
Structural bioinformatics

RNAblueprint: flexible multiple target nucleic

acid sequence design

Stefan Hammer1,2,*, Birgit Tschiatschek2, Christoph Flamm1,3,

Ivo L. Hofacker1,2,4,* and Sven Findeiß1,2,*

1Faculty of Chemistry, Department of Theoretical Chemistry, 2Faculty of Computer Science, Research Group

Bioinformatics and Computational Biology, 3Research Network Chemistry Meets Microbiology, University of

Vienna, 1090 Vienna, Austria and 4Center for Non-Coding RNA in Technology and Health, University of

Copenhagen, Copenhagen DK-1870, Denmark

*To whom correspondence should be addressed.

Associate Editor: Cenk Sahinalp

Received on September 21, 2016; revised on February 24, 2017; editorial decision on April 7, 2017; accepted on April 21, 2017

Abstract

Motivation: Realizing the value of synthetic biology in biotechnology and medicine requires the de-

sign of molecules with specialized functions. Due to its close structure to function relationship, and

the availability of good structure prediction methods and energy models, RNA is perfectly suited to

be synthetically engineered with predefined properties. However, currently available RNA design

tools cannot be easily adapted to accommodate new design specifications. Furthermore, compli-

cated sampling and optimization methods are often developed to suit a specific RNA design goal,

adding to their inflexibility.

Results: We developed a Cþþ library implementing a graph coloring approach to stochastically

sample sequences compatible with structural and sequence constraints from the typically very

large solution space. The approach allows to specify and explore the solution space in a well

defined way. Our library also guarantees uniform sampling, which makes optimization runs per-

formant by not only avoiding re-evaluation of already found solutions, but also by raising the prob-

ability of finding better solutions for long optimization runs. We show that our software can be

combined with any other software package to allow diverse RNA design applications. Scripting

interfaces allow the easy adaption of existing code to accommodate new scenarios, making the

whole design process very flexible. We implemented example design approaches written in

Python to demonstrate these advantages.

Availability and implementation: RNAblueprint, Python implementations and benchmark data-

sets are available at github: https://github.com/ViennaRNA.

Contact: s.hammer@univie.ac.at, ivo@tbi.univie.ac.at or sven@tbi.univie.ac.at

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA molecules are omnipresent in all domains of life. They execute

diverse functions including small molecule sensing, signal transduc-

tion and gene regulation. RNA is a molecule well-suited for designing

with predefined functionality. This is mainly due to its close structure

to function relationship and the physio-chemically grounded energy

models for straightforward in silico calculations at the level of second-

ary structure. In recent years, due to the advent of synthetic biology,

more researchers are focusing on the design of synthetic RNAs. There

has been increasing success in modifying existing systems and incor-

porating novel functionality in RNAs within a cellular context

(Chappell et al., 2015; Espah-Borujeni et al., 2015; Green et al.,

2014; Rodrigo et al., 2012)

VC The Author 2017. Published by Oxford University Press. 2850

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 33(18), 2017, 2850–2858

doi: 10.1093/bioinformatics/btx263

Advance Access Publication Date: 25 April 2017

Original Paper

https://github.com/ViennaRNA
http://www.oxfordjournals.org/

To produce an RNA molecule with a prescribed function, the

close structure to function relationship must be incorporated into

the design process, along with a rationally defined specification of

the structure performing that function. In the simplest form one

could generate all 4n possible nucleic acid sequences of length n and

test for each sequence if it fulfills the design criteria, e.g. its most sta-

ble fold is the structure of interest. Only a small subset of all possible

sequences will be actually able to fold at all into the target structure

and it is therefore favorable to generate those candidate sequences at

least comply with the structural constraints, i.e. are able to fold into

the defined structure. Generating only those sequences able and

likely to fold into the target structure is known as the ‘inverse fold-

ing problem’ (Hofacker et al., 1994) where the applied structural

constraints reduce the size of the solution space to be investigated.

Biologically active RNA molecules such as aptamers or ribozymes

frequently require specific nucleotide patterns in binding or catalytic

domains. Therefore, the designed RNA must also comply with cer-

tain sequence constraints. Several computational tools capable of

solving this hard combinatorial optimization problem have been

published. These tools differ mainly in how the initial sequence is se-

lected and which search strategy, e.g. stochastic local or global

search, is applied (see Supplementary Table S1). Both algorithmic

characteristics have a big impact on the success of the optimization.

A variety of RNA molecules, natural as well as artificial, have

been described that exploit structural change as their functional

mechanism. Usually, the structural switching of these RNAs be-

tween an inactive and the active conformation is induced by an ex-

ternal trigger, which can be as diverse as temperature, small organic

molecules, or other small RNAs (Berens and Suess, 2015). The de-

sign of such RNA devices requires finding a sequence compatible

with two or more structural constraints. Designing a bi-stable RNA

was first solved by Flamm et al. (2001) using a graph coloring ap-

proach. Recent tools can now also design multi-state (three or more)

RNA molecules (Höner zu Siederdissen et al., 2013; Lyngso et al.,

2012; Taneda, 2015; Wolfe and Pierce, 2015; Zadeh et al., 2011a).

The most recent version of the RNAiFold server seems to accept

more than two target structures, this extension is however not yet

described in the latest publication (Garcia-Martin et al., 2015).

Algorithms able to handle multi-state as well as multi-sequence fold-

ing and pseudoknotted structures are required if multiple RNA mol-

ecules are used as triggers. The latter are implemented in the

NUPACK design and analysis framework (Zadeh et al., 2011b).

Sampling sequences compatible with multiple structural con-

straints can be achieved using a complex graph coloring algorithm

(Abfalter et al., 2003; Höner zu Siederdissen et al., 2013). It solves this

problem in a defined way where each solution is drawn statistically

fairly with equal probability. In contrast, other sampling approaches

use ad hoc sampling heuristics that introduce biases and often exhibit

undefined runtime complexities (Lyngso et al., 2012; Taneda, 2015).

