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Multipotent neural stem cells (NSCs) are found in several isolated niches of the
adult mammalian brain where they have unique potential to assist in tissue repair.
Modern transcriptomics offer high-throughput methods for identifying disease or injury
associated gene expression signatures in endogenous adult NSCs, but they require
adaptation to accommodate the rarity of NSCs. Bulk RNA sequencing (RNAseq) of
NSCs requires pooling several mice, which impedes application to labor-intensive injury
models. Alternatively, single cell RNAseq can profile hundreds to thousands of cells from
a single mouse and is increasingly used to study NSCs. The consequences of the low
RNA input from a single NSC on downstream identification of differentially expressed
genes (DEGs) remains insufficiently explored. Here, to clarify the role that low RNA
input plays in NSC DEG identification, we directly compared DEGs in an oxidative stress
model of cultured NSCs by bulk and single cell sequencing. While both methods yielded
DEGs that were replicable, single cell sequencing using the 10X Chromium platform
yielded DEGs derived from genes with higher relative transcript counts compared to
non-DEGs and exhibited smaller fold changes than DEGs identified by bulk RNAseq.
The loss of high fold-change DEGs in the single cell platform presents an important
limitation for identifying disease-relevant genes. To facilitate identification of such genes,
we determined an RNA-input threshold that enables transcriptional profiling of NSCs
comparable to standard bulk sequencing and used it to establish a workflow for in vivo
profiling of endogenous NSCs. We then applied this workflow to identify DEGs after
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lateral fluid percussion injury, a labor-intensive animal model of traumatic brain injury. Our
work joins an emerging body of evidence suggesting that single cell RNA sequencing
may underestimate the diversity of pathologic DEGs. However, our data also suggest
that population level transcriptomic analysis can be adapted to capture more of these
DEGs with similar efficacy and diversity as standard bulk sequencing. Together, our
data and workflow will be useful for investigators interested in understanding and
manipulating adult hippocampal NSC responses to various stimuli.

Keywords: adult neural stem cell, hippocampus, differential gene expression, single cell RNA sequencing, bulk
RNA sequencing

INTRODUCTION

The subgranular zone (SGZ) of the hippocampal dentate gyrus
(DG) is a unique neurogenic niche in the adult mammalian
brain (Vicidomini et al., 2020; Denoth-Lippuner and Jessberger,
2021). Neural stem cells (NSCs) in the SGZ give rise to
functional new neurons throughout adulthood that contribute
to hippocampal memory and affect regulation and could also
be a source for endogenous tissue repair after injury or disease
(McAvoy and Sahay, 2017; Miller and Sahay, 2019). Over the
past decade, transcriptional analysis using high-throughput RNA
sequencing (RNAseq) technology has dramatically expanded
knowledge of NSC molecular characteristics. For example,
studies using prospectively identified stem and progenitor
populations have uncovered previously unknown cell lineage
relationships (Llorens-Bobadilla et al., 2015; Dulken et al., 2017;
Baser et al., 2019; Berg et al., 2019). Other studies using more
unbiased approaches have revealed regional and even cell-specific
transcriptional differences or transcriptional changes during
development, adult neurogenesis, or aging (Shin et al., 2015;
Artegiani et al., 2017; Yuzwa et al., 2017; Hochgerner et al., 2018;
Zywitza et al., 2018; Dulken et al., 2019; Mizrak et al., 2019).
As studies of the NSC transcriptome expand, researchers are
faced with an increasing variety of options for how to accomplish
transcriptional profiling of this small, but critical, cell population.

Current major challenges to transcriptional profiling of NSCs
include their relative sparsity in vivo and their transcriptional
similarity to astrocytes. Both of these challenges have made
bulk RNAseq of prospectively isolated NSCs a less attractive
approach as it requires large cell number input and prospective
isolation of the desired population. Instead, single cell RNAseq
(scRNAseq) has emerged as the preferred technique to begin
overcoming the above barriers. This approach uses the very
small amounts of RNA present in single cells to generate
thousands of individual cell transcriptomes with massively
paralleled sequencing. scRNAseq studies of the adult mouse
SVZ and SGZ have identified rare subpopulations of cells,
as well as dynamic changes in gene expression at different
developmental stages, maturation states, and regional locations
(Llorens-Bobadilla et al., 2015; Shin et al., 2015; Artegiani
et al., 2017). Several studies have adapted analytical methods
from standard bulk sequencing to accommodate the technical
challenges presented by using such low input to profile cells from
other lineages (Robinson and Oshlack, 2010; Law et al., 2014;

Love et al., 2014). In addition, many pioneering studies in other
cell types have also developed novel processing and analysis tools
specifically designed to facilitate detection of cell heterogeneity
or chronological mapping of developmental trajectories using
scRNAseq transcriptomes (Trapnell et al., 2013; Finak et al., 2015;
Shin et al., 2015; Qiu et al., 2017).

While these recent studies show that scRNAseq is a powerful
approach to characterize differences between individual cells, it
is not yet clear how effective it is for uncovering population-
level changes in gene expression. Identification of differentially
expressed genes (DEGs) induced by variables like injury or
gene expression manipulation is critical to understanding the
mechanisms underlying NSC function in both disease models
and in healthy brains. It seems logical that the low input of
scRNAseq would affect DEG discovery compared to standard
bulk RNAseq, where DEG analysis in transcriptomics was first
developed (Bhargava et al., 2015; Arzalluz-Luque et al., 2017).
Investigation of this possible pitfall is still sparse. A small handful
of studies has addressed robustness of different statistical analysis
approaches for DEG identification, but some have contradictory
findings (Ziegenhain et al., 2017; Soneson and Robinson, 2018;
Wang et al., 2019; Mou et al., 2020; Squair et al., 2021). For
example, Squair et al. (2021) suggest that scRNAseq DEGs are
rife with false positives while Soneson and Robinson (2018) show
that the most common statistical tests are quite resistant to false
positives in scRNAseq DEG analysis. Most studies of this nature
are retrospective—taking advantage of samples not originally
processed for the purpose of identifying overlap and error in
methods. Here, we directly compare scRNAseq (using the 10×
Chromium platform) with bulk level RNAseq of cultured NSCs
in a model of oxidative stress in vitro specifically to evaluate
DEG identification across sequencing approaches. We found
little overlap in DEGs identified by scRNAseq and bulk RNAseq,
despite using the same source samples. While subsequent
experiments showed that DEGs from both approaches were
replicable and that our single cell analysis was resistant to
false positives, we found that scRNAseq identified DEGs among
genes that show a more moderate fold change and high relative
transcript count when compared to the bulk RNAseq approach.
Because many studies of DEGs would specifically benefit from
identification of higher fold change transcripts which are more
moderately expressed, we adapted and validated a limiting cell
(lc) RNAseq approach for sequencing DG NSCs isolated from
individual adult mice with similar reliability as more bulk
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RNAseq-like approaches. We further demonstrate the utility of
this method by applying it to transcriptome profiling of NSCs
and their intermediate progenitor cell (IPC) progeny from single
adult mouse hippocampi after a lateral fluid percussion injury
(LFPI) model of traumatic brain injury (TBI).

MATERIALS AND METHODS

Animals
Nestin-GFP mice (Mignone et al., 2004) (Jackson Labs, Bar
Harbor, ME, United States, #033927) and Wt C57Bl/6J mice
(Jackson Labs, #000664) were housed in a 12 h light-dark
cycle with food and water ad libitum. To isolate brains for
fluorescence in situ hybridization, adult mice (6–9 weeks old)
were anesthetized with an intraperitoneal injection of ketamine
(87.5 mg/kg) and xylazine (12.5 mg/kg). Mice were then
transcardially perfused with ice cold PBS followed by cold 4%
PFA. For immunofluorescence and whole DG RNA isolation,
mice were only perfused with ice cold PBS. For lcRNAseq
experiments, mice were only perfused with ice cold HBSS
without calcium or magnesium. This study was approved by
the Institutional Animal Care and Use Committee (IACUC) at
the Ohio State University in accordance with institutional and
national guidelines.

