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Abstract

Minor ginsenosides (MGs) (include ginsenoside F2, Compound K, PPT, etc), which are gen-

erally not produced by ginseng plants naturally, are obtained by deglycosylation of major

ginsenosides. However, the conventional processes used to produce deglycosylated ginse-

nosides focus on the use of intestinal microorganisms for transformation. In this study, an

edible and medicinal mushroom Stereum hirsutum JE0512 was screened from 161 β-gluco-

sidase-producing soil microorganisms sourced from wild ginseng using the plate coloration

method. Furthermore, JE0512 was used for the production of CK from ginseng extracts

(GE) in solid-state fermentation (SSF) using 20 g corn bran as substrate, 4 g GE, and 20%

inoculation volume, and the results showed that the highest CK content was 29.13 mg/g.

After combining S. hirsutum JE0512 with cellulase (Aspergillus niger), the MGs (F2, CK, and

PPT) content increased from 1.66 to 130.79 mg/g in the final products. Our results indicate

that the Stereum genus has the potential to biotransform GE into CK and the combination of

S. hirsutum JE0512 and cellulase could pave the way for the production of MGs from GE.

1. Introduction

Ginseng is a perennial herbaceous plant of the genus Panax in the Araliaceae family. Among

them, Asian (Panax ginseng) and American ginseng (Panax quinquefolius) are the two most

well-known species and are both commonly used for their medicinal properties [1]. Ginseng is

a famous and valuable medicinal and edible plant; this perennial herb has been used to

enhance immunity, reduce fatigue, slow aging, and provide nutrition around the world [2].

Modern pharmacological experiments have shown that ginseng contains a variety of bioactive

compounds, including ginsenosides, polysaccharides, phenols, and polyacetylenes [3]. Among

them, ginsenosides are considered to be the main components underlying the pharmacology

and biological activity of ginseng [2].

As of the time of writing, about 180 ginsenoside derivatives have been identified from dif-

ferent parts of Panax quinquefolius, processed P. ginseng products, and other Panax spp. [4].

All ginsenosides share the same basic structure, consisting of a dammarane steroid nucleus

with 17 carbon atoms arranged in four rings. The structural diversity of ginsenosides is due to
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differences in the type, attachment position, and the number of sugar moieties (Fig 1). Ginse-

nosides are classified into three groups based on the types of aglycone structures; namely, olea-

nane (Ro), protopanaxadiol-type (Rb1, Rb2, Rb3, Rc, Rd, F2, Compound K, and PPD), and

protopanaxatriol-type (Re, Rf, Rg1, Rg2, Rh1, and PPT) [5]. MGs [6,7] are more pharmacologi-

cally active due to their lower molecular weight, higher cell membrane permeability, and easier

absorption in the gastrointestinal tract compared to the major ginsenosides [8]. Recent in vivo
and in vitro studies have shown that MGs have many pharmacological activities, including

anti-tumour [9], anti-inflammation [10,11], anti-cancer [12,13], skincare [14], and hypogly-

caemic [15] properties. Among them, Ginsenoside Compound K (CK) tablets are undergoing

clinical trials in China for arthritis prevention and treatment under approval (CDEL20130379)

by the China Food and Drug Administration (CFDA) [16]. We used CK content as the main

indicator for screening microorganisms because of the high pharmacological value of CK.

MGs, which mostly do not exist naturally in ginseng plants, are obtained by deglycosylation

of major ginsenosides (such as Rb1, Rb2, Rc, Rd, Re, Rg1) [17]. A plethora of techniques,

including heat treatment [18], acid or alkaline hydrolysis [18], enzyme transformation [2], and

microbial transformation [19] have been developed to produce MGs from major ginsenosides.

Microbial and/or enzymatic treatment provides many benefits over conventional physical and

chemical treatments, as they involve environmentally-friendly processes that can be performed

under mild conditions with high regio- and diastereoselectivity and in simple reaction steps

[20]. Usually, in these methods, a large number of microbial or enzyme preparations are

obtained by liquid-state fermentation (LSF). However, in the past few years, compared with

LSF, SSF has become a promising alternative for obtaining higher enzyme titers and biological

products from low-value raw materials [21]. SSF, using different agro-industrial wastes as both

carbon sources and inducers for microbial transformation, would make the MGs production

process more economically viable. In recent years, few studies have reported that some edible

and medicinal mushrooms could possess a series of ginsenoside-hydrolyzing β-glucosidases

and can effectively transform ginsenoside Rb1 to CK [20,22]. In addition, many researchers

have focused on using purified monomer ginsenosides instead of GE for the production of

CK, which would increase production costs at an industrial scale.