Thus, good solutions may be missed because the sampled part of the

solution space is not clearly specified and therefore cannot be fully

explored. Furthermore, frequent re-evaluation of already discovered

solutions due to biased sampling leads to inefficient optimization, es-

pecially if the calculation of the objective involves demanding compu-

tations such as pseudoknot structure prediction.

A review of the literature revealed that published RNA designs

were either achieved by manual ad hoc approaches or very specific

software implementations, which can handle only restricted design

problems on a case-by-case basis (Isaacs et al., 2004; Neupert et al.,

2008; Qi et al., 2012; Rodrigo and Jaramillo, 2014; Wachsmuth

et al., 2013). Very recent publications focus on the flexibility of the

design approach and provide methods and interfaces to allow the

specification of broader objectives (Höner zu Siederdissen et al.,

2013; Taneda, 2015). However, the diversity of the objectives is still

limited and introducing a new feature in the objective function re-

quires changes in the program code (some of which are closed

source). Furthermore, the mechanisms of optimization in existing

tools are always predefined and very rigid.

To address these limitations, we developed RNAblueprint

which solves the problem of sampling RNA sequences compatible

with multiple structural and sequence constraints in a well defined

way. The library is able to specify the runtime complexity and mem-

ory requirements of the problem for any given constraints, calculate

the number of possible solutions, and to stochastically sample uni-

formly from all solutions. Furthermore, our technique can be easily

integrated into existing tools, henceforth making it possible to focus

on the formulation of the objective function as the most crucial part

of the design process. Until now this aspect was largely neglected,

even though the objective describes best how the design should func-

tion. The actual optimization process is performed using the script-

ing interface, where we offer predefined solutions but also give the

user the opportunity to easily implement new ideas without having

to change the source code of the core library. Next to the well

defined way of describing and exploring the solution space, this

flexibility is a major advantage of our approach.

With our framework, in addition to predicting RNA structure

and RNA–RNA interactions, and allowing for pseudoknot incorpor-

ation (Janssen and Giegerich, 2015; Lorenz et al., 2011; Zadeh

et al., 2011a,b) recent methods for the calculation of RNA-ligand

interactions can also be incorporated (Lorenz et al., 2016). Using

RNAblueprint and its scripting interface we here implemented a

multi-state design, which we used to analyze and benchmark our

software. The developed software allows us to effectively solve

problems including the design of translational and transcriptional

on/off switches, triggered by diverse inputs such as small RNAs, lig-

ands, temperature, salt concentration or proteins. RNAblueprint

can also be used to specify the design of RNA or DNA scaffolds in

synthetic biology, and to construct RNA/DNA origami.

2 Approach

An RNA sequence x ¼ fx1; x2;x3; . . . ;xng is constructed from a set

of monomers xi 2 A ¼ fA;U;G;Cg that can interact by forming

base pairs (i, j), 1 � i < j � n where i and j are positions separated

by at least three bases and ðxi;xjÞ2B¼fAU;UA;GC;CG;GU;UGg
the set of allowed base pairs with B�A�A. A set of base pairs of a

sequence x is called secondary structure H.

RNAblueprint implements a method to sample RNA sequences

compatible with all structures of a given set fH1;H2; . . . ;HMg and

sequence constraints f!1;!2;!3; . . . ;!ng where !i � A is the set of

allowed nucleotides at position i. To be able to uniformly sample

from the entire solution space C (which is the set of all x compatible

with all Ht; 1 � t � M, given all sequence constraints

!i; 0 � i � n), we implemented the graph-theoretical coloring ap-

proach developed by Abfalter et al. (2003), which is depicted in

Figure 1 and described in the following. The goal is to generate se-

quences that are compatible with a sequence constraint and a set of

target structures. Such a design problem is represented as a depend-

ency graph G ¼ ðV;EÞ constructed as the union of the circle plot rep-

resentations of the structural constraints (Supplementary Fig. S1).

Each vertex vi 2 V of the graph corresponds to a position 1 � i

� n in the sequence to be designed, and the edges E represent base

pairs (i, j) that are formed between two vertices. Each base pair

RNAblueprint 2851

Deleted Text: ,
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: ; <xref ref-type=
Deleted Text: ; Lyngso <italic>et<?A3B2 show $146#?>al.</italic>, 2012
Deleted Text: -

occurs at least in one of the input structures. According to the gener-

alized intersection theorem, there exists a solution given the struc-

tural constraints, iff the resulting graph is bipartite (Flamm et al.,

2001). Finally, a coloring or base assignment on a vertex vi is a sin-

gle nucleotide xi 2 !i assigned to the position i. Note, that poorly

chosen sequence constraints might lead to an unsolvable design

problem if they contradict the base pairing pattern enforced by the

structural constraints. However, this can already be detected during

the graph construction process.

For the design problem with two structural states, Flamm et al.

(2001) showed that connected components and the underlying se-

quence positions of the corresponding dependency graph belong to

one of the following classes: (i) isolated positions that are unpaired

in both structures, (ii) positions that are paired with the same pairing

partner in both structures and therefore form paths of length one

and (iii) positions that are paired differently in both structures and

therefore form paths or cycles. Connected components in (i) and (ii)

can be assigned with any element of A and B, respectively. Paths

and cycles belonging to (iii) can be stochastically colored by a simple

recursion. Furthermore, it was demonstrated how Fibonacci num-

bers can be used to determine the number of possible solutions for

the latter.