Dentate Gyrus Isolation and
Fluorescence Activated Cell Sorting for
RNAseq
To isolate DGs for subsequent fluorescence activated cell sorting
(FACS), 6–9 weeks old adult mice (n = 3 biological replicates per
group) were anesthetized and perfused with HBSS as described
above. Following perfusion, brains were removed and placed
in cold HBSS on ice. To expose the hippocampus, brains
were bisected along the midsagittal line and the cerebellum
and diencephalic structures were removed. Under a dissection
microscope (Zeiss), the DG was excised using a beveled syringe
needle and placed in ice cold HBSS without calcium or
magnesium. DGs were then mechanically dissociated with sterile
scalpel blades before enzymatic dissociation with a pre-warmed
papain (Roche 10108014001)/dispase (Stem Cell Technologies,
Vancouver, Canada, 07913)/DNase (Stem Cell Technologies,
Vancouver, Canada, NC9007308) (PDD) cocktail at 37◦C for
20 min. Afterward, the tissue was again mechanically disrupted
by trituration for 1 min. Dissociated cells were collected by
centrifugation at 500 g for 5 min before resuspending in HBSS
without calcium/magnesium. Cells were then filtered through a
35 µm nylon filter before staining with fluorescent antibodies
(Supplementary Table 5) on ice for 30 min. During the last
10 min of staining, Hoechst dye was added for live/dead
discrimination. All cells were washed twice following staining
and immediately sorted as NSC or IPC populations based on
fluorescent markers with the FACSAria III (BD Biosciences,
Franklin Lakes, NJ, United States). CD31-, CD45-, O1-, and O4
negative live cells were designated as NSCs if double positive
for GLAST and Nestin-GFP or intermediate progenitor cells

(IPCs) if GFP positive and GLAST negative (Mignone et al.,
2004; Llorens-Bobadilla et al., 2015). Three technical replicates
of 300 cells each were sorted from each individual mouse into
1.5 mL microcentrifuge tubes containing cell lysis buffer from the
Clontech SMART-Seq HT (Takara, Kusatsu, Shiga, Japan) kit for
direct cDNA synthesis and RNAseq library generation.

Cell Culture
Neural stem cells were isolated from adult DGs of C57Bl6/J
mice as described in Babu et al. (2011). Two separate lines,
one from 4 pooled C57Bl6/J male mice and one from 4 pooled
C57Bl6/J female mice, were used in experiments between passage
5 and 15. NSCs were cultured on poly-D-lysine (Sigma, St. Louis,
MO, United States) and laminin (Invitrogen, Waltham, MA,
United States) coated plates in Neurobasal A media (Invitrogen,
Waltham, MA, United States) with 1× B27 supplement
without vitamin A (Gibco, Waltham, MA, United States),
1× glutamax (Invitrogen, Waltham, MA, United States) and
20 ng/ml each of EGF and FGF2 (Peprotech, East Windsor,
NJ, United States). There were no inherent differences in
morphology or proliferation between NSC cultures and both
lines differentiated into neurons and glia upon culture in
differentiation conditions, as we previously showed (Denninger
et al., 2020). All cultures were verified to be mycoplasma-free. For
oxidative stress experiments, NSCs (n = 3 biological replicates)
were treated at 70% confluency with 500 µM H2O2 (Sigma, St.
Louis, MO, United States) or equal volume of vehicle (PBS) for
24 h. All cells were harvested with brief accutase treatment and
one wash with HBSS for RNA isolation or scRNAseq on the 10×
Chromium platform.

RNAseq of Cultured Cells and Whole
Dentate Gyrus
RNA from 30,000 cultured adult NSCs or whole DGs were
isolated with the Clontech Nucleospin RNA XS Plus isolation
kit (Takara 740990.10) per manufacturer protocol. RNA quality
(RNA Integrity Number or RIN) and quantity was assessed using
Agilent BioAnalyzer RNA 6000 Pico Kit and the Invitrogen Qubit
RNA HS Assay kit (Invitrogen, Waltham, MA, United States),
respectively. All cultured samples used a RIN value of 10
while whole DG samples had RIN values over 8. RNA from
cultured NSCs was serially diluted to 10−, 100−, and 1,000-pg
for RNA input quantity studies. Whole DG libraries for bulk
RNAseq were generated with the NEBNext Ultra II Directional
RNA Library prep kit (New England Biolabs, Ipswitch, MA,
United States). The Clontech SMART-Seq HT (Takara) kit was
used for global preamplification of cultured NSCs and 20% (∼60
cell input) of the 300 FACS-isolated NSC cell lysate for low
input RNAseq. Library generation followed the manufacturer
manual except the reagents were miniaturized to 1/5th of the
protocol volume for 300 cell samples. The quality and the
quantity of purified cDNAs was assessed prior to sequencing
library generation and sequencing using the Nextera XT Kit
and Nextera XT Index Kit v2 Set A (Illumina, San Diego, CA,
United States) following manufacturer instructions except for the
miniaturization of reagent volume to a quarter of listed volume.
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Purified library products were then used in HiSeq 4000 paired-
end sequencing (Illumina, San Diego, CA, United States) to a
depth of 15–20 million 2× 150 bp clusters. FASTQ files generated
for each library were trimmed using AdapterRemoval v2.2.0
(Schubert et al., 2016), ensuring that all sequencing adapters
were removed and that the average quality score for each read
was above Q20 (representing 1 in 100 Illumina base error rate).
Reads which were aligned by HISAT2 v2.0.6 (Kim et al., 2015)
against rRNA, mtDNA, or PhiX bacteriophage (Illumina spike-
in control) sequences, retrieved from NCBI RefSeq (O’Leary
et al., 2016), were removed from each FASTQ file, as these do
not represent gene expression signal. All remaining reads were
aligned against the reference mouse genome GRCm38p4 with
HISAT2. The resulting BAM alignment files were sorted and
indexed before further analysis.

Alignments were quantified using the featureCounts utility
from the Subread package v1.5.1 (Liao et al., 2013, 2014) in
unstranded mode using GENCODE (Harrow et al., 2006, 2012)
mouse gene reference version M14 in GTF format. Custom
Python scripts were used to produce a formatted gene expression
counts table from the raw output of featureCounts. RNAseq
Quality metrics were derived using a modification of the
QuaCRS quality control workflow (Kroll et al., 2014) which
includes running RNA-SeQC v1.1.8.1 (DeLuca et al., 2012),
FASTQC v0.11.5, and RSeQC v2.6.2 (Wang et al., 2012). Finally,
coverage maps of each BAM file were derived using the Bedtools
‘genomecov’ utility v2.27.0 (Quinlan and Hall, 2010).

RNAseq coverage maps were processed with the CLEAR
v1.0 (Walker et al., 2020) workflow to determine which genes
were reliably quantified. In brief, for each transcript in the
UCSC GRCm38 release (Kuhn et al., 2013), a parameter (µi)
is calculated, which represents the positional mean of the
reads covering the transcript, normalized to the length of each
sequence. Sequential bins of 250 µi values each, ordered by
descending expression, are fit to a sum of two beta distributions
(Gupta and Nadarajah, 2004) for the determination of two free
parameters, which are thresholded to determine genes which
“pass” CLEAR. Unless otherwise noted, only genes passing
CLEAR in all samples are used for downstream analysis. DEGs
were derived from these CLEAR-filtered RNAseq expression
counts tables following the DESeq2 v1.20.0 protocol (Love et al.,
2014) implemented in R v3.5.0. DEGs are reported with adjusted
p-values in our (Supplementary Tables 2–4) based on an FDR
q-value of <0.05. DEGs were processed with the pcaExplorer
v2.6.0 (Marini and Binder, 2019) visualization package to
produce principal component analysis (PCA) projections using
the default settings on r-log transformed counts. For phenotypic
marker comparisons of NSCs and IPCs, raw count data were
downloaded from GSE95753 associated with Hochgerner et al.
(2018). Transcript counts were used for RGLs, nIPCs and NBs
from mice P120 and P132 days of age. Counts were averaged
within the three separable replicates in that dataset to give an
average count per cell for each replicate.

10× Chromium scRNAseq
30,000 NSCs were pooled from triplicate H2O2− or vehicle-
treated cultures (10,000 cells/replicate). Of those, ∼20,000 cells

per treatment were loaded onto the 10× Genomics single cell
sequencing platform using the standard kit. The 3′ RNA-seq
library was sequenced using paired-end 150 bp approach on
an Illumina HiSeq 4000 sequencer. Data from vehicle-treated
cells was previously published in Denninger et al. (2020) and
similar analysis was performed here, but on the combined
data, including both vehicle-treated and H2O2-treated cells.
CellRanger v3.0.2 (Zheng et al., 2017) was used to demultiplex,
align, and deduplicate sequencing reads in BCL files. Single-
cell data in feature-barcode matrices were then processed using
Seurat v3.0.1’s default pipeline (Butler et al., 2018; Stuart et al.,
2019) to identify unsupervised cell clusters and generate a
uniform manifold approximation and projection (UMAP) plot.
In brief, cells were filtered to exclude multiplets and damaged cells
by excluding cells with unique feature count >2,500 or <1,000.
From ∼41,805 cells loaded, 26,916 were recovered, yielding a
net capture rate of 64.3% and an estimated multiplet rate of
10.4%, both of which are within manufacturer expectations. Data
were then log normalized with default scale factor of 10,000.
The Seurat FindVariableFeatures function was then applied,
followed by linear transformation (ScaleData function). PCA
was run on the scaled data, followed by FindNeighbors and
FindClusters. UMAPs were then created using the RunUMAP
function. DEGs defining clusters (regardless of treatment) and
defining treatments (regardless of cluster) were generated using
the FindAllMarkers function, which uses a default of Wilcoxon
rank sum test, unless otherwise noted. Adjusted P-values are
Bonferroni-corrected using all features in the dataset. For data
analysis where cell cycle effects were reduced, cell cycle scores
were generated using the CellCycleScoring function of Seurat
and then data were scaled with either standard CellCycleScore
or the difference between S and G2M CellCycleScore defined
as a variable to regress out. padj < 0.05 was considered
significant in all cases.