Driven by the root exudates, rhizosphere soil accommodates distinct microbial species with

diversified activities. Many β-glucosidase producing microorganisms have been isolated from

ginseng field soils and proved effective in hydrolyzing ginsenosides [23,24]. In this study, an

edible and medicinal mushroom Stereum hirsutum JE0512 was isolated to transform GE (con-

taining a variety of major ginsenosides) into MGs. To the best of our knowledge, there have

been no prior studies on the use of S. hirsutum, a producer of β-glucosidase, to produce MGs

from GE through SSF. As cellulase contains β-glucosidase, which is involved in the production

of MGs [25], we hypothesized that the combination of cellulase and S. hirsutum JE0512 could

enhance MGs production. In this study, we focused on optimizing the SSF process parameters

(agro-industrial substrate, inoculation volume, amount of GE, and fermentation period) for

CK production and the changes in ginsenoside content during S. hirsutum JE0512 SSF with

two different cellulases. The production of ginsenosides through SSF not only reduces the pro-

duction cost associated with the conventional process but also provides a reference for the pro-

duction of high value-added products using microbial/enzyme stage control.

2. Materials and methods

2.1. Materials

Ginsenosides standards (Rb1, Rb2, Rb3, Rc, Rd, F2, CK, Re, Rg1, F1, and PPT) were purchased

from Chengdu Must Biotechnology Co., Ltd. (Chengdu, Sichuan, China), with a purity of
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98%. GE (containing 80% ginsenosides) from the stems, leaves, and roots of Panax ginseng was

collected from Xi’an Tianxingjian Natural Bio-products Co., Ltd. (Xian, Shanxi, China). Other

chemicals and reagents used were of analytical grade and were purchased from Sigma-Aldrich

(Shanghai, China).

2.2. Screening of β-glucosidase producing strains

Genipin, the product of geniposide hydrolysis by β-glucosidase, can react with amino acids to

form a stable blue-colored compound [26]. Based on this principle, we designed a screening

Fig 1. The chemical structural formula of ginsenosides. Glc, β-D-glucopyranosyl; arap, α-L-arabinopyranosyl; xyl, β-D-xylopyranosyl; araf, α-L-

arabinofuranosyl; rha, α-L-rhamncpyranosyl; Gyp, gypenoside; C, compound.

https://doi.org/10.1371/journal.pone.0255899.g001

PLOS ONE Production of minor ginsenosides by combining Stereum hirsutum and cellulase

PLOS ONE | https://doi.org/10.1371/journal.pone.0255899 August 6, 2021 3 / 17

https://doi.org/10.1371/journal.pone.0255899.g001
https://doi.org/10.1371/journal.pone.0255899


medium for isolating β-glucosidase-producing fungal strains. Ginseng rhizosphere soil sam-

ples were collected from 5 cm3, 20 cm3, and 1 m3 around wild ginseng plants in Fusong (Jilin,

China), stored at 4˚C and used within half a year. 1g soil sample was added to 9ml of deionized

water and diluted step by step. Diluted samples (200 μL) with dilution factors of 10−1 to 10−6

were spread on modified potato dextrose agar (PDA) medium, supplemented with 1 g/L geni-

poside and 10 g/L L-glutamate, and cultured at 25˚C for 3–7 days. Based on visual inspection

of the colony growth and color change on the plate, all colonies that changed the color of the

medium were picked and cultured on new plates for purification. The pure isolates were stored

at 4˚C for further experiments.

2.3. Identification of CK producing strains

The selected fungal strains were transferred to a 250-ml Erlenmeyer flask containing 50 ml

PDA medium and cultured at 25˚C in a rotating shaker (180 rpm). After 4 days, 1 g of GE

was added to the growth medium, and the cultures were further incubated for 7 days. The

fermentation broths were harvested by centrifugation (5000 ×g, 10 min) for CK content

assays, which were determined by HPLC. The fungal strain with the highest CK content was

selected for further characterization. For molecular characterization, total genomic DNA

was extracted using the Ezup column fungal DNA kit (Sangon Biotech, Shanghai, China)

according to the manufacturer’s instructions. The fungal 18S ribosomal DNA (rDNA) uni-

versal primers 5´- GTAGTCATATGCTTGTCTC-3´ and 5´-GCATCACAGACCTGTTATTGC
CTC-3´ were used as templates, and the PCR products were recovered using the SanPrep

column DNAJ gel recovery kit (Sangon Biotech, Shanghai, China) and sent to Sangon Bio-

tech (Shanghai, China) for sequencing. The 18S rDNA sequence was compared against the

GenBank database using the online BLAST program (http://www.ncbi.nlm.nih.gov/BLAST/

Blast.cgi). A phylogenetic tree was constructed using the neighbor-joining method with the

application MEGA 7.0 [27].

2.4. Analysis and optimization of multiple factors for SSF

For the selection of an optimal agro-industrial substrate, different substrates such as rice, corn

flour, soybean bran, corn bran, wheat malt, oat, soybean flour, and wheat were tested. Briefly,

20 g of the substrate was mixed with 1 g GE at a moisture content of 60% and sterilized in a

250-ml Erlenmeyer flask. Then, samples were inoculated with the selected fungal strains and

grown at 25˚C, pH (6.8) in the dark for 5 days through SSF.