Following these results, it is desirable to decompose a more com-

plex dependency graph generated by more than two structural con-

straints into the aforementioned classes. This decomposition

happens at vertices with degree greater than two, denoted as a set of

articulation points S. Depending on the decomposition algorithm,

these nodes are also called cut points or attachment points. As the

subsequently explained coloring approach can be very memory and

CPU demanding, it is important to follow a specific order on how to

decompose the dependency graph into paths. Connected compo-

nents containing articulation points are decomposed into bicon-

nected components and if they still contain articulation points, they

are further decomposed using the ear decomposition algorithm, see

Figure 1. An ear decomposition of a graph starting with a path P0 is

a decomposition of its edge set E ¼ P0 [P1 [. . . [Pk where Piþ1 is

a simple path or ear whose endpoints belong to P0 [. . . [Pi, but its

internal vertices do not (Maon et al., 1986). Our step-wise decom-

position approach ensures that the dependency graph falls apart into

paths and cycles in a fixed order. As soon as the maximal degree of

a subgraph H is two, either a path or a circle is reached and further

decomposition is terminated. Using this decomposition approach, a

binary tree of subgraphs is generated where the complete depend-

ency graph sits at the root and each step of decomposition leads to a

fixed order of subgraphs.

After the graph decomposition, the coloring problem therefore

reduces to the determination of possible colorings of articulation

points (and vertices in Fig. 2) in the generated subgraphs H. This

information can be efficiently calculated by a dynamic programming

procedure (Abfalter et al., 2003). Uniform sampling from C can then

be achieved by stochastic backtracking. First articulation points are

assigned, followed by the sampling of colors for adjacent paths. For

ear decompositions this has been described in (Höner zu

Siederdissen et al., 2013). In this contribution we describe a general-

ized approach that covers the dynamic programming for all decom-

posed components of the dependency graph.

The dynamic programming forward recursion we implemented

traverses the binary decomposition tree from the bottom up, ending

at the complete assembled dependency graph G. For every subgraph

H the possible colorings for the set of articulation points SH and the

according number of available solutions for H given these colors are

stored in a memorization table during the dynamic programming

procedure. The dimension of such a table is determined by jSHj.
Since this number differs during the recursive traversal of the graphs

in the decomposition tree (smaller graphs are connected at articula-

tion points to larger units) the dimension of the memorization tables

also varies. A table dimension itself is indexed by the elements of A.

For unbranched paths of length l the number of colorings can easily

be looked up in the l-th power of the pairing matrix P. The memor-

ization table of any other subgraph H (parent node in the decompos-

ition tree) is always calculated from the memorization tables of its

two smaller constituting graphs (child nodes in the decomposition

tree) in a type of concatenation procedure (Fig. 2). The correspond-

ing entries of the articulation points (table dimensions) are first mul-

tiplied component-wise and then inserted into the new table. In our

Fig. 1. A dependency graph is hierarchically decomposed starting from the

top and moving down through four levels to generate a decomposition tree.

The dot-bracket strings (top left) denote three structural input constraints

which are converted into a dependency graph (top right) by intersecting their

circle representations, see Supplementary Figure S1. For an easy visual map-

ping sequence positions are indicated above the dot-bracket string by an in-

crement of five. Gray boxed subgraphs are not decomposed further as their

number of possible colorings can be obtained with the path coloring ap-

proach. nodes represent articulation points

Fig. 2. Algorithmic implementation of the decomposition (black arrows) and

the reassembly (gray arrows) of a biconnected component. nodes are or-

dinary nodes and nodes indicate articulation points. nodes are internal-

ized articulation points which can be converted to ordinary nodes with the

reduce function. During the dynamic programming forward recursion, the

matrix concatenation operator calculates the number of possible colorings of

the combined subgraphs given any assignments on S

2852 S.Hammer et al.

implementation the memorization tables are sparse objects and the

above construction procedure only increases dimensionality of the

tables. The result would be a sparse memorization table with jSj di-

mensions at the root node of the decomposition tree. To avoid wast-

ing of memory resources, we introduced a dimension reduction step

during the successive construction of the memorization tables. This

reduction step rests on the observation that whenever the vertex de-

gree of an articulation point in a partially assembled graph is equal

to the vertex degree of the corresponding node in the union graph

(root node of the decomposition tree) no further subgraph will be

‘attached’ to this particular vertex in subsequent memorization table

concatenation operations (see Fig. 2). Hence, the corresponding di-

mension of the memorization table is collapsed via summing up the

values over that internalized articulation point, which shrinks the

memorization table and removes the articulation point from the

table. This implies that memorization tables for connected compo-

nents have dimension zero since all articulation points have been

internalized and removed via summation. In other words a memor-

ization table with zero dimensions stores the total number of pos-

sible colorings for the respective subgraph. The memorization table

for the root graph (i.e. the original union graph) therefore stores the

size of the solution space, jCj, which is equal to the total number of

sequences compatible with the design constraints. With the help of

the total number of sequences, the coloring count entries of the

memorization tables can be re-interpreted as probabilities, paving

the way for uniform sampling approaches.

The sampling procedure works exactly in the opposite order of

the memorization table calculation. For each subgraph, articulation

points are colored by stochastic backtracking from the probability

matrix, which corresponds to the re-interpreted memorization table,

followed by the sampling of the graph itself, if it is a path.

Otherwise the next hierarchical level of subgraphs is processed. If an

articulation point has a base assigned already, this information is

used during the stochastic backtracking. Finally, when the last child

has been processed, all bases are assigned and a solution was fairly

drawn from the complete solution space.

Besides global sampling, i.e. generating a completely new se-

quence all the time, RNAblueprint offers two more procedures to

mutate or resample parts of the sequence. C-local sampling resets

the base assignments of all vertices of a random connected compo-

nent and draws new colors, i.e. nucleotide assignments, for these

vertices. P-local sampling randomly selects one path at the leaves of

the decomposition tree and resamples only vertices which are not

articulation points. This way we ensure the compatibility within a

connected component. For both C-local and P-local sampling it can

be useful to restrict the random selection of subgraphs by minimal

and maximal size constraints or to directly select the connected com-

ponent or path. The possibility to resample a specific position in the

sequence also exists. This either involves a P-local sampling of the

path containing the position or, in cases where the selected position

corresponds to an articulation point, a C-local sampling of the cor-

responding connected component. In this way, the ranges of pos-

itions to be sampled can be specified. A history of previous sampled

sequences is stored, making it convenient to revert to those previous

sequences if necessary.