Quantitative Real Time PCR
Cultured NSCs were lysed in culture plates and RNA was isolated
with the Bio-Rad AurumTM Total RNA Mini Kit according
to the manufacturer protocol. Isolated RNA was quantified
and assessed for quality using the BioTek Epoch Microplate
Spectrophotometer. cDNA was synthesized with the Bio-Rad
iScriptTM cDNA Synthesis Kit in the Thermo Fisher Applied
Biosystems 2720 Thermal Cycler according to manufacturer
protocol. Quantitative real time PCR (qRT-PCR) was performed
in the Bio-Rad CFX96 Touch Real-Time PCR Detection System
with Bio-Rad SsoAdvanced Universal SYBR Green Supermix and
primers listed in Supplementary Table 5. 11Ct values generated
with normalization to housekeeping gene Rpl7 then converted to
fold change (relative to vehicle).

Lateral Fluid Percussion Injury
All surgical procedures were performed as previously described
(Tapp et al., 2020). Briefly, 6–9-week-old mice were anesthetized
with 4% isoflurane gas in an induction chamber for 4 min. Mice
were then positioned in a stereotaxic frame before making a
sagittal incision to expose the cranium. Midway between bregma
and lambda on the right parietal bone, a 3.0-mm craniectomy
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was trephined, leaving the intact dura mater exposed. A modified
portion of a Leur-Loc syringe (3.0-mm inside diameter) was
secured over the craniectomy site with cyanoacrylate adhesive.
Mice were placed in their home cages on a heating pad to
recover. Once mice resumed normal activity, mice were returned
to the vivarium for 24 h. The next day, mice were anesthetized
with 4% isoflurane in an induction chamber for 4 min. Using
the modified Leur-Loc syringe, mice were connected to the
fluid percussion injury device (Custom Design & Fabrication,
Standston, VA, United States). For mice designated to the TBI
group, a prepositioned pendulum was released onto the end of
the LFPI device to deliver a fluid pulse onto the exposed dura
mater, inducing a moderate LFPI. Sham mice were attached to
the LFPI device but did not receive a fluid pulse. The modified
syringe and adhesive were removed following LFPI or sham
treatment. The incision was stapled closed. All animals were
placed on a heating pad and injury severity was assessed with
the self-righting reflex test. After the subjects demonstrated the
righting reflex, they were returned to their home cages on a
heating pad. Four hours after injury, mice were perfused for
either histology (n = 5 biological replicates per group), RNA
isolation (n = 3 biological replicates per group), or FACS (n = 3
biological replicates per group).

Histology (IF and RNAscope)
For identification of in vivo cell types, brains from Nestin-GFP
mice were harvested and fixed overnight at 4◦C in 4% PFA before
overnight equilibration in 30% sucrose. Serial 40 µm sections
were rinsed in PBS before blocking with 1% normal donkey
serum (Jackson) and 0.3% Triton X-100 in PBS for 30 min
at room temperature. Sections were incubated with primary
antibodies (Supplementary Table 5) overnight at 4◦C in blocking
solution on an orbital shaker. The next day, sections were washed
with PBS and incubated with fluorescently conjugated secondary
antibodies diluted in blocking solution (Supplementary Table 5)
for 2 h at room temperature and counterstained with Hoechst
33342 (1:2000) for nuclear visualization. Sections were then
washed and mounted onto slides before coverslipping with
ProLong Gold anti-fade solution (Molecular Probes). Slides were
imaged in 1-µm z-stacks on an LSM700 confocal microscope
(Zeiss) with a 40× oil objective.

For RNAscope, 4 h after LFPI or sham injury, brains from
Wt C57Bl/6J mice (n = 5 per group) were harvested and
fixed overnight at 4◦C in 4% PFA before serial overnight
equilibration in 10, 20, and 30% sucrose. Fixed equilibrated
tissue was snap frozen in OCT in a dry ice/100% ethanol
bath and stored at −70◦C. 12 µm cryosections, 1 section per
slide, were prepared with a cryostat. Slides were stored at
−70◦C with desiccant until staining. RNA in situ hybridization
was performed with RNAscope Multiplex Fluorescent v2
Assay (Advanced Cell Diagnostics, Newark, CA, United States)
according to manufacturer recommendations for using fixed
frozen tissue samples with the following modifications to enable
concurrent immunohistochemical staining. The pretreatment
steps were replaced with a 15 min modified citrate buffer
(Dako) antigen retrieval step in a steamer at 95◦C. To enable
subsequent immunohistochemical staining, the protease III

step was excluded. Probes for mouse Slc5a3 (ACD custom
design NPR-0006102), mouse Serpina3n (ACD 430191), and
mouse Timp1 (ACD 316841) RNA were hybridized to tissue
prior to immunohistochemical staining for GFAP and SOX2
protein. Immunostaining for GFAP and SOX2 was conducted
as described above with the following exceptions. Blocking
was performed with 10% normal donkey serum in TBS-1%
BSA. Antibody incubations were performed in TBS-1% BSA.
All washes were performed with TBST. DAPI provided by
the RNAscope Multiplex Fluorescent kit was used for nuclear
counterstaining. Images were acquired with a Zeiss Axio
Observer Z1 microscope with Apotome for optical sectioning
using a 20× air objective. Full z-stacks were acquired for analysis.
NSCs were identified based on SOX2 positivity and GFAP+
apical processes extending from the nucleus in 1 µm z-stack
images from n = 5 mice. IPCs were similarly identified based on
SOX2 positivity but without GFAP+ apical processes. Ten cells
for each cell type were randomly selected from the subgranular
zones of the DGs of 5 mice per treatment group for a total of 50
cells per group for each gene. mRNA puncta for each of the 3
genes were counted manually throughout the depth of each cell
nucleus and length of cell processes.

Statistics
Statistics were performed as described in each figure legend.
χ2 contingency test was used to compare reproducibility of
DEGs identified in cultured NSCs after oxidative stress by
scRNAseq and 1 ng RNAseq. For the qRT-PCR confirmation of
top DEGs by platform, a Mann–Whitney test was performed to
identify individual genes with significant upregulation. Mann–
Whitney tests were also used to compare the rank of DEG and
non-DEG genes in cultured NSCs and in vivo NSCs/IPCs. To
compare coefficient of variation between samples with or without
CLEAR filtering, a one-way ANOVA with the Kruskal–Wallis
test followed by Dunn’s multiple comparisons or unpaired t-tests
were applied. NSC and IPC mRNA expression per cell using
each cell as a replicate (n = 50 per treatment group) of Slc5a3,
Serpina3n, and Timp1 were compared using Mann–Whitney
tests. mRNA expression per cell was also averaged for each mouse
to compare gene expression differences with a biological replicate
of n = 5 using unpaired t-tests. χ2 contingency, Mann–Whitney,
unpaired t-test, Dunn’s multiple comparison, and ANOVA with
the Kruskal–Wallis tests were performed using Prism (v9.0;
GraphPad Software, LaJolla, CA, United States) and p < 0.05 was
considered significant.

RESULTS

Differentially Expressed Genes Identified
by 10× Chromium scRNAseq Versus
Bulk Population Level RNAseq Are
Different but Accurate
To compare detection of differential gene expression by
scRNAseq and bulk RNAseq of cultured cells, we used an in vitro
model of oxidative stress with adult mouse DG-derived NSCs. We
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FIGURE 1 | Workflow for cultured NSCs in scRNAseq and bulk RNAseq. NSCs were treated with H2O2 or vehicle in triplicate. 10,000 cells from each biologic
replicate were pooled for a total of 30,000 cells applied to the 10× Chromium scRNAseq platform and subsequent DEG analysis. RNA was extracted from 30,000
cells of each biologic replicate and 10, 100, and 1,000 pg (1 ng) were used in RNAseq with subsequent CLEAR filtering and DEG analysis.

treated cultured NSCs derived from male and female adult mouse
DGs with H2O2 to induce oxidative stress or with vehicle and
then harvested cell pellets from three biological replicates (one
male and two female) per treatment. Harvested cells were then
subdivided into two processing streams: RNA extraction for bulk
RNAseq or direct RNAseq of individual cells (scRNAseq) on the
10× Chromium platform (Figure 1).

