
Hindawi Publishing Corporation
International Journal of Inflammation
Volume 2012, Article ID 581695, 14 pages
doi:10.1155/2012/581695

Review Article

Renin-Angiotensin System Hyperactivation Can Induce
Inflammation and Retinal Neural Dysfunction

Toshihide Kurihara,1, 2, 3 Yoko Ozawa,1, 2 Susumu Ishida,2, 4

Hideyuki Okano,5 and Kazuo Tsubota1

1 Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582, Japan
2 Laboratory of Retinal Cell Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582, Japan
3 Department of Cell Biology, The Scripps Research Institute, MB 28, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
4 Department of Ophthalmology, Hokkaido University Graduate School of Medicine, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan
5 Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582, Japan

Correspondence should be addressed to Toshihide Kurihara, kurihara@2009.jukuin.keio.ac.jp

Received 15 October 2011; Revised 9 December 2011; Accepted 4 January 2012

Academic Editor: Michelle C. Callegan

Copyright © 2012 Toshihide Kurihara et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The renin-angiotensin system (RAS) is a hormone system that has been classically known as a blood pressure regulator but is
becoming well recognized as a proinflammatory mediator. In many diverse tissues, RAS pathway elements are also produced
intrinsically, making it possible for tissues to respond more dynamically to systemic or local cues. While RAS is important for
controlling normal inflammatory responses, hyperactivation of the pathway can cause neural dysfunction by inducing accelerated
degradation of some neuronal proteins such as synaptophysin and by activating pathological glial responses. Chronic inflammation
and oxidative stress are risk factors for high incidence vision-threatening diseases such as diabetic retinopathy (DR), age-related
macular degeneration (AMD), and glaucoma. In fact, increasing evidence suggests that RAS inhibition may actually prevent
progression of various ocular diseases including uveitis, DR, AMD, and glaucoma. Therefore, RAS inhibition may be a promising
therapeutic approach to fine-tune inflammatory responses and to prevent or treat certain ocular and neurodegenerative diseases.

1. Introduction

Most visual disorders occur in the retina, which is a part of
the central nervous system (CNS) and consists of neurons,
glia, pigment epithelium (RPE), and blood vessels. Currently,
diabetic retinopathy (DR), age-related macular degeneration
(AMD), and glaucoma are the top causes of blindness in the
developed countries. These diseases can occur when local
or systemic neuronal and vascular homeostasis mechanisms
are dysregulated. The highest risk factor for many of these
diseases is aging [1–3], and as is the case with other age-rel-
ated diseases such as Alzheimer’s disease, cardiovascular dis-
ease, cancer, arthritis, osteoporosis, and hypertension, accu-
mulating evidence suggests that chronic inflammation and
oxidative stress can accelerate or promote disease progression
[4–6].

The renin-angiotensin system (RAS) is classically known
as a systemic blood-pressure-regulating system. However, it
is becoming widely recognized as an inflammation regulator
as well. Independent of systemic RAS, tissue intrinsic RASs
have been identified in various tissues (including the retina)
and are important for maintaining local homeostasis. Ele-
ments of the RAS pathway are highly conserved in many
species including invertebrates and humans demonstrating
that its functions are evolutionarily conserved, although spa-
tial expression patterns differ slightly between different spec-
ies [7].

We have reported that angiotensin II type 1 receptor
blocker (ARB) suppresses retinal neural dysfunction in ani-
mal models of acute inflammation [8] or diabetes [9]. Other
groups and our own have also reported that ARBs can pro-
tect retinal vascular inflammation [10–19] and neuronal
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Figure 1: Circulating and tissue renin-angiotensin system (RAS). VSMC: vascular smooth muscle cell, EC: endothelial cell, PRRB: (pro)renin
receptor blockers, ACEI: angiotensin-converting enzyme inhibitors, ARB: angiotensin II type 1 receptor blockers, AT1R: angiotensin II type
1 receptor, CB: ciliary body, RPE: retinal pigment epithelium.

apoptosis [20–23]. Furthermore, it was recently reported by
two independent groups that daily oral administration of
ARB may prevent the progression of diabetic retinopathy in
randomized multicenter clinical trials [24–26]. In this paper
we will summarize these findings and other studies demon-
strating that RAS modulation may prevent ocular patho-
genesis. We will also outline the similarities and differences
between retinal and brain RAS. Lastly, we will describe the
potential mechanisms through which RAS inhibition may
preserve neuronal function and viability while combating
ocular diseases.

