 1.8 6.0 2.5 3.1 2.0

CLG 3.8 4.7 - 1.5 b 1.6 2.4

CLGI
a a 1.0 - 1.0 1.0 2.5

EGP 2.9 3.1 1.0 1.4 - 1.1 1.6

GABS 3.7 3.8 1.2 1.4 1.2 - 2.3

GSEN 4.4 4.5 2.5 3.5 2.6 3.1 -

The table lists the relative power based on DOFV for the analysis with and

without insulin, DOFVgi/g, thus DOFVgi/g 5 2 means twice as many subjects

are needed in a study in which insulin is excluded to attain the same power

as for a study including insulin.

BINS, basal insulin secretion; CLG, insulin-independent glucose clearance;

CLGI, insulin-dependent glucose clearance; DOFV, delta objective function

value; EGP, endogenous glucose production; GABS, glucose absorption;

GSEN, glucose sensitivity; INCR, incretin activity; MOA, mechanism of

action.
aMore than 100 subjects needed to distinguish the drug effect without insu-

lin. b >100 subjects needed to distinguish the drug effect independent of

inclusion or exclusion of insulin.
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primary when insulin was missing. In addition, when insulin
was lacking, at least twice as many subjects were needed
to detect insulin-dependent glucose clearance on top of glu-
cose sensitivity, EGP on top of insulin secretion, glucose
absorption on top of incretin effect, and glucose sensitivity
on top of all tested primary MOAs. A slight increase of
power to detect the secondary MOAs was observed from
insulin-independent on top of insulin-dependent glucose
clearance, EGP on top of incretin effect, and glucose sensi-
tivity, as well as glucose absorption on top of insulin-
independent glucose clearance. However, there was no dif-
ference in power to detect insulin-independent glucose
clearance on top of EGP, and EGP on top of glucose clear-
ance. Moreover, in identifying a secondary drug MOA on
insulin-independent glucose clearance on top of primary
MOA on EGP, >100 subjects were required, independent of
exclusion or inclusion of insulin.

Part 4: accuracy and precision of glucose predictions
The AUCGD/PL (see Figure 2) was found to be estimated
with an adequate accuracy to the true simulation value and
with good precision, both including and excluding insulin
data in the analysis. Hence, the prediction of glucose was
not affected by insulin exclusion.

DISCUSSION

High-powered study designs enable characterization of
drug effects with a smaller number of subjects (humans or
animals). A high-power study is also efficient, undeniably
reducing the time and cost spent in the development of
new drugs.10 The aim of this study was to investigate the
impact of omitting insulin on power to identify a drug effect,
distinguish the primary drug effect, identify the secondary
drug effect, and predicting glucose with a model-based
analysis.

Several factors affect the study power: the number of
studied subjects and samples; the size of the drug effect;

and the variability in data. In an attempt to control these
factors, relative power was used as opposed to absolute.
Relative power assessed the ratio of subjects needed to
achieve the same power. Thus, this metric is independent
on the number of subjects. Additionally, using relative
power constrained the influence of data variability to insulin
variability, as the nominator and denominator of the relative
power cancels out glucose variability. Furthermore, by
reducing IIV in the model for the analysis and not the simu-
lations, unaccounted IIV resulted in increased residual
error, which reduces the benefit of including insulin meas-
urements. The drug effect size was chosen based on the
minimum requirements for an oral antihyperglycemic drug
in terms of PK and PD. Selecting PK parameters such that
absorption was fast and elimination was as fast as accept-
able for b.i.d. administration resulted in large fluctuations in
concentrations. The larger the fluctuations were in PK the
smaller the benefit of insulin, due to the increased variabil-
ity. In addition, PD was titrated to 10% AUCG reduction,
which, as described in the Methods section, is the minimal
requirement for a compound eligible for antihyperglycemic
treatment. A higher PD effect would result in larger benefits
of including insulin in the analysis. Reducing the number of
samples of glucose/insulin would reduce the relative power,
as there would be a smaller difference between inclusion
and exclusion of insulin. However, the sampling design
used in this project represents a commonly used design in
early clinical drug development.