For scRNAseq, a total of 26,916 cells were captured and
sequenced. UMAP analysis of both H2O2-treated and control
samples revealed 10 different subpopulations characterized
by gene expression profiles linked to GO terms consistent
with specific stages of the cell cycle, phases of quiescence,
differentiation, or response to injury (Figures 2A,B and
Supplementary Table 1). The majority of cells were in G1 (22%),
G2/M (21%), or S (6.5%) phase of the cell cycle. 17.5% of cells
were in one of two detected quiescent phases (G0d and G0r).
16% of the cells appeared to be in an intermediate state that we
characterize as transitioning to/from the cell cycle (T) and the
remaining 17% of cells were differentiating (3%, D1 and D2) or
responding to injury (14%, I and A). Cells from both treatment
groups were present in all clusters (Figure 2A). However, vehicle
treated cells were mostly concentrated in the cycling clusters
while H2O2 treatment resulted in a notable shift away from
cycling clusters to quiescent and apoptotic/injured clusters.

To confirm the cluster identities of the dormant and
cycling cells, we looked at expression of known markers of
dormancy and progression through the cell cycle. The largest
subpopulation, which we designated as G1 based on GO analysis,
was characterized by moderate to high expression of genes
involved in exit from dormancy, such as Rpl5, Ran, and Rps17
(Harris et al., 2021), as well as moderate expression of cell cycle
genes such as Top2a, Cdk1, and Mki67 (Figures 2A,B) (Diril
et al., 2012; Sun and Kaufman, 2018; Nielsen et al., 2020). The
S phase population was characterized by a distinct upregulation
of cell cycle gene expression (Figure 2B). The G2/M cluster
showed continued high expression of exit from dormancy genes
coupled with sharp downregulation of cell cycle genes relative
to G1 and S (Figures 2A,B). Two clusters of G0-like cells were

found, both of which showed upregulation of genes linked with
GO terms such as ion homeostasis and metabolic processes.
The two clusters differed most notably in expression of genes
associated with transition to/from deeper quiescence. Specifically,
G0-dormant was characterized by high expression of quiescence-
associated genes Fabp7, Aldoc, Sparc, Clu, and Id3 (Artegiani
et al., 2017; Dulken et al., 2017; Urbán et al., 2019; Borrett
et al., 2020), coupled with low expression of exit from dormancy-
associated genes Rpl5, Rps17, and Ran (Figures 2A,B) (Harris
et al., 2021). G0-rest, in contrast, showed an upregulation of exit
from dormancy genes and slight suppression of quiescence genes
(Figures 2A,B). The transition group (T) was intermediate in
expression of markers of dormancy and cell cycle, supporting
its assignment as a transitional state between quiescent G0
states and the cell cycle (Figures 2A,B). The two clusters of
differentiating cells (D1 and D2) showed upregulation of genes
associated with progenitor cell differentiation (Sox4, Sox11, and
Map2) (Figures 2A,B) (Shin et al., 2015; Artegiani et al., 2017;
Hochgerner et al., 2018). Last, both injured and apoptotic clusters
showed expression of genes associated with cell injury and death
processes such as Srxn1 and Phlda3 respectively (Supplementary
Table 1) (Kawase et al., 2009; Bell et al., 2015). Representative
feature plots of two genes significantly upregulated in each cluster
are presented in Supplementary Figures 1C–L. Two different
methods of cell cycle regression analysis was also performed
to remove potential bias from cell cycle-related genes on cell
clustering (Supplementary Figures 1A,B). These analyses both
yielded similar subpopulations that were still predominantly
defined by cell cycle state.

We next identified DEGs between H2O2 and vehicle treated
cells using both the 10× scRNAseq data and RNAseq from
pooled cells using 1 ng total input RNA, an amount which yields
sequencing data in the bulk RNA sequencing range (Walker
et al., 2020). For scRNAseq, all clusters were combined within
treatment for DEG analysis using the standard Wilcoxon test.
299 DEGs were identified between H2O2 and vehicle treated
NSCs using scRNAseq (Supplementary Figures 2A,B and
Supplementary Table 2). 1 ng RNAseq data was pre-processed

Frontiers in Molecular Neuroscience | www.frontiersin.org 6 January 2022 | Volume 15 | Article 810722

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-15-810722 January 29, 2022 Time: 12:48 # 7

Denninger et al. Adult NSC RNASeq DEG Identification

FIGURE 2 | scRNAseq of cultured NSCs in an in vitro model of oxidative stress. (A) UMAP of vehicle and H2O2-treated cultured NSCs yielded 10 subpopulations
defined by gene expression profiles consistent with GO terms associated with various stages of the cell cycle, levels of quiescence or response to injury (left). UMAP
comparison of H2O2-treated versus vehicle-treated NSCs indicated a shift toward quiescence, apoptosis, senescence, and injury response following oxidative stress
(right). (B) Dot plot visualization of average expression of and percent of cells expressing select genes known to be associated with quiescence versus activation
further confirmed subpopulation identities.

using the coverage-based limiting-cell experiment analysis
(CLEAR) pipeline to eliminated unreliable, lowly expressed
transcripts (Walker et al., 2020) then DEGs were identified
using DESeq2. The 1ng RNAseq comparison yielded 790
DEGs between H2O2 and vehicle treated NSCs (Supplementary
Figures 2A,B, and Supplementary Table 2). Comparison with
the DEGs identified between sequencing methods revealed only
93 genes that were common to both platforms (Figure 3A).
Not surprisingly, most of the non-overlapping genes (697) were
unique to the higher RNA input platform of 1 ng RNA, implying
an expected greater sensitivity for DEG detection with greater
RNA input. More unexpectedly, though, scRNAseq identified 206
unique DEGs compared to the 1 ng input RNAseq. This low
overlap between sequencing approaches from the same source
NSCs implied either that one method was calling numerous false
DEGs or that the two platforms had strongly different biases in
what DEGs they can detect.

To determine how accurate and replicable the DEGs from
10× scRNAseq and 1 ng RNAseq were, we repeated H2O2/vehicle
treatment of cultured NSCs in two more independent replications
and analyzed gene expression of the top upregulated DEGs

identified by scRNAseq and 1 ng RNAseq using quantitative real
time PCR (qRT-PCR). Of the top 20 DEGs, we achieved effective
primers for 19 of the scRNAseq DEGs and 16 of the 1 ng RNAseq
DEGs. The majority of genes identified by both scRNAseq and
1 ng RNAseq were confirmed to be upregulated with qRT-PCR
and there was no significant difference between methods in
the number of genes replicated (Figure 3B and Supplementary
Figure 2C). To further understand what distinguished DEGs
called by scRNAseq versus 1 ng RNASeq, we compared
overlap of GO terms for upregulated genes in each platform.
GO terms showed a high degree of overlap (35 out of 45
distinct categories) in the biological processes represented by
the genes identified with both scRNAseq and 1 ng RNAseq
(Figure 3C and Supplementary Table 2). This overlap in
biological processes being triggered by oxidative stress, coupled
with the high replicability of individual DEGs, implies that
both platforms likely generated accurate DEGs that reflect true
changes in cell activity. However, the low degree of overlap
in the individual DEGs identified by the 2 platforms indicates
that some form of bias affected the type of genes identified
by each platform.
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FIGURE 3 | RNA input leads to bias in DEG discovery. (A) Venn diagram of DEGs identified by scRNAseq and 1 ng RNAseq with CLEAR filtering after H2O2 vs.
vehicle treatment. (B) qRT-PCR analysis corroborated the majority of DEGs identified by scRNAseq and 1 ng RNAseq in cultured NSCs following H2O2-induced
oxidative stress. X2 contingency test (df = 1) = 2.331, p = 0.127. (C) Venn diagram of GO terms associated with DEGs identifies by scRNAseq and 1 ng RNAseq.
(D) Venn diagram of DEGs identified by scRNAseq with no filtering, filtering for low feature counts, and filtering for both low and high feature counts (i.e., the default
for Seurat analysis). (E) Venn diagram of DEGs identified by scRNAseq using the Wilcoxon test or DESeq2 compared with DEGs identified by 1 ng RNAseq. (F,G)
DEGs were ranked by average transcript count level relative to all detected gene counts. (F) Violin plot of genes ranked by transcript count level in scRNAseq
dataset. DEGs ranked significantly higher in transcript count compared to non-DEGs. ∗∗∗∗p < 0.0001 unpaired t-test. (G) Violin plot of genes ranked by transcript
count level in 1 ng RNAseq dataset. There was no significant difference in rank of transcript count between DEGs and non-DEGs. (H) Comparison of fold changes in
average transcript count between treatment groups for DEGs from sc- and 1 ng- RNAseq indicated that DEGs identified by 1 ng RNAseq showed significantly larger
fold change in gene expression than DEGs identified by scRNAseq.