2. RAS as an Inflammatory Cascade

Renin was discovered as a hypertensive agent in rabbit kid-
neys in 1898. It was later found to induce the release of a va-
soconstrictive agent in experimental models of hypertension
induced by renal ischemia [27]. Two independent groups
identified the end product of this hypertensive cascade in
1939 and named it “hypertension” [28] or “angiotonin” [29].
It has since been renamed “angiotensin” [30]. The RAS

pathway as we know it today began to take shape once
angiotensin-converting enzyme (ACE) was identified in 1956
[31]. We now know that once renin is proteolytically proc-
essed from its precursor prorenin by proteases and released
from the kidney, it converts angiotensinogen to angiotensin
I in the liver. Angiotensin I is finally converted to angiotensin
II by ACE which is predominantly expressed in vascular en-
dothelial cells (ECs) and is located in highly vascularized tis-
sues such as the lung (Figure 1). Angiotensin II stimulates va-
scular smooth muscle cells (VSMCs) that line endothelial cel-
ls to contract and induce vasoconstriction.

There are two primary receptors for angiotensin II: an-
giotensin II type 1 receptor (AT1R) and AT2R; AT1R ap-
pears to exert predominant functions in blood vessels. Ge-
nerally, AT1R signaling normally induces vasoconstriction
while AT2R signaling induces vasodilation. However, the
roles of AT1R and AT2R in pathophysiological conditions are
currently under debate [32–34]. AT1R is a seven-transmem-
brane G protein-coupled receptor [35, 36]. Once stimulated
in VSMCs G proteins activate phospholipase C (PLC) and
inositol-1,4,5-triphosphate (IP3) to open calcium channels
in the endoplasmic reticulum [37]. As a result, increase of
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cytosolic calcium induces phosphorylation of myosin light
chain, VSMC contraction, and vasoconstriction [38, 39].

Independent of systemically circulating angiotensin II
(circulating RAS), most RAS components, including ACE,
were also found to be locally expressed in many tissues [40].
This observation resulted in the hypothesis that in addition
to being converted in particular organs for systemic circu-
lation, angiotensin II could also be synthesized in peripheral
tissues (tissue RAS) where it would exert its effect locally. Tis-
sue RAS elements were identified in various organs including
heart [41], kidney [42], adrenal gland [43], brain [44], and
retina (see details below). An important molecule involved
with tissue RAS is (pro)renin receptor which interacts with
prorenin to exert enzymatic activity of renin without the con-
ventional proteolysis of the prorenin prosegment [45, 46].
(Pro)renin receptor can be detected in major organs but not
in circulation indicating that this molecule may play a critical
role in the activation of tissue RAS [46]. Thus tissue RAS may
be important for fine-tuning global RAS activity or for act-
ing intrinsically to respond to localized insults. However,
(pro)renin receptor may also function independent of renin
activation as a member of the Wnt receptor complex to re-
gulate Wnt/ß-catenin pathway activity [47].

In addition to its critical physiological functions, RAS dy-
sregulation can lead to pathogenesis. In various cardiovascu-
lar cell-type RASs hyperactivation can induce pathogenic cell
migration, hypertrophy, fibrosis, disrupt cell adhesion and
ectopic extracellular matrix (ECM) deposition. AT1R signal-
ing directly activates key signaling pathways for cell growth
and hypertrophy including JAK/STAT (janus kinase/signal
transducer and activator of transcription) [48, 49], ERK
(extracellular-signal-regulated kinase) 1/2 [50–52], and p38
MAPK (mitogen-activated protein kinase) [53]. Indeed, an-
giotensin II/AT1R signaling can potentiate oxidative stresses
and inflammatory responses by activation of NAD(P)H (ni-
cotinamide adenine dinucleotide phosphate) oxidases [54–
57]. Angiotensin II can also activate EGFR (epidermal grow-
th factor receptors) and induces fibronectin synthesis and
TGFβ (transforming growth factor beta) activity to promote
fibrosis and ECM formation [58, 59]. AT1R signaling can
activate NFκB (nuclear factor kappa-light-chain-enhancer of
activated B cells) [60–62] and AP-1 (activator protein 1) to in-
itiate transcription of multiple proinflammatory genes [61,
63, 64]. AT1R also induces accumulation, adhesion, and in-
filtration of inflammatory cells via activation of PAI-1 (plas-
minogen activator inhibitor-1) [65] and MCP-1 (monocyte
chemotactic protein-1) [62] to promote atherosclerosis [66].
Taken together, these findings provide strong evidence that
RAS is not just a regulator of blood pressure, but also re-
gulates an inflammatory cascade.