The complexity of our program strongly depends on the number

of articulation points jSj. The minimum time complexity OðnÞ is

specified by running the graph decomposition algorithms or path

colorings. For every subgraph H, the memory and CPU requirements

of the dynamic programming coloring approach can be denoted as

OðjAjaÞ; a ¼ jSH j and OðjAjbÞ; b ¼ j[h2CðHÞ Shj, respectively. C(H)

represents the set of child subgraphs of H. The overall complexity is

therefore defined as the sum over all H. The latter varies, as the ear

decomposition is not done in a deterministic way. It derives from

one of many possible spanning trees of the corresponding graph and

it follows that a and b can vary dramatically as investigated in

(Höner zu Siederdissen et al., 2013). Therefore, we generate a set of

random instances of spanning trees and select the one with lowest a
and b values.

The implementation is written in Cþþ using the boost graph li-

brary and other parts of the boost library available at http://www.

boost.org/. Using the SWIG framework, we offer an easy to use

Perl and Python scripting interface to the library. Additionally,

we developed a Python module so that code can be reused for

many central components.

3 Materials and methods

3.1 Objective function
The original objective function f(x) proposed by Flamm et al. (2001)

for two target designs was extended to the multi-target case (Höner

zu Siederdissen et al., 2013) and is

f ðxÞ ¼
XM

i

ðEðx;HiÞ �GðxÞÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dominate ensemble

þn
XM
i< j

ðEðx;HiÞ � Eðx;HjÞÞ2

|ffl{zffl}
minimize energy difference

(1)

where G(x) is the ensemble free energy, Eðx;HiÞ is the free energy of

the sequence x folded into structure Hi and n is a weighting factor

typically set to 1. The first term is to maximize the energy contribu-

tion of each target structure to the ensemble to achieve dominance

whereas the second term is to minimize the energy difference of tar-

get structures to get them to the same energy level. In Taneda (2015)

the latter was changed to
PM

i< j jEðx;HiÞ � Eðx;HjÞj which brings

most of the target structure energies close to the minimum free en-

ergy (MFE) and outliers are possible. In contrast, the original ver-

sion attempts to minimize the number of outliers and therefore the

distance to the MFE of all states might be higher. Either way,

weighting of the two terms is essential in single objective

approaches. Although objective function (1) showed good perform-

ance on two-target designs, the straight-forward extension to three

or more structures neglects the varying number of target structures.

We therefore modified the objective function to

f ðxÞ ¼ 1

M

XM
i

ðEðx;HiÞ �GðxÞÞ

þ n
2

MðM� 1Þ
XM
i< j

jEðx;HiÞ � Eðx;HjÞj
(2)

as we sum up M elements in the first term and build M
2

� �
differ-

ences in the latter. With this new objective function, the ratio be-

tween the two terms is independent of the number of structures M.

To preserve the good performance for the two-target structure case

and keep the 1:1 ratio between the two terms in the objective we set

n to 0.5.

3.2 Benchmark datasets
The number of target structures is only a rough estimate of the com-

plexity of a given design problem. If the given structural constraints

have no conflicting base pairs, the complexity of the connected com-

ponents are just single vertices or paths of length one. If more over-

lap between the structural constraints exists, paths get longer, and

RNAblueprint 2853

Deleted Text: &hx0022;
Deleted Text: &hx0022;
http://www.boost.org/
http://www.boost.org/
Deleted Text: (
Deleted Text:

complex subgraphs such as cycles and blocks occur. Based on a pub-

lished tri-stable switch (Höner zu Siederdissen et al., 2013), which

contains only two cycles and eight paths of length one, we generated

more complex examples by adding a fourth and fifth structural con-

straint, see Supplementary Figure S2A–C. These three example in-

puts of increasing complexity were used to evaluate the

implemented sampling procedures of RNAblueprint. The effect of

uniform sampling is tested on an extreme example that contains one

large and complex connected component and a base pair as well as

an unpaired position. To further reduce the solution space size, two

sequence constraints were introduced, see Supplementary Figure

S2D.

Comparison with existing approaches was performed on the

published datasets containing two-, three- and four-target designs as

well as pseudoknotted two-target structure examples (Taneda,

2015). The applied optimization is described in Section 3.3.

3.3 Multi-state design
To be able to benchmark against existing design software, we imple-

mented an optimization approach consisting of RNAblueprint for

uniform sequence sampling, the value of the objective function (2)

to determine the cost of a solution, and an adaptive walk. The latter

works as follows: Consecutive sequence candidates are generated by

randomly applying one of the three sampling methods, i.e. P-local,

C-local or global and calculating the cost. The new sequence is only

kept if the cost is lower than the current best solution. Depending on

the chosen method, one randomly selected subgraph (P-local and

C-local sampling) or all subgraphs (global sampling) are redrawn.

The stop condition was set to 1000, being the maximum number of

optimization trails with no cost improvement. An optimization run

would therefore be stopped earliest after 1000 sampling steps, which

gave reasonable results for design problems with increasing com-

plexity, see Figure 4. To compare this approach to existing multi-

target design tools we created 100 solutions for each member of the

two-, three- and four-target design datasets described in Taneda

(2015). Energy calculations for these datasets were made using the

scripting bindings of the ViennaRNA package v2.2.5 (Lorenz

et al., 2011). As we are not restricted to nested base pairs in the

structural input, the pseudoknotted two-target datasets described in

Taneda (2015) were also used with stop condition 100. This is set to

be much smaller because the runtime dramatically increases when

using the Nupack package v3.0.4 (Zadeh et al., 2011b) for pseu-

doknotted structure prediction. Furthermore, only 30 solutions were

generated for each of the latter benchmark tasks.