One recent study similarly found divergence in DEG detection
between single cell and bulk approaches but concluded that this
represented error on the part of the single cell data (Squair et al.,
2021). A core piece of evidence leading to this conclusion was
a high rate of false positive DEGs generated from single cell
data when treatment versus control conditions were assigned
randomly. This finding is in stark contrast to the findings of
Soneson and Robinson (2018), which showed that with the
Wilcoxon test now used in Seurat analysis, false positives are
not above expected levels (Soneson and Robinson, 2018). To
further probe our own single cell data for propensity toward
false positive signal, we randomly assigned cells to two groups

and performed DEG analysis as done for the actual treated
experimental design. With standard limits, no genes met the log
fold change threshold (log2FC range: 0.044 to −0.052) therefore
no DEGs were detected. Our findings therefore align more so
with Soneson and Robinson (2018) and do not suggest excessive
false positives from single cell data.

RNA Input Amount Drives Bias in
Differentially Expressed Genes Discovery
The first possibility we considered for the difference in DEG
identification between sequencing platforms was that it was an
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artifact of the different data analysis and statistical techniques
used to identify DEGs in 10× scRNAseq versus 1 ng RNAseq
data. scRNAseq analysis involves several layers of filtering to
compensate for technical limitations of low capture efficiency,
high dropouts, and doublets. Two commonly used quality
controls (QCs) set minimum and maximum thresholds for
Unique Molecular Identifiers (UMIs) and feature counts to
filter out damaged cells or doublets (Stuart et al., 2019).
However, such filtering relies on predetermined values and could
overzealously filter out valid cells on the ends of the spectrum
of true cellular differences in RNA content and complexity. To
determine if QC limits altered DEG discovery, DEG analysis
was performed on scRNAseq data with and without filtering
for low (1,000 counts/cell) and high (2,500 counts/cell) feature
counts (Figure 3D). Removing both high and low feature counts
resulted in a total of 344 DEGs with 92% overlap compared
to fully filtered data (Figure 3D). Filtering out only cells with
low feature counts yielded 342 DEGs with almost 93% of those
genes also identified when all QCs are employed (Figure 3D).
This comparison revealed high overlap in the DEGs identified
with and without the various filters, indicating that QC filtering
of scRNAseq data was not introducing the divergence in DEG
discovery between sequencing approaches.

We next considered whether the different statistical tests
used in scRNAseq and 1 ng RNAseq might have contributed to
differential DEG identification. For 10× scRNAseq data, we used
the default in Seurat pipeline implementation of the Wilcoxon
test. Bulk RNAseq, in contrast, is typically (and was in our case)
analyzed using DESeq2. To determine if the choice of statistical
test affected the DEGs identified, we compared DEGs called by
DESeq2 in both scRNAseq and 1ng RNAseq. DEG discovery
using DESeq2 of scRNAseq data resulted in far fewer genes (a
little over half the number identified using the Wilcoxon test),
but 71% of those genes were common to both statistical methods
(Figure 3E). DESeq2 has been noted to be more restrictive
(Mou et al., 2020) so the fewer DEGs from that analysis is
not surprising. While the two different methods of statistical
analysis of scRNAseq data yielded highly overlapping sets of
genes, they both only marginally overlapped (about 30%) with
DEGs identified with DESeq2 in the 1 ng bulk RNAseq dataset
(Figure 3E). This comparison suggests that use of Wilcoxon
versus DESeq tests is not likely the source of DEG discordance
between scRNAseq and 1 ng RNAseq approaches. Rather, these
data suggest that there is something inherently different in the
data generated with scRNAseq versus 1 ng RNAseq that is leading
to different biases in DEG discovery with each approach.

To further explore the differences in DEGs identified in
10× scRNASeq versus 1 ng RNAseq, we next looked at the
relative transcript count level of DEGs. Gene expression level
within a cell impacts the likelihood of transcript capture and
is known to significantly influence DEG analysis in single cell
studies (Mou et al., 2020). Indeed, the low RNA input of
scRNAseq is expected to result in high drop out and a consequent
overall reduction of detected genes and therefore DEGs. The
identification of DEGs in scRNAseq that were not identified
via 1 ng RNAseq in our data, however, is more unexpected.
To determine if gene expression level led to the discordance

in DEG discovery here, the averaged transcript counts per
cell of DEGs and non-DEGs identified in scRNAseq and 1ng
RNAseq were compared (Figures 3F,G). First, genes that were
not expressed in any cells were excluded to limit bias from zero
inflation, especially in scRNAseq. DEGs identified by scRNAseq
derived from genes with distinctly high transcript counts and
spanned a much narrower range of transcript count ranks than
non-DEGs (Figure 3F). Meanwhile, a similar comparison of
DEGs and non-DEGs from the 1ng RNAseq dataset revealed no
significant difference in rank of transcript counts (Figure 3G).
It is important to note that these comparisons were made after
eliminating genes with no counts, showing that a strong bias
for high count genes persists in scRNAseq data even when
undetected genes are excluded.

We next analyzed the relative fold change in counts of DEGs
identified by 10× scRNAseq and 1 ng RNAseq. We found that
scRNAseq yielded DEGs with lower fold changes than 1 ng
RNAseq did. scRNAseq dataset DEGs showed an average fold
change less than 2 (Figure 3H). Our 1 ng RNAseq data, in
contrast, had a threefold change on average. This is, of course,
partly driven by the different default thresholds for Log2FC in
these two analysis streams, with DESeq2 using a minimum of
1 and Wilcoxon using 0.36. However, if the scRNAseq data
were restricted to a Log2FC cutoff of 1, it would only yield 8
DEGs, rather than 299. Volcano plots further emphasize the
restricted nature of Log2FC in the 10× scRNAseq data compared
to 1 ng bulk RNAseq (Supplementary Figure 3B). Combined
with the above findings on relative count level of DEGs, these
findings suggest that the divergence in DEG detection between
our scRNAseq and 1 ng RNAseq data is driven by bias in
scRNAseq data for detection of DEGs that derive from high count
genes that show a more moderate fold change and in 1 ng RNAseq
data for DEGs from more moderate count genes that show a
higher fold change between groups.

RNAseq Determination of Optimal RNA
Input for Differentially Expressed Genes
Discovery
The comparison of 10× scRNAseq and 1 ng RNAseq shows
that while both methods accurately identify DEGs, RNA input
biased the types of DEGs that were detected. In studies
seeking to identify specific causative genes implicated in a
manipulation (e.g., disease model, drug treatment, and altered
gene expression), discovering genes that have high fold change
and low expression level is particularly advantageous. Our data
suggest that scRNAseq may be distinctly ill-suited for this
purpose. For many applications, a bulk RNAseq approach may
therefore be desirable. However, in the case of in vivo NSCs, the
number of cells isolated from a single mouse is lower (100s–
1,000s) than that which is typically necessary for bulk RNAseq
(100,000s). We used our in vitro oxidative stress model to
determine the consequences of reduced RNA input, like that
which may be encountered in a limiting cell (lc) RNAseq analysis
of in vivo NSCs, for DEG detection. From the same samples, we
compared transcriptional profiles derived from 1 ng, 100 pg, and
10 pg of RNA input. Similar to our analysis of the 1ng samples
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above, 100 and 10 pg RNAseq data was pre-processed using
the CLEAR pipeline to eliminate unreliable, lowly expressed
transcripts (Walker et al., 2020). Principal component analysis
(PCA) showed a clear separation between H2O2- and vehicle-
treated NSCs on principal component (PC) 1 (Figure 4A). The
clearest separation, however, was by RNA input level, along
PC2 (Figure 4B).