The effects of circulating and tissue RAS can be control-
led with RAS inhibitors. After the first ACE inhibitor (ACEI)
was developed [67], many other RAS inhibitors including
ARB [68, 69] have been established and approved for com-
mercial use as hypertension drugs (Figure 1). RAS inhibition
not only prevents hypertension but also protects tissues aga-
inst injury by limiting the potency of deleterious inflamma-
tory responses. Since aging is considered to be, in part, the
result of chronic inflammation [70], it may not be too

surprising that the use of RAS inhibitors or genetic deletion
of AT1R has potential to extend the life span in hypertensive
[71–73] or normotensive [74] mammals.

3. Brain and the Retinal RAS

In addition to regulating vasoconstriction, another impor-
tant physiological function of RAS is osmoregulation in the
CNS (e.g., water and sodium intake, sympathetic activity,
and release of vasopressin) [75–77]. AT1R is expressed in
brain neurons and mediates osmoregulation [76] by stimu-
lating the release of vasopressin in the pituitary gland and sig-
naling the kidney to conserve water [76]. Furthermore ang-
iotensin II/AT1R signaling in the brain forces individuals to
stimulate increased thirst and consume more drinking water
[77]. Since angiotensin II has a high molecular weight, it does
not cross the blood-brain barrier (BBB) [78]. Therefore in-
trinsic RAS networks must be responsible for inducing the
dipsogenic activity. Additionally, every component of the
RAS pathway including angiotensinogen, ACE, and ang-
iotensin II receptors is expressed in the brain [75, 76, 79–81].
Brain RAS can also become dysregulated; this has been shown
to induce oxidative stress and inflammation [82]. However,
RAS inhibitors have neuroprotective effects in brain inflam-
mation and ischemia without inducing antihypertension (see
detail below).

The retina also has an intrinsic tissue RAS. In the eye,
prorenin protein and renin activity can be detected in the
vitreous fluid [83–85] and prorenin mRNA has been detected
in Muller glia [86] and in the ciliary body (CB) cells [87].
(Pro)renin receptor is expressed in ECs, Muller glia, and
retinal ganglion cells (RGCs) [88, 89]. Angiotensinogen is
found in CB [90], Muller glia [91], and RPE [92]. ACE is
synthesized in the neural retina [93, 94] and can be detec-
ted in RGCs, photoreceptors [95], and Muller glia [96]. An-
giotensin II, the final product of RAS, can be detected in the
vitreous fluid [97] and in the neural retina [98]. Interestingly,
the normal concentration of angiotensin II in ocular fluid is
higher than in plasma [97], confirming the existence of tissue
RAS in the eye.

In the retina, angiotensin II receptors are detected both in
ECs and in neuronal cells, which are located outside and in-
side of the blood-retina barrier (BRB), respectively [8, 92, 99,
100]. AT1R is found in the presynaptic terminals of photo-
receptors and of interneurons in the retina [8] as well as in
neurons of the brain [101, 102] (Figure 2). AT1R is also ex-
pressed in RGCs [103], although the physiological function
of AT1R in the neural retina is not fully understood. Systemic
administration of ACEI negatively influences cat and human
neural functions measured by electroretinograms (ERG)
in both systemic blood-pressure-dependent [104] and -in-
dependent manners [105, 106]. Additionally, angiotensin II
increases voltage-dependent calcium currents in cultured
RGCs [103]. Therefore ocular RAS may act as a physiological
neuromodulator.