Factors such as inoculation volume (v/w) (5%, 10%, 15%, 20%, 30%), amount of GE (1 g, 2

g, 4 g, 7 g, 10 g), and fermentation period (0 d, 3 d, 5 d, 8 d, 10 d, 15 d) were optimized by vary-

ing one factor at a time, and the optimized parameters were subsequently used to evaluate the

synergistic effect of the combination of fungal strain and cellulase on the production of

ginsenosides.

2.5. Combination of JE0512 with cellulase for SSF

The optimal fermentation method for the production of CK was selected based on the optimi-

zation results in 2.4. Cellulases derived from Trichoderma viride and Aspergillus niger were sep-

arately inoculated into the sterilized fermentation medium at a ratio of 2.5% (w/w) and

fermented using the optimal fermentation method in 2.4 to compare the effect of adding dif-

ferent cellulases on the composition of ginsenosides. The enzyme activity of solid cellulase

from T. viride (purchased from Sinopharm, Shanghai) was 15,000 U/g and the enzyme activity

of solid cellulase from A. niger (laboratory prepared and preserved) was 110 U/g.
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2.6. Sample preparation

For determination of β-glucosidase activity, the fermentation products were extracted with

Na2HPO4-NaH2PO4 buffer (pH 6.0, 50 mM) in a 1:5 ratio at 4˚C for 12 h, and the extracted

solutions were centrifuged (5000 ×g, 20 min) to filter the mycelium and impurities. The super-

natants were collected as crude extracts [28].

To determine ginsenoside content, the fermentation products were extracted with an equal

volume of n-butanol, and the n-butanol fraction was then evaporated until dry using a vacuum

rotary evaporator. A total of 10 ml of methanol (HPLC grade) was added to the dried products,

and the solutions were filtered using the 0.22-μm ultrafiltration membrane. HPLC and

UPLC-Q-TOF-MS analysis were performed on the resulting product.

2.7. Analysis of β-glucosidase activity

The β-glucosidase activity was assayed as described by the previous reports [3,29], with some

modifications. 100 μL crude enzyme extracts were mixed with 200 μL of 5 mmol/L PNPG and

reacted at 50˚C. After 30 min of reaction, 2 ml of 1 mol/L Na2CO3 was added to terminate the

reaction, and absorbance data were obtained using a microplate spectrophotometer at a wave-

length of 400 nm. P-nitrophenol (p-NP) was used for the preparation of the standard curve,

and one activity unit (AU) of β-glucosidase was defined as the amount of enzyme required to

release 1 μmol of p-NP per min under assay conditions.

2.8. Quantitative and qualitative analysis of ginsenosides

Samples of ginsenoside standards (Rb1, Rb2, Rb3, Rc, Rd, F2, CK, Re, Rg1, F1, and PPT) and the

fermentation samples were quantified using an Agilent 1260 HPLC system (Agilent Technol-

ogy, California, USA), equipped with a Sepax GP-C18 column (4.6 mm × 250 mm, 5 μm). Gin-

senoside standard solutions with concentrations of 0.5, 1, 1.5, 2, and 4 mg/mL were prepared

in methanol (HPLC grade). Acetonitrile (solvent A) and water (solvent B) were used as the

mobile phases. Gradient elution was performed, beginning with 70% solvent A and 30% sol-

vent B for 0–30 min, progressing to 45% solvent A and 55% solvent B for 30–45 min, and 70%

solvent A and 30% solvent B for 45–60 min. The flow rate of the mobile phase was 1 mL/min,

the column temperature was 30˚C, injection volume was 10 μL, and this was monitored at 203

nm absorbance using a UV spectrophotometric detector. In addition, samples of the ginseno-

side CK standard and the fermentation samples of the strain with the highest yield of CK were

analyzed using MALDISYNAPTQ-TOFMS (Waters Acquity UPLC, Mass, USA).

The different ginsenoside content standard curves were defined using the equations, Rb1:

Y = 4040.9X - 114.63, R2 = 0.999; Rc: Y = 2706.4X - 1.9358, R2 = 1.000; Rb2: Y = 2695.5X

+ 63.511, R2 = 0.999; Rb3: Y = 2705.1X + 47.813, R2 = 0.999; Rd: Y = 2781.3X + 79.36, R2 =

0.999; F2: Y = 3665.6X + 99.908, R2 = 0.999; CK: Y = 4332.1.5X - 60.342, R2 = 0. 999; Re:

Y = 2881.7X + 95.954, R2 = 0. 999; Rg1: Y = 3292.2X + 18.353, R2 = 0. 999; F1: Y = 4219.5X

+ 33.093, R2 = 0. 999; PPT: Y = 1480.6X + 30.957, R2 = 0. 999, where Y is the peak area and X

is the ginsenoside content (mg/mL).

Ginsenoside content was subsequently calculated using according to the following Eq (1).