Comparison of the median coefficient of variation (CV)
between biological replicates showed that CV increased
significantly with decreasing RNA input (Figure 4C). However,
the difference in median CV was much more moderate between
1 ng and 100 pg (∼46% increase from 1 ng to 100 pg) versus 1 ng
and 10 pg (∼77% increase). These data indicate lower precision
and reproducibility as RNA input is reduced, particularly when it
drops below 100 pg (Figure 4C). Notably, CV was substantially
larger in all conditions when data were analyzed without CLEAR
pre-processing, emphasizing the utility of this step for extraction
of reliable data in RNAseq analysis (Figure 4D). Comparison of
DEGs identified in the CLEAR-processed 10 pg, 100 pg, and 1 ng
RNAseq datasets revealed 41.5% of DEGs overlapped between
the 100 pg and 1 ng datasets, while only 9.0% of the 10 pg and
1 ng DEGs overlapped. 100 pg and 10 pg shared only 10.6% of
DEGs (Figure 4E). Analysis of gene transcript counts for DEGs
versus non-DEGs at these RNA input levels revealed that the
100 pg RNA input DEGs had a median transcript count level
comparable to that of non-DEGs and, more importantly, this
level was similar to that of the 1 ng input (Figure 4F). On the
other hand, the 10 pg RNA input dataset exhibited a significantly
lower transcript count rank of DEGs, indicating that these DEGs
consisted of genes that were more highly expressed (Figure 4F).
Cumulatively, these data indicate that using 100 pg of input
RNA preserves data quality and many DEG characteristics of
sequencing at the 1 ng+ level without requiring its substantially
higher number of cells. 10 pg of RNA, in contrast, shows greater
variability across biological replicates and has less breadth in the
count level of detected DEGs.

Limiting Cell RNAseq Enables
Differentially Expressed Genes Discovery
From Fluorescence Activated Cell
Sorting Isolated Neural Stem Cells and
Intermediate Progenitor Cells From
Individual Mouse Hippocampi
Standard bulk sequencing of adult hippocampal NSCs, a
particularly sparse in vivo population, requires pooling of several
mice to generate sufficient quantities of input RNA. Our findings
suggest that when using CLEAR pre-processing, RNA input can
be decreased substantially in a limiting cell RNAseq (lcRNAseq)
approach and still yield reliable DEGs from a wide range of gene
count levels. To test whether an RNAseq approach would be
useful for transcriptional sequencing of in vivo NSCs, we used
FACS to isolate NSCs and IPCs from 3 individual Nestin-GFP
transgenic mice (Mignone et al., 2004) (Figure 5A). In these mice,
NSCs and IPCs express GFP driven by regulatory elements of the
Nestin gene. Using immunofluorescence of fixed tissue sections

of adult Nestin-GFP mice, we confirmed that GFAP+ SOX2+
radial glia like (RGL) NSCs and SOX2+ IPCs, but not DCX+
neuroblasts/immature neurons or NEUN+ mature neurons,
expressed Nestin-GFP (Supplementary Figures 3A–D). We also
confirmed Nestin-GFP expression in CD31+endothelia and
OLIG2+oligodendroglial cells, as expected based on previous
work (Supplementary Figures 3E,F) (Artegiani et al., 2017). To
exclude the endothelia and oligodendroglial cells, we selected
for cells immunonegative for CD31, O1, and O4. To specifically
separate NSCs from IPCs, we used GLAST immunolabeling,
which is a common marker for distinguishing NSCs (Llorens-
Bobadilla et al., 2015). In this design, Nestin-GFP + GLAST+
cells represent NSCs and Nestin-GFP+ GLAST− cells represent
IPCs. To maximize RNA integrity, cells were sorted directly
into lysis buffer and converted to cDNA libraries without an
intervening RNA isolation step. Direct cDNA synthesis prevented
measurement of RNA yield to compare with our in vitro studies,
but we used the equivalent of a 60 cell RNA input amount
(estimated to approximate 100–200 pg input) to generate three
technical replicates for each biological (mouse) replicate with
a 300 cell complexity level for RNAseq and CLEAR filtering
(Figure 5A). For comparison, we also sequenced in parallel 1 ng
of RNA isolated from whole DG of three separate mice.

PCA of NSCs, IPCs, and whole DG revealed that CLEAR
pre-processing both decreased the percent variance within NSCs
and IPCs compared to PCA performed on raw data, and also
separated NSCs from IPCs into non-overlapping populations
(Figure 5B). Unfiltered (RAW) CVs for NSCs and IPCs across
biological replicates were also more than double the whole DG
CV (Figure 5C). CLEAR filtering reduced CVs by over 25% for
NSCs and IPCs. CLEAR filtering also reduced the CV between
technical replicates within the NSCs (by 25%) and IPCs (by
28%) (Figure 5D). Because tissue processing and handling can
introduce variability when assessing freshly isolated cells, it was
not surprising that the technical and biological CVs of NSCs and
IPCs here were slightly higher than that obtained with 100 pg
RNA input in vitro. However, the significant improvement in
CVs after CLEAR application confirm its utility in improving
transcriptional data from limited starting material.

FACS-isolated NSC and IPC population identities were
confirmed with expression of characteristic cell type markers for
NSCs and IPCs (Figure 5E) (Yuzwa et al., 2017; Hochgerner et al.,
2018). Higher relative expression of quiescent radial glial-like cell
(qRGL) markers β2m, Id1, Id3, and Vim by the NSC samples
over the whole DG was observed compared to the relative
expression by IPC samples, confirming accurate FACS isolation
of NSCs (Figure 5E). Likewise, higher relative expression of IPC
markers such as Calb2, Neurog2, Stmn2, and Tubb3 in the IPC
samples over the whole DG samples were observed compared
to the NSC samples, confirming accurate FACS isolation of
IPCs (Figure 5E). When compared to another published
scRNAseq dataset including NSCs and IPCs (Hochgerner et al.,
2018), we found similar enrichment for common NSC/IPC
phenotypic markers in our isolated populations as generated
by single cells that were assigned phenotype post hoc based on
their individual transcriptomes (Supplementary Figures 4A,B).
Exclusion of other cell populations was confirmed via expression
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FIGURE 4 | Determination of optimal input RNA amount with RNAseq and CLEAR that preserves unbiased DEG identification. (A) PCA of cultured NSCs shows that
cells undergoing oxidative stress diverge from control cells along principal component (PC) 1. (B) PCA of sample based on RNA input amount leads to significant
separation between samples along PC2. (C) CVs were inversely related to RNA input amount. The difference in median CV between all RNA input levels were
statistically significant. Median (red line) and quartiles (dotted lines) are shown within violin plots of CV for all genes detected in all samples. (D) Analysis of the CV
with vehicle and H2O2-treated samples of all genes detected in all three RNA inputs before CLEAR filtering shows substantially greater CVs at all RNA input levels,
confirming the utility of CLEAR preprocessing. Median (red line) and quartiles (dotted line) are shown within violin plots of CV for all genes detected in all samples.
(E) Venn diagram of DEGs identified in all three RNA input levels show good overlap between 1 ng and 100 pg but poor overlap with 10 pg. (F) Comparison of
ranked transcript counts for DEGs and Non-DEGs identified at the three different RNA input levels show no significant difference in transcript count rank between
DEGs and non-DEGs at the 1 ng and 100 pg RNA inputs. There are significant differences at the 10 pg and single cell level. ∗p < 0.5, ∗∗∗∗p < 0.0001. One-Way
ANOVA with Kruskal–Wallis test and Dunn’s multiple comparisons in (C,D,F).

of phenotypic genes for neurons, astrocytes, oligodendroglia,
endothelia, pericytes, and microglia (Figure 5E). 177 DEGs were
identified between NSCs and IPCs acutely isolated from adult
mouse DGs (Supplementary Table 3). Violin plots showing
transcript count rank for DEGs and detected non-DEGs show
that average DEG rank was significantly higher in DEGs than
non-DEGs, but this difference was moderate (30.6%, average
rank 1639 DEG v. 2064 non-DEG) and DEGs still had average
count ranks spread throughout the ranks of detectable genes
(Figure 5F). All together, these findings indicate that RNAseq of
adult DG NSCs and IPCs can be achieved from a single mouse

per sample replicate with data quality similar to that derived from
more bulk-like RNA sequencing.