4 Results and discussion

4.1 Effect of uniform sampling
Implementing the complete graph coloring algorithm (Abfalter

et al., 2003; Höner zu Siederdissen et al., 2013) and assigning all

possible base pairs, RNAblueprint guarantees to uniformly sample

the complete solution space. We show that this leads to an extreme

value distributed frequency of uniquely found solutions (Fig. 3A). It

follows that the solution space, by means of unique solutions gener-

ated, can be efficiently explored (Fig. 3B). The expected number of

samplings required to explore C is jCj logðjCjÞ a fact that is known

for the related Coupon Collector’s problem (Michael

Mitzenmacher, 2005). As the redundancy increases with the sample

size d (known for the Birthday problem) and jCj grows not more

than exponentially with n, the average number of times sequences

are generated when uniform sampling is bounded by

logðjCjÞ 2 HðnÞ. Thus sequences will typically be sampled at most a

linear number of times. The advantage of uniform sampling is most

apparent when the amount of generated sequences d is large,

d � jCj. In this case, uniform sampling generates a much larger num-

ber of unique solutions. To highlight these properties, we imple-

mented a biased sampling method by using the same algorithm as

RNAblueprint, but making every backtracking decision uni-

formly. Thus, we sample all articulation point combinations with

the same probability independent of the number of possible solu-

tions of the attached subgraphs. We show that the biased sampling

approach produces sequences with varying probabilities heavily de-

pendent on the structure of the dependency graph. Therefore, while

generating the same amount of sequences, only a fraction of unique

sequences were found compared to RNAblueprint (Fig. 3B). Note,

that for very small d the curves are almost identical, as expected.

However, utilizing an approach that produces many different solu-

tions, avoids heavy re-evaluation of already found sequences.

A simplified version of the graph coloring algorithm was imple-

mented in MODENA (Taneda, 2015). Therein a naı̈ve nucleotide as-

signment algorithm is used that is able to generate solutions of a

design problem but not uniform sampling of the solution space.

Furthermore, during the assignment of paired nucleotides without a

sequence constraint, the G-U base pair is neglected unless a sequence

constraint forces such an assignment. This generates a biased initial

population of sequences that are subsequently optimized by apply-

ing a genetic algorithm. Unfortunately, MODENA is available as bin-

ary only, of which the maximum population size is restricted to

1000 and at least one iteration of the genetic algorithm optimization

is enforced. Therefore, we could not compare the effect of the imple-

mented nucleotide assignment algorithm alone. However, their

Fig. 3. Differences in uniform and biased stochastic sampling shown on a

small example with a rather complex dependency graph, see Supplementary

Figure S2D. (A) The histogram shows how frequent unique sequences were

found when sampling completely new candidates using RNAblueprint and

the biased sampling method. In total 9.6 � 109 sequences (sample size d)

were sampled from 4.1 � 107 possible unique sequences (size of solution

space jCj). While uniform sampling led to an extreme value distribution with

the mean (2.57) count being slightly above the relative sample size and the

maximum number of times a sequence is rediscovered being 15, biased sam-

pling led to a input specific distorted distribution where a sequence is found

4.78 times on average and 227 times maximal. (B) When the sample size was

chosen to be much bigger than the solution space (� 230%), only about 50%

of all possible sequences with biased sampling were obtained for this ex-

ample, while the uniform sampling method generated about 90%. The per-

formance of RNAblueprint is independent of the underlying problem

whereas the curve of the other approaches heavily depends on the properties

of the dependency graph

2854 S.Hammer et al.

Deleted Text:
Deleted Text: ,
Deleted Text:
Deleted Text: (
Deleted Text:
Deleted Text:
Deleted Text: (
Deleted Text: D

sequence sampling essentially corresponds to our biased sampling

method described in the previous paragraph.

The Haskell prototype implementation in Höner zu Siederdissen

et al. (2013), RNAdesign, used lazy enumeration of all solutions

and therefore allows uniform sampling. It opts for Oð1Þ sampling,

with low overhead in components. However, this applies only for

sufficiently small problems. The way the prototype samples does not

scale well for designing sequences with many and complex con-

straints as each component may get prohibitively large. These limita-

tions get obvious when comparing the memory and CPU

requirements of both implementations. While RNAblueprint

needs 7 MB and about 0.35 s to generate one compatible sequence

(without any optimization) for the complex design example shown

in Supplementary Figure S2D the prototype implementation needs

15 GB and about 45.8 s on an Intel i7-6700, 3.4 GHz machine. The

memory requirement is not independent of the sample size and fur-

ther increases during the sampling process. We are aiming on a flex-

ible approach where the sequence sampling step should not be the

bottleneck as it might be necessary to generate multiple dependency

graphs for exploring sequence and solutions spaces and application

of computationally demanding objective functions, e.g. including

pseudoknot prediction, will anyway slow down the design process.

In summary, our method is capable of generating sequences with

a well defined distribution independent of the input constraints or

the sample and solution space size. Note, that RNAblueprint can

be easily incorporated in any multi-state design software such as

MODENA in order to explore the complete solution space of complex

multi-state design problems in an unbiased way.

4.2 Sequence sampling
In a typical RNA design scenario, sequences compatible with the

structural constraints are scored using an objective function, which

gets either minimized or maximized. Thereby, the sequence space is

transformed into a landscape of complex and typically unknown

structure that needs to be explored. Sampling completely new se-

quences generates solutions distributed over the complete landscape.

This way, for an infinite sampling time the global optimum is always

found. However, the optimization is rather slow because in each

sampling step the reachable neighborhood is the complete solution

space. The solution space of small examples is already of size 4.1 �
107 to 1.4 � 1014 (Supplementary Fig. S2) and therefore only a small

fraction of all solutions is evaluated during a typical optimization

run. The other sampling methods, i.e. P-local and C-local, described

in Section 2 dramatically reduced the size of the reachable neighbor-

hood. An adaptive walk using these move steps led to the solution

ending up in local minima. The quality of these minima and how

fast they were reached depends on the number of nucleotides

changed in each step, Supplementary Figure S3.