YGC ¼
X � V

m� 80%
ð1Þ

where YGC is the ginsenoside content in the sample in mg/g; X is the ginsenoside content in

mg/ml; V is the volume of methanol (HPLC grade) added to the dried products in mL; m is

the mass of GE in g.
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2.9. Statistical analysis

All findings are reported as the mean ± standard deviation (n = 3). Data analyses were con-

ducted using SPSS 25.0 [19] and results are expressed as mean ± standard deviation. One-way

ANOVA was used to assess the statistical significance of the differences in expression levels.

Different letters (a-e) indicate significant differences between each other (P< 0.05). Graphs

and plots were generated using Origin 9.1.

3. Results and discussions

3.1. Isolation and screening of β-glucosidase producing fungi

Genipin, a hydrolysate of geniposide by β-glucosidase, produces a stable blue color upon reac-

tion with amino acids [26] (Fig 2A). Based on this mechanism, β-glucosidase-producing

strains were screened by plate coloration, colonies with a blue circle had a higher β-glucosidase

activity (Fig 2Bb), while the negative colonies showed no color change (Fig 2Ba). We isolated

161 β-glucosidase producing microorganisms from the ginseng rhizosphere soils using the

plate coloration method. Among them, four strains possessed the activity of transforming GE

into CK as shown by HPLC analysis (Fig 2C and 2D), with JE0512 showing the highest activity

in transforming GE into CK (8.34 mg/g). Fu et al. [23] isolated β-glycosidase-producing

microorganisms from a ginseng field and found that Sphingomonas asaccharolytica could

hydrolyze major ginsenosides to CK. There have been some previous reports on the use of GE

as a substrate for the production of CK through fermentation. For example, Rae et al. [30] used

Cordyceps sinensis to ferment red GE, and the CK content was 108.3 ± 13.5 μg/ml after 7 days.

In another study, Kim et al. [31] fermented red GE with Lactobacillus plantarum M4, and the

content of CK was 0.3 ± 0.05 mg/g in 5 days while Hsu et al. [20] obtained 1.11 ± 0.20 μmol/g

of CK in 30 days by fermenting the American GE with Ganoderma lucidum. Compared with

the above studies, JE0512 can obtain a higher yield in a short time. Therefore, JE0512 has great

potential for the preparation of CK from GE.

3.2. UPLC-Q-TOF-MS analysis of a fermentation sample of JE0512

UPLC-Q-TOF-MS is one of the state-of-the-art techniques used for the rapid chemical profil-

ing of medicinal herbs. Furthermore, the accurate mass values and low energy collision-

induced dissociation (CID) of Q-TOF-MS have made UPLC-Q-TOF-MS a powerful tool for

identifying and quantifying ginsenosides in ginseng [32]. CK is the major ginsenoside in the

final fermentation product. Further confirmation and identification were carried out by com-

paring the mass spectra and retention times of samples collected from JE0512 (7 days) with the

CK standard. The total ion current chromatograms of the CK standard (Fig 3A) showed a CK

peak at approximately 18.61 min, while the total ion current chromatogram of the fermenta-

tion sample of JE0512 LSF had a clear peak at the same retention time (Fig 3B). This indicates

that JE0512 can produce CK, which was supported by the HPLC detection of this product. The

samples of the CK standard and JE0512 were analyzed by UPLC-Q-TOF-MS to determine the

molecular weights. The CK standard samples showed a quasimolecular ion peak at m/z 667

[M–H + HCOOH] − (Fig 3C); however, an ion peak at m/z 621 [M − H] − (m/z 621) was not

detected. The samples of JE0512 LSF showed quasi-molecular ion peaks at m/z 667 [M–H

+ HCOOH] − and m/z 621 [M − H] − (Fig 3D). Formic acid was added to the mobile phase,

not only as a chromatographic modifier but also to produce [M–H + HCOOH] − adduction.

For example, protopanaxadiol and protopanaxatriol-type ginsenosides could generate adduct

ions [M–H + HCOOH] −, which was helpful for the confirmation of deprotonated molecular
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ions [M − H] − [33]. The same retention time and fragment ions were used to confirm the exis-

tence of CK in the JE0512 fermentation samples.

3.3. Characterization of strain JE0512

After culturing JE0512 at 25˚C for 5–7 days on an agar plate, we characterized it as a filamen-

tous, round, white fungus with a diameter of 4.0–7.0 cm (Fig 4A). A clamp connection was

observed in the microstructure of the JE0512 mycelium, and the dense and reticular cross

growth of hyphae could be seen in the scanning electron microscope (S1 Fig). For molecular

characterization of strain JE0512, a 1,332-bp 18S rDNA fragment was amplified by PCR and

sequenced. Sequence analysis indicated a 99.62% similarity with the sequence of Stereum hir-
sutum (accession no. U59095.1). A phylogenetic tree based on the 18S rRNA gene sequences

Fig 2. Screening of strains biotransformed GE into CK. A: Geniposide was hydrolyzed to genipin by β-glucosidase; B: Colonies on the plate without glucosidase

activity (a), colonies with a blue circle had a higher β-glucosidase activity (b); C: Comparison the ability of strains to biotransform GE into CK. Values are means ± SD of

three replications; D: HPLC profiles of ginsenosides in ginsenosides standard, GE, and GE fermented with JE0512.

https://doi.org/10.1371/journal.pone.0255899.g002
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of the isolate and phylogenetically related fungi (Fig 4B) confirmed that JE0512 is closely

related to Stereum hirsutum. Thus, the research strain was identified as Stereum hirsutum
JE0512. Fungi of the genus Stereum belong to the family Stereaceae (Basidiomycetes) [34].

