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The genus Psychrobacter includes Gram-negative coccobacilli that are non-pigmented, oxidase-positive, non-
motile, psychrophilic or psychrotolerant, and halotolerant. Psychrobacter strain ENNN9_III was isolated from
water in a polluted temperate estuarine system, contaminatedwith hydrocarbons and heavymetals. The genome
has a G + C content of 42.7%, 2618 open reading frames (ORFs), three copies of the rRNAs operon, and 29 tRNA
genes.
Twenty-five sequences related to the degradation of aromatic compounds were predicted, as well as numerous
genes related to resistance to metals or metal(loid)s. The genome sequence of Psychrobacter strain ENNN9_III
provides the groundwork for further elucidation of themechanisms ofmetal resistance and aromatic compounds
degradation. Future studies are needed to confirm the usefulness of this strain for bioremediation proposes.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Genus Psychrobacter belongs to the familyMoraxellaceae [1], and in-
cludes Gram-negative, non-pigmented, oxidase-positive, cold-adapted,
halotolerant, strictly aerobic organisms. Members of this genus are par-
ticularly successful in cold environments and have been isolated from
diverse sources including permafrost soil, sea ice, seawater, fish and
processed food [2,3]. Psychrobacter strains are capable of growth at tem-
peratures between −10 °C and 42 °C [3,4]. The genus currently com-
prises 35 validly described species (http://www.bacterio.net/). The
complete genome sequences of two strains of Psychrobacter arcticus
[5] and Psychrobacter cryohalolentis [6] were reported. Both strains
were isolated from permafrost soil in Siberia and are capable of growth
at−10 °C.
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Strain Psychrobacter ENNN9_III was isolated from water in Ria de
Aveiro, Portugal [7,8]. This polluted temperate estuarine system receives
industrial and urban effluents, and is also subjected to runoffs from ag-
ricultural fields and aquacultures [8]. Some areas of the estuary are con-
siderably contaminated with heavy metals, particularly mercury and
arsenic, due to the discharge of metal-containing industrial effluents
for several decades [9]. A relevant contamination with hydrocarbons
has also been detected in Ria de Aveiro [10], probably related to harbor
facilities settled in the estuary.
2. Results and discussion

Genome sequence of Psychrobacter sp. ENNN9_III provided
147,696,952 and 1,957,796 reads SOLiD 5500xl and the Ion Torrent
PGM respectively, and as the resulted in a final assembly of
2,988,999 bp in 210 contigs (with N50 of 19,123 bases) (Table 1),
suggesting a genome size similar to the ones reported for the
Psychrobacter strains previously sequenced [5,6]. The genome has
an average G + C content of 42.7% and contains approximate
2618 open reading frames (ORFs), three copies of the 16S, 23S,
and 5S rRNA genes and 29 tRNA genes (Table 1). In terms of gene
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
General features of Psychrobacter sp. ENNN9_III draft genome.

Attributes Values

Genome size (bp) 2,988,999
Total numbers of contigs 210
Contigs N50 (bp) 19,123
ORFs 2618
G + C content % 42.7%
tRNA 29
rRNA 9
Data accessibility The draft genome sequence has been deposited in

Genbank, under the accession number LNUO00000000.
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synteny, Psychrobacter sp. ENNN9_III was more closely related to
Psychrobacter cryohalolentis (GCA_000013905).

The complete sequence of the 16S rRNA gene of strain ENNN9_III in-
cluded 1527 nt. This sequence shared 98% to 100% similarity with type
strains of the genus Psychrobacter. In a phylogenetic tree including
Psychrobacter species type strains, strain ENNN9_III clustered together
with Psychrobacter aquimaris, Psychrobacter muriicola and Psychrobacter
nivimaris (Fig. 1).

Twenty-five sequences related to the degradation of aromatic com-
pounds were predicted, including genes for enzymes like catechol
dioxygenase, benzoate and protocatechuate. Aromatic compounds can
be aerobically degraded by two different pathways, originating catechol
and protocatechuate [11]. According to Blast2GO annotation, the benzo-
ate degradation via hydroxylation pathway is present in the genome of
Psychrobacter sp. ENNN9_III (Fig. 2) and Psychrobacter cryohalolentis.
Catechol is a common intermediate in this pathway and this compound
may be oxidized by the ortho ormeta cleavage pathways. Annotation of
the Psychrobacter sp. ENNN9_III genome indicates the presence of the
Fig. 1. Phylogenetic tree of gene 16S rRNA of the genus Psychrobacter. 16S rRNA gene-based phy
the type strains of the other species within the genus Psychrobacter.
ortho cleavage pathway originating Acetyl-CoA and Succinyl-CoA,
which can be subsequently used in Krebs cycle [12].