The study power in this work was generally high, as seen
from Table 2. For 95% power to detect a drug effect, with
a 5 5%, a minimum of 3 and 4 (maximum 11 and 14) sub-
jects were needed, with and without insulin, respectively.
For distinguishing the correct MOA and detecting a second-
ary effect, an average of twice as many subjects were
needed. As the high power of pharmacometric analysis is
related to the greater number of samples and more bio-
markers utilized, it is unsurprising that power is lower if
insulin is not available. The IGI model used in the current
work integrates glucose and insulin in the model; however,
there are versions of the model, including other biomarkers
in diabetes (e.g., c-peptide32 and glucagon13). The results
would most likely be similar if insulin was replaced by c-
peptide, as these biomarkers carry similar information.
However, the impact of the exclusion of other biomarkers
(e.g., glucagon) would largely depend on what information
the biomarker contributes. Although the power would most
likely be lower when the biomarker is missing.

For a model-based simulation study of glucose and insu-
lin, such as the current study, the choice of the model is
limited to the closed-loop systems. This disqualifies models
such as Bergman’s minimal model,33 in which insulin obser-
vations drive glucose. Bergman’s minimal model, as
opposed to the IGI model, expresses insulin sensitivity and
glucose effectiveness as explicit parameters, which is
attractive. The simulated MOAs are limited to explicitly
implemented parameters and, thus, drug effects (e.g., glu-
cose effectiveness and insulin sensitivity) were assumed to
affect CLG and CLGI in the IGI model. If a particular param-
eter of the glucose homeostasis is of interest, the approach
presented in this work could be repeated using a closed-

Table 4 Part 3: the relative study power to detect correct secondary correct

drug effect with the primary already included, represented as ratio of sub-

jects needed for same power without and with insulin

True primary MOA

Secondary MOA INCR BINS CLG CLGI EGP GSEN

BINS a - - - - -

CLG - 1.1 - 1.4 b -

CLGI - a - - 1.1 3.7

EGP 1.6 2.1 1.0 1.0 - 1.8

GABS 8.1 - 1.5 - - -

GSEN 4.3 6.0 - 4.9 4.9 -

The table lists the ratio of DOFV for the analysis with insulin relative to with-

out insulin, DOFVgi/g.

BINS, basal insulin secretion; CLG, insulin-independent glucose clearance;

CLGI, insulin-dependent glucose clearance; DOFV, delta objective function

value; EGP, endogenous glucose production; GABS, glucose absorption;

GSEN, glucose sensitivity; INCR, incretin activity; MOA, mechanism of

action.
aMore than 100 subjects needed to distinguish the drug effect without insu-

lin. b >100 subjects needed to distinguish the drug effect with and without

insulin.
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loop system model in which the parameters of interest are
explicitly implemented.

An OGTT design was chosen in this work, although the
meal tolerance test (MTT) might be a better tolerated

design, triggering a more physiological response. The
translation of these results to an MTT is related to the dif-
ferences in the IGI model for these glucose challenges. In
the IGI model, the main differences between an OGTT and

Figure 2 Part 1: relative estimation error for glucose under the curve (AUCG) ratio in seven drug effects. BINS, basal insulin secretion;
CLG, insulin-independent glucose clearance; CLGI, insulin-dependent glucose clearance; EGP, endogenous glucose production;
GABS, glucose absorption; Glu, glucose only data; Glu 1 Ins, glucose and insulin data; GSEN, glucose sensitivity; INCR, incretin
activity.
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an MTT are the rate of glucose absorption, being slower in
MTT than OGTT and the incretin effect, being higher in
MTT than in OGTT. The rate of glucose absorption and
INCR effect will work in opposite directions; with the incretin
increasing insulin secretion, whereas a slower rate of glu-
cose absorption will give lower glucose peak, resulting in a
lower insulin secretion. As the incretin effect is larger than
the effect of the absorption rate, the net effect is higher
insulin in the MTT. Thus, the relative power is expected to
be slightly higher, benefiting inclusion of insulin. In addition,
other glucose challenges than OGTT and MTT are used in
drug development (e.g., graded glucose infusion and
clamps). Especially in preclinical drug development are the
challenges different and investigating, therefore, which chal-
lenge design is most powerful for different drug effect
MOAs is, thus, an interesting extension of this work.