In Figure 4, the published three state design example (Höner zu

Siederdissen et al., 2013) was extended to four and five input struc-

tures. The extension was made in a way that the complexity of the

dependency graph from short paths and cycles in the three state ex-

ample was increased to larger connected components,

Supplementary Figure S2. We compared the performance of differ-

ent sampling methods that differ in the size of their largest move

step, see Figure 4. One method, called global, always generates a

completely new sequence. When sample C-local is applied, the as-

signments of a randomly selected connected component are

redrawn. The random selection is weighted by the number of pos-

sible solutions associated to the connected components. In contrast,

P-local resamples only vertices which are not articulation points of a

randomly selected path.

If the dependency graph contained only short paths and cycles

(three state example), the C-local sampling approach was similar to

the P-local sampling, i.e. reached a local minimum relatively fast

and the cost converged. The relative mean cost difference between

P-local and C-local sampling minima results from the fact that ar-

ticulation points were redrawn by the latter only. This allowed a

maximum step size of up to six nucleotides (complete circle) com-

pared to three nucleotides (longest path), Supplementary Figure S3.

The more complex the dependency graph, i.e. the more articulation

points and larger connected components exist, the more pronounced

this difference between P-local and C-local sampling,

Supplementary Figure S3. If one large connected component con-

tained most of the bases (five state example), performing a C-local

sampling where all assignments of the large component are most

likely reassigned (Supplementary Fig. S3), was similar to a com-

pletely new sampled sequence, i.e. the slope of the corresponding

curves in Figure 4 are similar. However, the hamming distance to

Fig. 4. Cost change during the optimization procedure using different move steps and dependency graphs. We minimized function (2) with n¼ 0.5 to calculate the

cost. The x-axis shows the number of sampled sequences while the y-axis resembles the mean cost from 100 optimization runs, normalized to the mean cost of

the initial randomly chosen sequences. For each trend curve the confidence interval (6 r) is indicated. Three different move steps (P-local, C-local and global) and

an additional run, where one of these moves was randomly picked at every step (random), are compared. At the leftmost plot a very simple dependency graph

was generated, only consisting of paths and two cycles, in the middle plot the graph already contains a block and on the right hand side many vertices are cap-

tured in one big connected component. The slope of the cost change mainly results from two aspects, the rejection rate and the quality of the newly found solu-

tions. Both are heavily dependent on the size of the move step, therefore we see a change from the left to the right plot, as the move steps of C-local, global and

random become bigger, Supplementary Figure S3

RNAblueprint 2855

Deleted Text: &hx22C5;
Deleted Text: &hx22C5;

reachable neighbors was different for C-local and global sampling,

Supplementary Figure S3. Reaching a local minimum indicates that

most likely no further cost improvement can be made using the same

sampling method. For the analyzed examples applying a simulated

annealing approach, i.e. using an adaptive walk that allows for the

acceptance of worse solutions on the way, did only slightly improve

the results, see Supplementary Figure S4. Changing the method and

thereby changing the move step allows other local minima with

better solutions to be reached. Interestingly, our analyses showed

that randomly changing the sampling method in each step, random

in Figure 4, gave significantly better results faster in most cases. We

investigated the reachable neighborhood of selected time points dur-

ing optimization of the four state design example in more detail,

Supplementary Figure S5. After 1000 sampling steps, the mean cost

of sequences optimized with the random approach was significantly

lower than the cost reached with global sampling (student’s t-test

P-value: 10–55). Furthermore, the number of neighbors with a cost

below the current best solution was similar, Supplementary Figure

S5. At the end point of the trend curves (after 500 000 sampling

trails), C-local and random sampling reached the same mean costs

and within their analyzed neighborhood of size 350 600 no better

solution was found, Supplementary Figure S5. Interestingly, the se-

quences optimized with global sampling did not reach the same

mean cost and the likelihood of generating a better solution was

very low, Supplementary Figure S5. We stress again that these

observations are highly dependent on the design problem, e.g. the

complexity of the dependency graph and the length of the sequence

to be designed. However, we show in the following that applying

the random sampling method to a diverse benchmark dataset of

nested and pseudoknotted structural input gives reasonably good

results.

4.3 Impact of normalization and weighting
To analyze the effect of the corrected objective function (2) and the

applied optimization procedure we used the recently published

benchmark dataset (Taneda, 2015), which consists of two-, three-

and four-target design problems as well as three pseudoknotted two-

target sets. These examples were either taken from naturally occur-

ring RNAs that are able to switch between structural states or were

generated in a way that reachable, sub-optimal structures are taken

as input constraints for the design process. RNAblueprint itself

does no optimization but rather implements a move set on uniformly

sampled sequences. We implemented an adaptive walk that, given a

start sequence, randomly selects one of the three sampling methods

and applies it to generate the next sequence candidate. The gener-

ated sequence is retained if its cost is lower than the best prior solu-

tion. On the small examples evaluated in Figure 4, this approach

adapted best to the varying complexity of the underlying depend-

ency graphs. To score sequences, we applied an objective function

that ensures on one hand that the target structures of a good solu-

tion dominate the ensemble while on the other hand the energy dif-

ference between the target structures is minimized. In its original

version (1), proposed for the two state design case in (Flamm et al.,

2001), the corresponding two terms were summed up without any

weighting. Designs for two states gave reasonable results compared

to other approaches, see Table 1. However, a systematic extension

to three or even more states needs individual normalization of the

individual terms. Therefore, we proposed a corrected objective func-

tion (2), which is adjusted to the good performing original two state

objective. Especially for the four structure designs this yielded a sig-

nificant improvement over the original one, see Table 1. Note, when

using a multi-objective approach it is assumed that the weighting is

implicitly found during optimization (Taneda, 2015).