AT2R is also expressed in the retina [8] but much less is
known how it functions in the eye. Polymorphisms in the
AT2R gene may be linked to glaucoma [107] or diameter of
the retinal arterioles [108].
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Figure 2: AT1R expression in a neuronal cell line. Immunohisto-
chemistry for angiotensin II type 1 receptor (AT1R) in PC12D cells.
Note that AT1R is detected in presynaptic terminal (arrow) or soma
(arrow head). Scale bar: 20 μm.

4. RAS and Ocular Diseases

4.1. Uveitis. Increasing evidence suggests that RAS activity
and inflammation may be associated with various ocular dis-
eases, and, therefore, RAS inhibitors may be effective thera-
peutic agents. Several lines of evidences suggest that RAS in-
hibition is an effective treatment for uveitis [8, 12, 17, 18, 88].
Endotoxin-induced uveitis (EIU) is induced with intraperi-
toneal injections of lipopolysaccharide (LPS); this results in
upregulated expression of proinflammatory and adhesion
molecules such as ICAM-1 (intercellular adhesion molecule
1), MCP-1, IL-6 (interleukin 6), and IFN-γ (interferon-
gamma) [17, 88]. These molecules are also upregulated in ex-
perimental autoimmune uveoretinitis (EAU) models gener-
ated by immunizing animals with interphotoreceptor retin-
oid-binding protein (IRBP) [18]. The upregulation of these
molecules, however, can be inhibited with ARB or (pro)renin
receptor blocker (PRRB). (PRRB is an experimental decoy
peptide that contains “handle” region sequence of (pro)renin
receptor.) RAS inhibition also suppresses retinal leukocyte
stasis, CD4+ T-cell activation [17, 18, 88]. Furthermore, RAS
inhibition suppresses gliosis by preventing STAT3 activation
[8]. Lastly, when the expression levels of RAS pathway com-
ponents are examined in EIU, prorenin, (pro)renin receptor
[88], angiotensin II [8], and AT1R [17] levels are elevated
in the retina. These findings suggest that heightened inflam-
matory responses in the eye and RAS activation are strongly
correlated.

4.2. Chronic Inflammation and Eye Diseases. Besides being
correlated with classically acute inflammation cases such as
uveitis, one of the largest risk factors for developing prevalent
and vision-threatening diseases such as DR, AMD, and glauc-
oma is aging [1–3]. These age-related eye diseases [109, 110]
and others [5, 6] are now known to be caused (at least part-
ially) by chronic inflammation and oxidative stress. Since
RAS inhibition may prolong the life spans of hypertensive
[71–73] or normotensive [74] mammals, it is logical that age-
related eye diseases may be prevented or treated by suppres-
sing inflammation and oxidative stress. The main patho-
logical event of DR and AMD is abnormal neovascularization
and VEGF (vascular endothelial growth factor) has been
known to be a large contri-butor for them [111–113]. VEGF
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Figure 3: Downstream of AT1R in vascular inflammation and neu-
ral dysfunction. NFκB: nuclear factor kappa-light-chain-enhancer
of activated B cells, AP-1: activator protein 1, UPS: ubiquitin-pro-
teasome system, STAT3: signal transducer and activator of tran-
scription 3, ICAM-1: intercellular adhesion molecule 1, MCP-1:
monocyte chemotactic protein 1, VEGF: vascular endothelial
growth factor, Syp: synaptophysin, Rho: rhodopsin, GFAP: glial fi-
brillary acidic protein.

is a potent angiogenic factor and an inflammatory cytokine
that induces the accumulation, adhesion, and infiltration of
leukocytes [114, 115]. Inflammatory response in the retina
can promote tissue ischemia by inducing vascular regression
(vaso-obliteration) and also pathological angiogenesis [116].
Angiotensin II can induce upregulation of VEGF receptor
(VEGFR)-2 and angiopoietin-2 in retinal ECs [117, 118] and
VEGF in retinal pericytes [119] (Figure 3). Oxygen-induced
retinopathy (OIR) is an animal model induced by continual
aeration with 75–80% oxygen in early postnatal stages. OIR
animals develop stereotypical phenotypes and is useful to
evaluate vaso-obliteration and pathological angiogenesis (tu-
ft formation) in the developing retina [120] which is largely
re-gulated by VEGF [121]. This phenotype can be preven-
ted with RAS inhibitors ACEI [122, 123], ARB [15], or
PRRB [89, 124] that prevent pathological angiogenesis in
OIR. The use of ARB and PRRB has the added benefit of sup-
pressing abnormal angiogenesis without suppressing physio-
logical vascular regeneration [15, 124]. In animals exposed to
OIR RAS inhibitors may function to prevent gene expression
of proinflammatory molecules and prevent leukocyte infil-
tration. Infiltration of VEGF-expressing inflammatory cells
into the vitreous cavity is thought to induce pathological an-
giogenesis by causing ECs to grow in the wrong direction
[115].