RNAseq Identifies Differentially
Expressed Genes in Neural Stem Cells
and Intermediate Progenitor Cells
Induced by Lateral Fluid Percussive
Brain Injury
As proof of principle, we applied our RNAseq workflow to
a LFPI model of TBI and identified DEGs in adult mouse

Frontiers in Molecular Neuroscience | www.frontiersin.org 11 January 2022 | Volume 15 | Article 810722

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-15-810722 January 29, 2022 Time: 12:48 # 12

Denninger et al. Adult NSC RNASeq DEG Identification

FIGURE 5 | DEG identification in vivo. (A) Workflow for DEG identification from hippocampal NSCs and IPCs of individual adult mice. DGs from Nestin-GFP+ mice
were isolated and homogenized into single cell suspensions enabling FACS isolation of NSCs and IPCs for lcRNAseq. (B) PCA of transcriptome using unfiltered
RAW and CLEAR filtered data. CLEAR filtering improves separation and variance between NSC and IPC samples. (C) CV for NSC and IPC biological replicates
before and after CLEAR filtering. Dunn’s multiples comparisons ∗∗∗∗p < 0.0001 vs. DG p < 0.0001 vs. raw RGL and raw IPC. (D) CV for NSC and IPC technical
replicates (3/mouse) before and after CLEAR filtering. Unpaired t-test ∗∗∗∗p < 0.0001. (E) Heatmap shows expression of phenotypic genes in each of three
biological replicates for NSCs, IPCs, and whole DG which was sequenced from three separate Wt mice in parallel. High expression of NSC phenotypic markers in
NSCs and high expression of IPC phenotypic markers in IPCs confirmed cell type identities. Low expression of neuronal, astrocytic, oligodendroglial, endothelial,
pericyte, and microglial phenotypic genes confirmed exclusion of other major DG cell types. Gold boxes with an X were not detected. (F) Comparison of ranked
transcript counts for DEGs and Non-DEGs identified between NSCs and IPCs shows a significant but moderate shift in DEGs toward higher ranked genes.
Mann–Whitney test ∗∗∗∗p < 0.0001.
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NSCs and IPCs in vivo (Figure 6A). NSCs and IPCs from
the DGs ipsilateral to injury of three individual mice were
FACS isolated 4 h after LFPI or sham treatment. Whole DGs
from separate, but similarly treated, mice were also processed
for comparison by 1 ng RNA input sequencing. A total of
6,319 genes were identified in NSCs, IPCs, and whole DGs
(Supplementary Table 4). 23 DEGs were identified in NSCs
after LFPI with 15 significantly upregulated and 8 significantly
downregulated (Figure 6B). In the IPC population, 5 genes were
significantly upregulated while 13 genes were downregulated in
LFPI mice compared to sham mice (Figure 6C). In whole DG,
188 DEGs were identified with 106 significantly upregulated
and 82 significantly downregulated in LFPI mice compared to
sham mice (Supplementary Figure 4C). DEGs identified in
NSCs and IPCs following LFPI did not overlap with DEGs
identified on a whole DG level. In addition, NSCs and IPCs
only shared one DEG in common (Slc5a3), emphasizing the
importance of examining individual cell types, even for cells
as closely related as NSCs and their IPC progeny. DEGs from
both NSC and IPCs derived from genes throughout the range of
detected genes and showed median count levels similar to non-
DEGs (Figure 6D). RNAscope fluorescent in situ hybridization
(FISH) combined with immunohistochemical staining verified
transcriptional upregulation of Slc5a3 in NSCs and IPCs
following LFPI (Figures 6E,F). We also verified two other
DEGs upregulated in NSCs using RNAscope FISH: Serpina3n
(Figure 6G) and Timp1 (Figure 6H). Similar trends were found
when individual mouse averages of puncta per cell were used
as the replicates (n = 5 per group), though not all reached
statistical significance (Supplementary Figures 4D–G). These
findings indicate that RNAseq of acutely isolated, in vivo NSCs
and IPCs can reliably identify DEGs in an injury model.

DISCUSSION

Endogenous adult hippocampal NSCs provide a source of
both cellular and biochemical support for tissue homeostasis.
Characterizing these cells at baseline, as well as after injury,
may lead to therapeutically relevant strategies for promoting
optimal brain function. However, studying adult DG NSCs is
challenging due to their relatively low cell number, residence
within a complex niche, and their inherent heterogeneity. To
overcome this challenge, researchers have increasingly turned to
scRNAseq approaches for transcriptional profiling (Shin et al.,
2015; Hochgerner et al., 2018; Knight and Serrano, 2018; Zeng
et al., 2018; Kulkarni et al., 2019). However, we show here that,
despite the many strengths of this approach, scRNAseq may not
be the ideal method to answer certain types of research questions.
Specifically, we show that scRNAseq analysis of differential gene
expression may miss genes that are more moderately expressed
and show large fold changes in expression. We show that an
lcRNAseq approach can be used to help circumvent this problem
and discover DEGs from a broader count range and with greater
fold changes, and that such an approach can be adapted for
transcriptional profiling and DEG identification in NSCs acutely
isolated from adult mouse DG.

Using a model of oxidative stress in cultured NSCs, we
identified DEGs from the same source samples using both a
10× Chromium scRNAseq and 1 ng bulk RNAseq approach.
By using cells from the same biological replicates for both
sequencing platforms, we avoided potential variation in gene
expression induced by a difference in tissue processing. Yet, we
found little overlap in the identification of DEGs by these two
methods. This lack of overlap was maintained when scRNAseq
data were analyzed without filtering for high or low feature
counts and when the same statistical method was used for DEG
discovery in both datasets, suggesting it was not an artifact
of data processing/analysis. Despite this low overlap in DEGs,
both scRNAseq and bulk RNAseq yielded accurate DEGs that
could be confirmed with qRT-PCR in independent experimental
replicates. GO analysis of the DEGs identified using the two
different approaches also implicated mostly the same biological
pathways being triggered by injury. Furthermore, our own
investigation of false positive rate in scRNAseq, when cells were
randomly assigned to two groups, also yielded no false DEGs,
consistent with findings in Soneson and Robinson (2018), who
performed similar analyses over multiple scRNAseq datasets and
found low (sometimes no) false discoveries when using the same
statistical analysis approach that we used (Wilcoxon). In contrast
to these findings, Squair et al. (2021) recently published findings
suggesting that divergence of scRNAseq differential expression
analysis from that of matched bulk RNAseq represented false
positives in scRNAseq. This conclusion was mostly based on
simulations where they randomly assigned pseudo-replicates or
real replicates to treatment groups. Particularly when replicate-
to-replicate variation was high, large numbers of false positives
were found in this analysis. Squair et al. (2021) also used an
RNAscope assay to attempt to confirm scRNAseq-derived DEGs
in a model of spinal cord injury and found low replicability there.
RNAscope is commonly used to confirm scRNAseq findings so it
is unclear why replicability is typically reported in other studies
but not found in Squair et al. (2021). Two notable possibilities
are: (1) that a bias for reporting positive results exists in
previous literature or (2) that the often semi-quantitative nature
of RNAscope analysis can mask true differences. Altogether, these
findings suggest that the reliability of scRNAseq data requires
much more scrutiny than has been applied to-date. Our data
adds to that of the meta-analysis in Soneson and Robinson
(2018) to suggest low false positive rates when individual cells
are used as the input sample for DEG analysis and our data
go further to confirm replicability of DEGs identified this way,
though those DEGs show strong bias for higher count genes with
lower fold changes.

When we probed the difference in the kinds of DEGs identified
by scRNAseq versus 1 ng RNAseq, we found that scRNAseq
identified high count genes with lower fold changes while 1 ng
RNAseq identified genes with a wider range of count levels,
including many genes with moderate counts and higher fold
changes. Importantly, this bias in count level and fold change
emerged in comparison to transcripts detected above 0 in each
respective dataset. scRNAseq, of course, yields fewer detected
genes than a bulk approach but this difference in DEG profile
emerged even among genes that would be recorded in the dataset
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FIGURE 6 | RNAseq and CLEAR filtering enable accurate DEG identification in NSCs and IPCs in mice with lateral fluid percussive brain injury (LFPI). (A) Mice (n = 3
per group) were given lateral fluid percussive injuries or sham treatment. Four hours after injury, DGs from the ipsilateral side of the brain were isolated and processed
for RNAseq as described in Figure 5A. (B) Volcano plot of DEGs identified in NSCs after LFPI. (C) Volcano plot of DEGs identified in IPCs after LFPI. (D) Violin plot of
TBI DEG and non-DEG transcript count level distribution in NSCs and IPCs. ns, not significant, Mann–Whitney test. (E) Quantification of Slc5a3 mRNA via
RNAscope in NSCs (identified via GFAP + SOX2+ immunolabeling) confirmed upregulation after TBI (left). Representative image with arrows pointing to NSCs with
Slc5a3 expression (right). (F) Quantification of Slc5a3 mRNA in IPCs similarly confirmed increased expression after LFPI (left). Representative image with arrow
pointing to IPC with Slc5a3 expression (right). (G) Quantification of Serpina3n mRNA in NSCs also confirmed upregulation after LFPI (left). Representative image with
arrow pointing to NSC with Serpina3n expression (right). (H) Quantification of Timp1 mRNA in NSCs also showed increased expression after LFPI (left).
Representative image with arrow pointing to NSC with Timp1 expression (right). (E–H) Mean ± SEM of mean RNA puncta per cell with n = 50 cells per group from 5
mice, Mann–Whitney t-test, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗∗p < 0.0001 . Scale bars = 5 µm.
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as detected and therefore having been evaluated for potential
to be a DEG. Squair et al. (2021) similarly identified bias in
single cell data for high count genes across multiple other
datasets, suggesting that this is a common feature of single cell
analyses. Squair et al. (2021) also proposed that pseudobulk
analysis of single cell samples using biological replicates as
the input sample could improve overlap between scRNAseq
and bulk RNAseq transcriptomics. Our scRNAseq data was not
separated into the original biological replicates so this analysis
could not be done in the present study. However, using the
data from Squair et al. (2021), the improvement expected by
using pseudobulk would be moderate. They presented differential
expression overlap between single cell and bulk analysis of
parallel samples as an area under the concordance curve metric
that can range from 0 to 1. The best performing pseudobulk
analysis method showed only ∼15% median improvement on
this scale over Wilcoxon tests performed with individual cells as
the input (0.23 Wilcoxon to 0.38 pseudobulk with EdgrR-LRT
test). Pseudobulk therefore presents an improvement, but only a
marginal one. Taken together, our analyses support the need for
additional methods in the transcriptomic toolbox that facilitate
inclusion of multiple biological replicates, such as the method
we present here.