Comparing the results of our naı̈ve optimization procedure with

multi-objective approaches that implement complex genetic algo-

rithms to optimize sequences we performed similar or even better on

the benchmark dataset as measured by de1, i.e. the difference of the

lowest energy target structure to the ground state and de2, i.e. the

difference between the ground state and the highest energy target

structure, on the benchmark dataset. Furthermore, we also com-

pared how often the desired target structures are energetically equal

to the predicted MFE structure, see Supplementary Tables S2–S7.

These values are termed ni, i being the number of target structures

with equal energy to the MFE. Given this benchmark measure,

MODENA and RNAblueprint performed similarly. A notable differ-

ence between our approach and MODENA is that the latter uses a gen-

etic algorithm to optimize a population of 500 individuals of which

the best 100 are taken, while we performed 100 independent opti-

mizations. We expect to get similar sequences from a population-

based approach while the solutions generated with our approach are

extremely diverse.

Although de1, de2 and ni together are a good measure of the solu-

tion quality of this specific design problem, they do not describe the

Table 1. Comparison of currently available approaches to solve multi-target designs

Nested Structure Input Pseudoknotted Structure Input

RNAblueprint MODENAa Frnakensteina RNAblueprint MODENAa

original corrected

2str 3str 4str 2str 3str 4str 2str 3str 4str 2str 3str 4str LE80 PK60 PK80 LE80 PK60 PK80

l(de1) 0.28 0.22 1.46 0.31 0.10 0.48 0.38 0.27 0.84 0.35 0.39 0.92 0.82 0.03 0.15 0.89 0.12 0.29

~xðde1Þ 0.00 0.00 0.70 0.00 0.00 0.05 0.10 0.00 0.39 0.10 0.10 0.55 0.30 0.00 0.00 0.20 0.00 0.00

l(de2) 0.34 0.43 1.96 0.36 0.26 1.21 0.76 0.54 1.78 1.09 0.96 1.89 1.09 0.08 0.17 1.22 0.32 0.56

~xðde2Þ 0.00 0.20 1.30 0.00 0.10 0.80 0.50 0.30 1.40 0.60 0.80 1.60 0.55 0.00 0.00 0.55 0.00 0.05

Results of two-, three- and four-target designs are shown. For RNAblueprint and MODENA two-target designs of pseudoknotted structures are also presented.

For each resulting sequence, we evaluated the difference between the most stable target structure to the ground state (de1) and the highest energy target structure

to the ground state (de2). The mean (l) and median (~x) energy difference for 100 and 30 generated sequences is presented for the nested and pseudoknotted struc-

ture input, respectively. Performance of the individual sequences is listed in Supplementary Tables S2–S7. Boldface values highlight the best performing approach

on a specific dataset. For RNAblueprint the values for the original (1) and corrected (2) objective functions are listed.
aValues taken from the original publication (Taneda, 2015).

2856 S.Hammer et al.

Deleted Text: <italic>p</italic>
Deleted Text:
Deleted Text: ,
Deleted Text: ,
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:

actual functionality of the switch in vitro or in vivo. An objective

function describing every aspect necessary to create a functional

switch might contain many more features, some of which cannot

easily be calculated. Furthermore, it is questionable whether the cre-

ation of 100 solutions is even useful. It might be better to run the op-

timization longer and retrieve 10-20 heterogeneous solutions, as this

is a more realistic number for experimental validation.

4.4 Flexibility matters
Three example objective functions were proposed by Flamm and

coworkers to design two-state temperature and structural switches

(Flamm et al., 2001). Those objectives have been adapted to multi-

state design and are still used to benchmark new software (Höner zu

Siederdissen et al., 2013; Taneda, 2015). MODENA enables the user

for the first time to choose from a catalog of different structure pre-

diction methods to calculate features of a given sequence and derive

new objectives. However, this catalog is fixed and therefore the

complete functionality of the applied software might not be avail-

able. This is especially true for recent developments, such as the soft

constraint framework implemented in the ViennaRNA package

(Lorenz et al., 2016) and the test tube ensemble defect available in

NUPACK (Wolfe and Pierce, 2015). Furthermore, the methods to op-

timize sequences, in the case of MODENA by applying a genetic algo-

rithm, cannot be changed. Therefore, we implemented

RNAblueprint as a library and equipped this sequence generator

with a flexible scripting interface where the user can easily imple-

ment its own optimization procedures and come up with new object-

ive functions. Thus, features such as molecule concentrations,

specific nucleotide compositions, or various probabilities can be

captured in the design process.

5 Conclusion

We have developed a software solution that makes it possible to uni-

formly sample RNA sequences compatible with structural and se-

quence constraints. Sampling in an uniform way from a well defined

solution space ensures to efficiently investigate the entire solution

space and avoids heavy re-evaluation of repeatedly generated se-

quences. Therefore, it is possible to review many more solutions,

which potentially leads to better results. We are currently investigat-

ing how to adapt the graph coloring algorithm to implement other

desired sampling distributions, such as Boltzmann sampling according

to a state energy model in a manner similar to what is done for single

target design in IncaRNAtion (Reinharz et al., 2013). This way

promising sequences that are able and likely to fold into the target

structures would be already favored during the sampling procedure.

Scripting interfaces make it easy to freely combine different opti-

mization algorithms and to incorporate evaluations of different soft-

ware packages into the objective function. We used the NUPACK and

the ViennaRNA package to design multi-stable RNA structures with

and without pseudoknots, respectively. With the scripting interface,

any software such as the recently published RNA shapes studio

(Janssen and Giegerich, 2015) and the approach by Wolfe and

Pierce to reduce the amount of unwanted complexes when designing

interacting molecules (Wolfe and Pierce, 2015), can be easily inte-

grated. As the correct sequence generation problem for a set of fixed

structural constraints is now efficiently solved, further research can

focus on the challenging task of finding objective functions that bet-

ter describe the goals and functions of RNA molecules. Using

RNAblueprint it is now feasible to explore a much broader range

of objectives and it is easy to adapt and recombine existing software

and optimization techniques to generate an RNA molecule that per-

fectly suits the specific needs and goals of the task.