Given that most of the Stereum species isolated from previous studies exhibited a series of

interesting sesquiterpenoid skeletons, including sesquiterpene [35], benzoate ester [36], and

norilludalane [37], this genus of fungi is one of the major sources of structurally diverse sesqui-

terpenes. To the best of our knowledge, there is no information on the biotransformation of

GE to MGs by fungi belonging to the Stereum genus.

3.4. Optimization of main SSF process parameters for maximum CK

content

According to the previous study [38,39], the fermentation substrate, inoculation volume,

amount of GE, and fermentation period are among the main parameters influencing CK con-

tent and β-glucosidase activity in the SSF process. The optimum values of these parameters to

maximize CK content and β-glucosidase activity when fermented by Stereum hirsutum were

determined using a single-factor methodology. The results are presented in this section.

Fig 3. UPLC-Q-TOF-MS analysis of the fermented sample of JE0512. A: Total ion current chromatograms of CK standard; B: Total ion current chromatograms of

JE0512 fermentation sample; C: Mass spectrum of CK standard; D: Mass spectrogram of JE0512 fermentation sample; E: The chemical structural formula of CK.

https://doi.org/10.1371/journal.pone.0255899.g003
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The optimal SSF process parameters for CK content were 20 g corn bran substrate, 4 g GE,

and 20% inoculation volume.

3.4.1. Optimization of agro-industrial substrates. The production yields of secondary

metabolites can be improved with SSF, and the solid substrate is a key factor for the efficient

and economical production of target bioproducts [40]. Thus, the selection of an appropriate

solid substrate is of great importance for industrial production. In this study, different agro-

industrial substrates, including rice, cornflour, soybean husk, corn bran, wheat bran, wheat,

soybean flour, oat, and malt, were examined for their ability to support SSF. Because of starch

gelatinization, starchy substrates usually exhibit high viscosity after high-temperature steriliza-

tion [41]. Taking the high O2 consumption in CK production in SSF into consideration,

porous substrates could improve the conditions of aeration and oxygen transfer. As shown in

Fig 5A, CK content in SSF with soybean husk (8.24 mg/g), corn bran (8.86 mg/g), and wheat

bran (8.52 mg/g) as the substrate were significantly higher than that with other substrates.

These are cost-effective and easily available renewable resources. However, their potential has

not been fully realized. This study provides a new idea for their utilisation. Rice, soybean flour,

and other substrates have a high starch content, which increases the viscosity and volume of

substrates after sterilisation at high temperature and high pressure, thus decreasing the gap

between particles and the dissolved oxygen coefficient. It is not conducive to the spread and

growth of mycelia; however, this problem can be overcome by the addition of corn bran.

Filamentous fungi, yeasts, and bacteria are widely used to produce enzymes by SSF. SSF is

an attractive method for filamentous fungus cultivation because the solid substrates mimic the

natural habitat of fungi, resulting in improved growth and secretion of a wide range of

enzymes [42]. The conversion of enzymatic ginsenoside-to-CK is greatly affected by enzyme

activities, and β-glucosidase activity is considered the key factor in the selection of strains to be

used for biotransformation of ginsenosides to CK [43]. In this study, β-glucosidase was

selected to evaluate the enzyme activity during SSF among other enzyme activities in Stereum
hirsutum JE0512. The SSF β-glucosidase activities of soybean husk (26.55 U), corn bran (37.46

U), and wheat bran (30.30 U) were significantly higher than those of other substrates (Fig 5A)

and were consistently correlated with CK content. Corn bran was the best substrate for both

Fig 4. Identification of strain JE0512. A: Colony morphology of the isolate JE0512 grown at 25˚C on PDA. B: Phylogenetic analysis of the related species of

the strain JE0512 using the neighbor-joining approach. The scale bars represent 0.002 substitutions per site. The tree was constructed using a neighbor-joining

method with bootstrap values of 1000 replications.

https://doi.org/10.1371/journal.pone.0255899.g004
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CK content and β-glucosidase activity and provided the best support among the nine tested

agro-industrial substrates. From these results, corn bran was selected as the optimal substrate

for SSF in subsequent experiments, it is very high in fiber, and it can be used in a wide range of

processes. Many commercial food producers use this substance as a filler in their products,

and to reduce the caloric value of snack foods. The edibility of the substrate makes it possible

for us to study the use of this technology for the production of snack foods or health products

containing CK in the later stage.