The protocatechuate degradation pathway, although not present in
the two Psychrobacter genomes currently available (Psychrobacter
cryohalolentis and Psychrobacter arcticus), was found in the Psychrobacter
sp. ENNN9_III genome, suggesting a good adaptation of this strain to
hydrocarbons-contaminated environments.

In previous studies, the ability of Psychrobacter strains to degrade hy-
drocarbons has been suggested [13,14]. The use of hydrocarbons as the
sole carbon sourcewas assessed for Psychrobacter sp. ENNN9_III inmin-
eral medium supplemented with diesel oil [8]. However the strain was
not able to grow in these conditions.We can speculate that the complex
hydrocarbon mixture used in these experiments may contain sub-
stances able to inhibit the growth of this strain. The lack of expression
of some of the degrading genes may also explain this result.

The analysis of the genome also allowed to identify numerous genes
related to resistance to metals or metal(loid)s. For example, the operon
ars, whichmay confer resistance to arsenic, was identified and included
the genes arsA (encoding a pump-driving ATPase), arsB (encoding an
arsenite efflux pump), arsC (a detoxifying arsenate reductase gene),
arsH (encoding a protein with unknown function that contributes to ar-
senic resistance) and arsR (encoding a regulatory protein). These genes
were identified in scaffolds 52, 91, 92 and 130 and the corresponding
deduced aminoacid sequences shared 81 to 98% similaritywith proteins
previously identified in Psychrobacter genomes.

Arsenic contamination in coastal areas, including Ria de Aveiro, has
been reported mainly in the forms of arsenite or arsenate, both forms
being toxic to living organisms [9,15]. Liao and co-workers [16] con-
firmed for the first time the ability of Psychrobacter strains to oxidize ar-
senite or reduce arsenate, and thus survive in arsenic-contaminated
water. The repertoire of putative arsenic resistance genes detected in
Psychrobacter sp. ENNN9_III suggests that this strain uses a mechanism
logenetic tree highlighting the position of Psychrobacter sp. ENNN9_III (in bold) relative to
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of arsenite extrusion for cytoplasm defense to survive in contaminated
environments.

3. Conclusions

The analysis of the genome sequence of Psychrobacter sp. ENNN9_III
adds further insights into themechanisms that strains of this genusmay
use to cope with pollutants and thus proliferate in contaminated
environments. Although genes conferring metal resistance or related
to hydrocarbon degradation were identified in previously reported
Psychrobacter genome sequences, the genome here analyzed is the
one that comprises a more diverse repertoire of these genetic determi-
nants. More studies are needed to confirm a future usefulness of this
strain for bioremediation purposes.

4. Material and methods

4.1. SOLiD and ion torrent PGM sequencing

Genome sequence of Psychrobacter sp. ENNN9_III was obtained by
using a combined approach with the SOLiD 5500xl (Life Technologies)
and the Ion Torrent PGM (Life Technologies) platforms. Both sequencing
approaches were based on paired-ended libraries. Quality of raw reads
was assessed with the FastQC software (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) and the bases with quality value bellow
Phred 20 were removed.

4.2. Genome assembly and annotation

Draft genome was assembled using the packages Velvet [17], MIRA
[18] and SPAdes [19]. CISA [20] and Lasergene v11 Suite (DNAStar) soft-
ware were used to reduce the number of contigs. Subsequently, the
Mauve software [21] was applied to order the draft genome by using
the genomes of Psychrobacter cryohalolentis [6] and Psychrobacter
arcticus 273-4 [5] as references.

The Gepard software was used for synteny analysis [22]. The auto-
matic annotation was used by RAST— Rapid Annotations using Subsys-
tems Technology [23]. The rRNAand tRNAwere predicted by RNAmmer
[24] and tRNAscan-Se [25], respectively. Predicted coding sequences
(CDSs) were annotated using Blast2GO [26]. Functional classification
of CDSs was performed based on Gene Ontology databases.

4.3. Phylogenetic analysis

The treewas generated based on the 16S rRNA gene sequences using
theMaximum Likelihoodmethod based on the General Time Reversible
model in MEGA v6 software [27]. Bootstrap values greater than 50% are
shown above the node of each main group. Sequences of the strains
Moraxella catarrhalis (AF005185), Moraxella lacunata (AF005160),
Acinetobacter calcoaceticus strain NCCB 22016 (NR_042387) and
Acinetobacter calcoaceticus strain HPC253 (AY346313) were used as
outgroup. The scale bar corresponds to the nucleotide substitution rate.
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