There are several likely contributors to the selectivity of
scRNAseq data for generating DEGs from high count transcripts.
The first and most obvious potential contributor is the high zero-
count rate in scRNAseq data, due to the very low RNA input from
a single cell. Transcripts with counts near threshold of detection
will be characterized by many 0-count genes and therefore have
relatively high variability from cell to cell. This high variability
may make such genes less likely to be detected as significantly
different between two conditions. Discovery of genes with higher
counts, and therefore lower zero-influenced variability, would
be favored. By being higher count, fold change is similarly
likely to be more constrained by a ceiling effect, yielding lower
fold change DEGs. Analytical processing compensations for
heteroskedasticity may also play a role. Heteroskedasticity is the
phenomenon whereby genes with relatively low counts exhibit
higher fold changes. Thus, general DEG analysis methods, such
as DESeq2, and scRNAseq analysis pipelines, such as Seurat,
correct for this problem by applying a variance-stabilizing
preprocessing step that transforms the data and minimizes the
effect of count-based technical noise on ratio-based outputs
such as log fold change in gene expression (Love et al., 2014;
Ahlmann-Eltze and Huber, 2021). Although heteroskedasticity
is recognized for any count-based data, standard bulk level
RNAseq is inherently more robust and delivers generalized
expression data for hundreds of thousands of cells. This
facilitates accurate correction for heteroskedasticity, while in
scRNAseq, low biological replicates and very low input RNA
amounts may lead to over-correction of true variation in gene
expression by variance-stabilizing preprocessing (Love et al.,
2014; Mou et al., 2020).

While our findings suggest that 10× scRNAseq and low-
input population level RNAseq are both similarly accurate, as
measured by replicability, they suggest different utility of each
approach depending on experimental goal. If characterization

of cellular heterogeneity is the goal, scRNAseq is obviously
superior. However, discovery of genes that are moderate
to lowly expressed in cells yet exhibit higher fold changes
upon stimulation is also a common goal, particularly when
searching for candidate molecular mediators or druggable
targets in models of injury and disease. Relying on scRNAseq
alone for DEG discovery could therefore limit the scope of
understanding of disease or injury-associated transcriptional
signatures. The difference in DEG characteristics between
scRNAseq and 1 ng RNAseq shown here emphasizes the
importance of identifying the ultimate goals and readouts of
an experiment to choose the method that best addresses the
needs of the study.

Although several studies have provided invaluable insight
into hippocampal NSC biology using scRNAseq (Shin et al.,
2015; Artegiani et al., 2017; Hochgerner et al., 2018), standard
bulk RNAseq to study endogenous adult hippocampal NSCs has
been challenging, as evidenced by the dearth of such studies.
Though NSCs have been successfully profiled when combined
with their IPC progeny via bulk RNAseq approach (Adusumilli
et al., 2021), NSCs alone are sufficiently rare that their “bulk” level
transcriptional profiling is especially difficult. Here, we optimized
a protocol that enables population level transcriptional analysis
of this rare cell type from individual mice. First, we used cultured
adult hippocampal NSCs to determine 100 pg as a lower RNA
input amount that enables profiling of DEGs that are comparable
to those obtained with standard bulk sequencing. Using this
threshold of 100 pg RNA input as a guide for in vivo analysis, we
isolated adult DG NSCs and IPCs from individual Nestin-GFP
reporter mice to profile the transcriptomes of each population at
a 300 cell complexity level.

To ensure accurate identification of DEGs from this low input
level, we applied CLEAR filtering which was previously shown to
minimize technical noise due to limited RNA input (Walker et al.,
2020). In brief, CLEAR preprocessing removes transcripts from
analysis that are detected below a threshold. That threshold is
determined by observing where on an mRNA transcript sequence
RNAseq read fragments map. When reads show preferential
mapping to only 3′ and 5′ ends of their mRNA transcripts, it
indicates strong RNA degradation, a feature which predominates
as transcript count drops. CLEAR filtering removes transcripts
with counts below the threshold where most transcripts start
to show this pattern of mapping more exclusively toward the
3′ and 5′ ends of their mRNA sequences. CLEAR filtering of
our data improved the coefficient of variation between biological
replicates for normalized counts at all RNA input amounts
in vitro and in vivo, and was essential for effective transcriptional
separation of in vivo-isolated NSCs and IPCs via PCA. We
showed that this workflow, with CLEAR filtering, accurately
profiled the transcriptomes of NSCs and IPCs. This ability to
capture population level complexity with a low amount of RNA
input is valuable when studying rare cell populations in complex
experimental models of disease or injury where maximizing
biological replicates is critical but limited by time and labor costs.

To demonstrate the utility of our approach for transcriptional
profiling of in vivo NSCs, we applied it in a proof-of-principle
experiment identifying TBI-associated DEGs from in vivo NSCs
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and IPCs. Using our workflow, we obtained cell type specific
DEGs 4 h after the LFPI model of TBI. In response to LFPI,
NSCs and IPCs showed mostly unique DEGs, with only one
exception: both upregulated Slc5a3, a sodium-coupled inositol
transporter protein that maintains osmotic pressure in cells
and regulates intracellular myo-inositol levels (Andronic et al.,
2015). We confirmed transcriptional upregulation of Slc5a3, as
well as two other DEGs, Serpina3n and Timp1, with RNAScope
in situ hybridization paired with immunofluorescent staining
to identify NSCs and IPCs. These findings suggest that our
population-level approach to RNAseq of isolated NSCs and IPCs
can effectively identify replicable changes in gene transcription
after an injury stimulus.

There are several limitations to this study. First, we only
compared bulk RNAseq to scRNAseq using a 10× Chromium
platform. It is therefore possible that other approaches to
scRNAseq would yield different results than what we found.
However, many of the limitations we noted seemed inherent
to working with very low RNA input levels and were not
exclusive to our experimental platform (in vitro NSCs) or any
one approach to data analysis. Second, the specific cell/RNA
input levels that we identified as yielding more bulk-like range
in DEG count level and fold change may not apply outside of
our selected cell population (adult NSCs). RNA content, cellular
heterogeneity and capture efficacy of different cell types and tissue
sources will likely influence the appropriate cell input needed
in other models. Third, transcriptomics does not equate with
proteomics. Particularly in NSCs, there appears to be substantial
translational priming, in which mRNA is produced but not
translated (Denninger et al., 2020; Kjell et al., 2020). Thus, both
transcriptional and proteomic analyses are needed to accurately
characterize NSCs in health and disease. Lastly, we applied
our workflow to the LFPI model of TBI as proof of concept
to demonstrate the utility of our method for transcriptional
profiling of rare cell types on a population level. While we did
identify several DEGs in adult DG NSCs acutely after LFPI, the
potential transcriptional changes that occur at later timepoints
and in the contralateral DG NSCs are yet unknown and would
provide valuable information about how these cells behave in the
context of TBI. Future potential applications of our method are
not just limited to TBI models. Our method may be applied to
any labor-intensive animal model that seeks to interrogate rare
cell types, such as certain spinal cord or even hippocampal cell
types after spinal cord injury.

CONCLUSION

We present a comparison of two different approaches to
transcriptional profiling, scRNAseq and population level
RNAseq, of adult hippocampal NSCs, a rare cell type that is
difficult to study in vivo. We found that each had their strengths,
as well as weaknesses, which should be balanced with the needs
of each specific study. We have shown here that our method for
in vivo transcriptional profiling in a bulk-like lcRNAseq approach
can provide valuable information about rare cell populations
that are traditionally difficult to study in vivo. Thus, we present

our workflow as an addition to the transcriptional toolbox for
studying limited in vivo cell types moving forward.
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