3.4.2. Optimization of inoculum concentration. Fig 5A shows the proportional relation-

ship between CK content and β-glucosidase activity. We also found a proportional relationship

between fungal biomass and β-glucosidase activity in our initial experiments. Based on these

results, we determined the effect of inoculum concentration on CK content and β-glucosidase

Fig 5. Optimization of main SSF process parameters for maximum CK content and β-glucosidase activity. A: Effect of the solid-state fermentation substrate

(20 g); B: Effect of inoculation volume (%); C: Effect of the amount of ginseng extracts (g); D: Effect of fermentation period (d). Values are shown as means ± SD

of three replications. A one-way ANOVA was used to assess the statistical significance of the differences in expression levels. Different letters (a-e) indicate

significant differences between each other (P< 0.05).

https://doi.org/10.1371/journal.pone.0255899.g005
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activity. Stereum hirsutum JE0512 was cultured in 20 g corn bran substrate and 1g GE at 25˚C

for 5 d. The effects of different inoculation volumes on CK content and β-glucosidase activity

are shown in Fig 5B. Our results confirmed that CK content and β-glucosidase activity

increased slightly following the increase in inoculation volume. However, CK content and β-

glucosidase activity were reduced at a 30% inoculation volume. These results also indicate that

an inoculation volume of 20% was optimal for enzyme production and enhanced ginsenoside

production. The maximized CK content and β-glucosidase activity was 11.82 mg/g and 41.85

U, respectively. Logically, the enzyme activity should increase with an increase in inoculation

volume and biomass. The maximum enzyme activity was not reached at an inoculation vol-

ume of 30%, as the excess fungal biomass consumed nutrients too quickly.

3.4.3. Optimization of GE amount. To investigate the effect of the amount of GE on

enzyme activity and CK content, 20% inoculation volume of Stereum hirsutum JE0512 was cul-

tured in 20 g corn bran substrate with different amounts of GE (1 g, 2 g, 4 g, 7 g, and 10 g),

where the optimal amount of GE for CK production and β-glucosidase activity was found to

be 4 g (Fig 5C). The highest CK content was 19.09 mg/g, and the highest β-glucosidase activity

was 52.71 U. In our initial experiments, we found that GE has a high viscosity. Therefore, we

hypothesize that adding an appropriate amount of extract would help the production of

enzymes while adding an excessive amount of GE would increase the viscosity of the fermenta-

tion substrate and delay the growth of mycelium. The optimal amount of GE we mention here

provides a reference for the development of Stereum hirsutum JE0512 for the industrial pro-

duction of CK.

3.4.4. Optimization of the fermentation period. The effect of the fermentation period

on the biotransformation process was investigated under optimized fermentation conditions

(20 g corn bran substrate, 4 g GE, and 20% inoculation volume). A bar chart of the samples at

different days of fermentation is shown in Fig 5D. Our results indicated that CK content and

β-glucosidase activity increased significantly with the prolongation of the fermentation period.

Using unfermented GE and medium as the control, the CK content and β-glucosidase activity

in the samples of the control group could not be detected. After 10 days of fermentation, we

observed that the composition of ginsenosides was significantly altered; while the content of

CK increased from 8.86 mg/g to 29.13 mg/g (4-fold increase), the activity of β-glucosidase

increased from 37.46 U to 113.96 U (3-fold increase). There was no significant change in CK

content and β-glucosidase activity at 15 days compared to the 10 days. We chose to ferment

for 10 days for a greener economy.

3.5. Analysis of the effects of combining JE0512 with cellulase

The optimal operational conditions vary over a wide range depending on the process, and dif-

ferent products can be obtained from the same substrate under different operational condi-

tions and/or by inoculating different strains of microorganisms [42]. The industrially

important MGs can be efficiently produced from major ginsenosides by the combined use of

different-type ginsenosidases [44]. Therefore, we combined Stereum hirsutum JE0512 with cel-

lulases from different sources (Trichoderma viride and Aspergillus niger) to analyze the changes

in ginsenoside content produced during the fermentation process. In this study, 4 g of GE and

2.5% (w/w) cellulase were added to 20 g corn bran substrate with a 20% inoculation volume,

and the changes in ginsenoside content affected by different cellulases were investigated. The

changes in ginsenoside content in GE, GE + JE0512, GE + JE0512 + cellulase (T. viride), and

GE + JE0512 + cellulase (A. niger) were analysed (Table 1). 11 ginsenosides (Rb1, Rc, Rb2, Rb3,

Rd, F2, Re, Rg1, F1, CK, and PPT) were analysed by HPLC.
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Our results indicated that the amounts of ginsenosides Rb1, Rc, Rb2, Rb3, Re, Rg1, F1, and

Rd (596.69 ± 0.14 mg/g) in uninoculated GE (control) were higher than the amounts of MGs

F2, CK, and PPT (1.66 ± 0.02 mg/g), with Rd (270.24 ± 0.02 mg/g) being the highest. The con-

tent of Rb1, Rc, Rb2, Rb3, Re, Rg1, F1 and Rd in GE was 16.28, 28.00, 65.16, 38.74, 0.00, 178.27,