We illustrated the usefulness of our approach with typical but

small sample applications. A general solution for solving all the di-

verse RNA design problems does not exist and there is also no uni-

versal way how to benchmark existing tools or novel approaches

against each other. Applied measurements heavily depend on the

goal and the objective of the design and therefore user knowledge is

always necessary to choose an appropriate optimization method,

move set and objective function.

Acknowledgements

Thanks to Christian Höner zu Siederdissen for assistance with the prototype

Haskell implementation, Peter F. Stadler and Daniel Merkle for fruitful dis-

cussion and our private boost help desk Jakob L. Andersen. We thank Life

Science Editors for proofreading and editing. Computational results have

been achieved in part using the Vienna Scientific Cluster (VSC). We further

like to thank the reviewers helping us to improve the manuscript significantly.

Funding

The project RiboNets acknowledges the financial support of the Future and

Emerging Technologies (FET) programme within the Seventh Framework

Programme for Research of the European Commission, under FET-Open

grant number: 323987. This work was furthermore supported by the

COST-Action CM1304 ‘Systems Chemistry’, the FWF projects SFB F43

‘RNA regulation of the transcriptome’ and ‘Doktoratskolleg RNA Biology

W1207-B09’.

Conflict of Interest: none declared.

References

Abfalter,I.G. et al. (2003) Design of multi-stable nucleic acid sequences. In:

Mewes,H.W. et al. (eds.) In: Proceedings of the German Conference on

Bioinformatics (GCB). Belleville Verlag, Michael Farin, München, vol. 1,

pp. 1–7.

Berens,C. and Suess,B. (2015) Riboswitch engineering — making the all-

important second and third steps. Curr. Opin. Biotechnol., 31, 10–15.

Chappell,J. et al. (2015) Creating small transcription activating RNAs. Nat.

Chem. Biol., 11, 214–220.

Espah-Borujeni,A. et al. (2015) Automated physics-based design of synthetic

riboswitches from diverse RNA aptamers. Nucleic Acids Res., gkv1289.

Flamm,C. et al. (2001) Design of multistable RNA molecules. RNA, 7,

254–265.

Garcia-Martin,J.A. et al. (2015) RNAiFold 2.0: a web server and software to

design custom and rfam-based RNA molecules. Nucleic Acids Res., 43,

W513–W521.

Green,A.A. et al. (2014) Toehold switches: de-novo-designed regulators of

gene expression. Cell, 159, 925–939.

Hofacker,I.L. et al. (1994) Fast folding and comparison of RNA secondary

structures. Monatshefte Für Chemie/Chem. Mon., 125, 167–188.

Höner zu Siederdissen,C. et al. (2013) Computational design of RNAs with

complex energy landscapes. Biopolymers, 99, 1124–1136.

Isaacs,F.J. et al. (2004) Engineered riboregulators enable post-transcriptional

control of gene expression. Nat. Biotechnol., 22, 841–847.

Janssen,S. and Giegerich,R. (2015) The RNA shapes studio. Bioinformatics,

31, 423–425.

Lorenz,R. et al. (2011) ViennaRNA Package 2.0. Algorithms Mol. Biol., 6, 26.

Lorenz,R. et al. (2016) RNA folding with hard and soft constraints.

Algorithms Mol. Biol., 11, 8.

Lyngso,R.B. et al. (2012) Frnakenstein: multiple target inverse RNA folding.

BMC Bioinformatics, 13, 260.

Maon,Y. et al. (1986) Parallel ear decomposition search (EDS) and ST-

numbering in graphs. Theor. Comp. Sci., 47, 277–298.

RNAblueprint 2857

Deleted Text: &hx0022;
Deleted Text: &hx0022;,
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: &hx0022;.

Michael Mitzenmacher,E.U. (2005) Probability and Computing:

Randomized Algorithms and Probabilistic Analysis. Cambridge University,

Puerto Rico.

Neupert,J. et al. (2008) Design of simple synthetic RNA thermometers for

temperature-controlled gene expression in Escherichia coli. Nucleic Acids

Res., 36, e124.

Qi,L. et al. (2012) Engineering naturally occurring trans-acting non-coding

RNAs to sense molecular signals. Nucleic Acids Res, 40, 5775–5786.

Reinharz,V. et al. (2013) A weighted sampling algorithm for the design of

RNA sequences with targeted secondary structure and nucleotide distribu-

tion. Bioinformatics, 29, i308–i315.

Rodrigo,G. and Jaramillo,A. (2014) RiboMaker: computational design of

conformation-based riboregulation. Bioinformatics, 30, 2508–2510.

Rodrigo,G. et al. (2012) De novo automated design of small RNA circuits

for engineering synthetic riboregulation in living cells. Proc. Natl. Acad. Sci.

U. S. A., 109, 15271–15276.

Taneda,A. (2015) Multi-objective optimization for RNA design with multiple

target secondary structures. BMC Bioinformatics, 16, 280.

Wachsmuth,M. et al. (2013) De novo design of a synthetic riboswitch that

regulates transcription termination. Nucleic Acids Res., 41, 2541–2551.

Wolfe,B.R. and Pierce,N.A. (2015) Sequence design for a test tube of interact-

ing nucleic acid strands. ACS Synth. Biol., 4, 1086–1100.

Zadeh,J.N. et al. (2011a) Nucleic acid sequence design via efficient ensemble

defect optimization. J. Comput. Chem., 32, 439–452.

Zadeh,J.N. et al. (2011b) NUPACK: analysis and design of nucleic acid sys-

tems. J. Comput. Chem., 32, 170–173.

2858 S.Hammer et al.

	btx263-TF1
	btx263-TF2