The current investigation in part 3 does not fully cover all
combinations, but it serves as an example of combinations
as well as describes a methodology to investigate more
combinations. Moreover, as the secondary drug effects
were well detected and differentiated from the primary in
this study, we could expect that combination therapy with
two combined agents could also be well, or even better,
characterized, as differences also in PK between the two
drugs would improve the power to separate effects.

The inclusion of insulin added power to both detecting a
drug effect and distinguishing the correct drug MOA from
the incorrect drug MOA in most cases. As expected, the
increase in power with inclusion of insulin was largest when
MOAs were related to insulin (BINS and INCR), and
smaller when the MOAs were related to the glucose (CLG,
EGP, and GABS). The CLGI had little or no gain in power of
including insulin when tested against the glucose-related
parameters. At baseline (fasting conditions), CLGI and CLG

contribute equally to the elimination of glucose. As insulin
increases due to the glucose challenge, the relative impor-
tance of CLGI to CLG increases. A large difference is seen
in the dynamic glucose profile of a drug effect on CLGI,
although this is not seen for CLG. Thus, insulin observa-
tions are not needed to the same extent to detect the differ-
ence between MOA on CLGI vs. CLG. The same reasoning
applies for EGP. Consistently, when discriminating CLGI

from insulin secretion either as a competing MOA or as a
secondary effect, insulin measurements gave a large
improvement in power. A similar trend was also seen with
CLGI and INCR. This behavior could be explained by the
nature of the parameter with CLGI being related to both glu-
cose and insulin. GSEN, which also is related to both glu-
cose and insulin, unlike CLGI, behaved much more as a
pure insulin-related parameter, with a large power increase
with the inclusion of insulin measurements in the analysis.

To distinguish a correct MOA on CLG from an incorrect
MOA on EGP was not feasible with the settings of this pro-
ject. Both with and without insulin, there were >100 sub-
jects needed in a study. This is not surprising as the CLG

and EGP (also insulin-independent) are two sides of the
same coin. A decrease of insulin-independent input of glu-
cose is indistinguishable from an increase of insulin-
independent output of glucose, without tracer glucose in
the design.

Parameter accuracy and precision were assessed using
the mean ratio of AUCGD/PL, representing magnitude of
reduction of glucose AUCG with and without drug treat-
ment. An adequate accuracy and a good precision for
AUCGD/PL were achieved in all MOAs, with and without
insulin reflecting a good model performance for the estima-
tion of AUCGD/PL and, thus, it seems exclusion of insulin
had no impact on precision of AUCGD/PL. Thus, if the main
focus of a pharmacometric analysis is to quantify the differ-
ence in glucose for treatment, insulin is not crucial.

The implications of the results presented in this work are
that, although the glucose dynamics can accurately and
precisely be predicted, absence of insulin will for most
MOAs lead to more subjects being needed to achieve an
adequate power for identifying drug effects. This may not
be an issue in clinical drug development as the number of
subjects in clinical studies usually is sufficiently high for a
high power and insulin is almost always measured. How-
ever, as mentioned in the introduction, pharmacometric
analysis gains popularity preclinically for model develop-
ment with the aim of translating drug effects into humans.
In developing a model fit for translation using animal data,
the ability to correctly identify a drug effect is important, but
the number of animals in the experiments are often low; not
seldom, lower than what is needed for sufficient power,6–8

thus affecting the model building as there is a risk of miss-
ing identifying drug effect, primary or secondary, and identi-
fying an erroneous MOA.

CONCLUSION

In conclusion, the power to detect a drug effect was
harmed when insulin was not included for all investigated
MOAs. The power to distinguish a correct mechanism of a
drug MOA from an incorrect mechanism and to detect a
secondary on top of a primary MOA, was, in most cases,
severely harmed when insulin was missing in the model-
based analysis. The AUCGD/PL estimation was accurate
and precise in all drug MOAs, independently of whether
insulin was used or not. In general, performing a model-
based analysis using the IGI model without insulin will
affect the power to detect the correct drug MOAs; however,
this will not impact the estimates of drug effect in terms of
AUCGD/PL.
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