0.00, 270.24 ± 0.02 mg/g respectively. After GE was fermented, none of the samples from three

fermentation methods [(GE + JE0512, GE + JE0512 + cellulase (T. viride), and GE + JE0512

+ cellulase (A. niger)] had detectable levels of ginsenosides Rb1, Re, and Rg1, which were bio-

transformed into more bioactive MGs [45] (F2, CK, and PPT) (S2 Fig). It is well known that

microorganisms and/or their enzymes convert ginsenosides to CK through the hydrolysis

pathways of Rb1!Rd!F2!CK [23], Rc!Gyp XVII!Gyp LXXV!CK [46],

Rb2!CO!CY!CK [23], Rb3!CMx1!CMx!CK [23], and Rc!CMc1!CMc!CK [47],

and PPT through the hydrolysis pathways of Re!Rg1!F1!PPT, Re!Rg2!Rh1!PPT, and

Rf!Rh1!PPT [48] (S3 Fig). SSF offers many advantages over LSF, such as a low risk of con-

tamination, high yield, and high enzyme activity, which make this process more attractive

[42]. The experimental data we obtained verify this theory. After 10 days of fermentation, the

composition of ginsenosides was significantly altered, the content of ginsenosides (Rb1, Rc,

Rb2, Rb3, Re, Rg1, F1 and Rd) decreased from 596.69 mg/g (GE) to 213.30 mg/g (GE + JE0512),

while the content of MGs (F2, CK and PPT) increased from 1.66 mg/g (GE) to 54.04 mg/g (GE

+ JE0512). Among them, ginsenoside Rd showed the highest decrease, 109.48 mg/g, and CK

showed the highest increase, of 29.13 mg/g. CK is the major ginsenoside in the final fermenta-

tion product, and the contribution of CK to the total amount of MGs (F2, CK, and PPT) was

53.90%. Therefore, we suggest that the increase in ginsenoside CK level was mainly caused by

the conversion of Rd during fermentation. Additionally, the contents of the other four ginse-

nosides (Rb1, Rc, Rb2, and Rb3) also decreased during fermentation. Taken together, the

increase in CK level may be mainly attributed to the conversion of Rd by the removal of two

glucose units at the C-3 position. Furthermore, ginsenoside Rb1 can be transformed into CK,

by the removal of two glucose units at the C-3 position and one glucose unit at the C-20 posi-

tion, while Rc can be transformed into CK, by removing two glucose units at the C-3 position

and one arabinose unit at the C-20 position, Rb2 can be transformed into CK, by removing

two glucose units at the C-3 position and one arabinose unit at the C-20 position, Rb3 can be

transformed into CK, by removing two glucose units at the C-3 position and one xylose unit at

the C-20 position, and Re can be transformed into PPT, by removing one glucose unit and one

rhamnose unit at the C-6 position and one glucose unit at the C-20 position. The reactions can

be summarised as follows: Rb1!Rd!F2!CK, Rc!Gyp XVII!Gyp LXXV!CK,

Rb2!CO!CY!CK, Rb3!CMx1!CMx!CK, and Re!Rg1!F1!PPT (S3 Fig).

In samples with GE + JE0512 + cellulase (T. viride), the MGs (F2, CK, and PPT) content

was not significantly different from those of JE0512. These results indicate that cellulase (T. vir-
ide) had almost no effect on the total ginsenoside content. It has been reported that enzymes

belong to glycoside hydrolase (GH) family 3 can hydrolyze the inner glucose at C-20, C-3, and

C-6 of ginsenosides, and enzymes belong to GH family 1 can hydrolyze the outer glucose at C-

20 and C-3 in PPD-type ginsenosides [49]. In addition, arabinosidases, rhamnosidases, xylosi-

dases, and β-glycosidase belong to the GH family 51, 78, 39, 2, and 42 can act on the deglycosy-

lation reaction of ginsenosides. Since enzymes are substrate specific, and we speculate that

cellulase from T. viride cannot act on the deglycosylation reaction of ginsenosides because the

GH family to which they belong may not have the ability to hydrolyze the glycosyl group of

ginsenosides. On the other hand, we added cellulase (A. niger) during the fermentation of Ster-
eum hirsutum JE0512. The CK content of GE + JE0512 + Cellulase (A. niger) was higher than

that found by the other fermentation methods. These results indicate that the content of MGs

(F2, CK, and PPT) in the GE + JE0512 + cellulase (A. niger) fermentation method (130.79 mg/
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g) was higher than that of other fermentation methods (Table 1). In addition, the CK content

of GE + JE0512 + cellulase (A. niger) (54.48 mg/g) was approximately 2-fold that of JE0512

(29.13 mg/g), while the content of Rb1, Rc, Rb3, and Rd significantly decreased. Among them,

ginsenoside Rd showed the greatest decrease, and Rb1, Rc, and Rb3 were all converted to MGs

(F2, CK, and PPT). Additionally, the PPT content (52.92 mg/g) was greater than that in the

other fermentation methods. The results indicated that SSF combined with cellulase (A. niger)
and S. hirsutum enhances the conversion of ginsenosides into MGs. The different types of

saponin hydrolases produce different deglycosylated ginsenosides from glycosylated ginseno-

sides by specifically hydrolyzing the glycosyl group of the ginsenosides [49]. The production of

deglycosylated ginsenosides can be efficiently achieved by combining different types of ginse-

noside hydrolases. This study combined high-glucosidase-producing strain S. hirsutum with

cellulase (A. niger) in SSF to provide a reference for the industrial production of MGs. HPLC

chromatograms of GE and samples from three different fermentation methods are shown in

S2 Fig. The results indicated that the CK content of GE + JE0512 + cellulase (A. niger) was

higher than that of other fermented methods.

Compared with major ginsenosides, MGs are more easily digested and absorbed by the

body due to their lower molecular weight and membrane permeability, which will increase the

nutritional value of healthy food if they contain multiple MGs. Furthermore, the fermented

mycelia of S. hirsutum have been reported to abundantly produce active secondary metabolites

in recent years, which have antibacterial activities [50] and the ability to inhibit α-glucosidase

[51]. However, there are few studies on the active metabolites of S. hirsutum compared to

other edible and medicinal mushrooms. These findings in this study are hoped to provide a

reference for other researches studying S. hirsutum. Thus, fermented products contain a vari-

ety of MGs and multiple active metabolites of S. hirsutum, which have the potential to be used

as dietary foods.

Table 1. The changes in ginsenosides content under different fermentation methods.

Ginsenoside Ginsenoside content (mg/g)

GE (Control) GE + JE0512 GE + JE0512 + Cellulase (T. viride) GE+ JE0512 + Cellulase (A. niger)

Rb1 16.28 ± 0.03 a n. d. b n. d. b n. d. b

Rc 28.00 ± 0.03 a 4.98 ± 2.31 b 3.21 ± 2.01 b n. d. c

Rb2 65.16 ± 0.01 a 18.98 ± 2.79 b 17.70 ± 2.37 b 47.31 ± 2.92 c

Rb3 38.74 ± 0.04 a 28.58 ± 3.45 b 29.12 ± 2.25 b n. d. c

Re n. d. a n. d. a n. d. a n. d. a

Rg1 178.27 ± 0.01 a n. d. b n. d. b n. d. b

F1 n. d. a n. d. a n. d. a n. d. a

Rd 270.24 ± 0.02 a 160.76 ± 3.33 b 159.88 ± 2.96 b 79.79 ± 3.27 c

F2 1.66 ± 0.02 a 11.17 ± 2.64 b 8.26 ± 2.45 c 23.39 ± 3.52 d

CK n. d. Ca 29.13 ± 3.78 b 30.03 ± 2.36 b 54.48 ± 3.11 c

PPT n. d. a 13.74 ± 3.19 b 16.04 ± 2.17 c 52.92 ± 2.09 d

Rb1 + Rc + Rb2 + Rb3 + Re + Rg1 + F1 + Rd A 596.69 ± 0.14 a 213.30 ± 11.88 b 209.91 ± 9.59 b 127.1 ± 6.19 c

F2 + CK + PPT B 1.66 ± 0.02 a 54.04 ± 9.61 b 54.33 ± 6.98 b 130.79 ± 8.72 c

Values are shown as means ± SD of three replications. A one-way ANOVA was used to assess the statistical significance of the differences in expression levels. Means

with different small letters (a-e) in the same line are significantly different (p < 0.05).

A: Total content of Rb1 + Rc + Rb2 + Rb3 + Re + Rg1 + F1 + Rd.

B: Total content of F2 + CK + PPT.

C: No detected.

https://doi.org/10.1371/journal.pone.0255899.t001
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4. Conclusions

In conclusion, this study found that Stereum hirsutum could transform GE into MGs (F2, CK,

and PPT). After combining Stereum hirsutum JE0512 with cellulase (Aspergillus niger) in SSF

using agro-industrial waste as substrate, CK content increased from 8.34 mg/g to 54.48mg/g

(79-fold increase) and the MGs (F2, CK, PPT) content increased from 1.66 mg/g to 130.79 mg/

g (79-fold increase) in the final product. The findings of this study provide a reference for the

circular bioeconomical production of bioactive products containing a variety of MGs and offer

a means for the development of new technologies for fermenting Stereum hirsutum to prepare

a variety of high-value healthy products.

Supporting information

S1 Fig. Morphological features of JE0512. A: Colony morphology of the isolate JE0512

grown at 25˚C on PDA; B: The figure of clamp connection by optical microscope (10×); C:

Scanning electron micrograph of mycelia (600×).

(TIF)

S2 Fig. The liquid chromatogram of different fermentation methods.

(TIF)

S3 Fig. The biotransformation pathway of ginsenosides. A, the biotransformation pathway

of prototopanaxadiol types of ginsenosides to CK [5–7]; B, the biotransformation pathway of

protopanaxatriol types of ginsenosides to PPT [8].

(TIF)

S1 Table. Related reports on the preparation of ginsenoside CK from GE.
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