4.3. Diabetic Retinopathy (DR). DR is one of the leading caus-
es of blindness in the world [3]. It is characterized by vas-
cular loss due to hyperglycemia and inflammation due to oxi-
dative stress and AGEs (advanced glycation end products) ac-
cumulation. In severe cases hypoxia induces abnormal
neovascularization (proliferative diabetic retinopathy, PDR)
in addition to hyperpermeability (diabetic macular edema;
DME). Prorenin [83] and angiotensin II [125, 126] are found
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to be increased in the vitreous humor of PDR and DR pa-
tients. RAS may potentiate the vascular phenotype of DR
by upregulating VEGF/VEGFR-2 signaling (through angio-
tensin II) [118, 119] thereby inducing neovascularization
and promoting blood vessel permeability. In fact, VEGF was
initially named “vascular permeability factor” (VPF) [127].

Multiple attempts have been made to treat DR with RAS
inhibitors. Although in one study ACEI administration se-
emed to attenuate retinal hyperpermeability in diabetic pa-
tients [128], interpretations of these studies are still being ac-
tively debated [129, 130]. However, recently three independ-
ent groups showed that ARB prevents BRB breakdown in
animal models [131–133]. In 1998 and 2008, the results of
randomized double-blind placebo-controlled trials using
ACEI or ARB to treat DR were released from the EUCLID
(EURODIAB Controlled Trial of Lisinopril in Insulin-De-
pendent Diabetes; ACEI treatment) [134] and DIRECT (Dia-
betic Retinopathy Candesartan Trial; ARB treatment) [24,
25]. Afterwards, RASS (Renin-Angiotensin System Study) in
which both inhibitors were tested in DR patients was also
released [26]. Large number of participants were examined
in these trials (354 (type 1 diabetes) for EUCLID, 1421 (type
1) and 1905 (type 2) for DIRECT, and 285 (type 1) for RASS,
resp.), and the results from all three studies provided strong
evidence that RAS inhibition delays the onset or prevents the
development of human DR symptom. However, these treat-
ments were not universally beneficial. For example, in DI-
RECT, ARBs were not effective with respect to primary end-
points and had differing effects regarding secondary end-
points in different patient groups (type I or type II diabetes)
[24, 25].

Clues for why RAS inhibition is effective for treating DR
have come from animal studies. Streptozotocin (STZ) injec-
tions in rodents induce leukocyte stasis, blood vessel hyper-
permeability, and formation of acellular capillaries. Impor-
tantly, ERG recordings are attenuated in rodents after STZ
injections before vascular phenotypes are observed, indicat-
ing that neuronal dysfunction precedes neovascularization in
diabetic models [9, 135]. Apoptosis of retinal neurons is also
observed in later stage [136]. The administration of ACEI
[137–140], ARB [10, 13, 14, 141], or PRRB [142] has been
shown to rescue the vascular phenotypes of STZ-induced
diabetic retinas. To generate another and more severe model
of DR, Ren-2 transgenic rats (that have severe hypertension
due to genetic knock-in of a mouse ren-2 renin gene [143])
can be injected with STZ. In these rats advanced vascular
phenotypes are observed (including abnormal endothelial
proliferation). Even in this model ACEI [144] or ARB [19,
145, 146] administration served as effective treatments. RAS
inhibitors probably function by suppressing inflammatory
cascades [10, 14] and by preventing oxidative stress [147]
by limiting NFκB and NAD(P)H activation. RAS inhibitors
may also function to directly inhibit glucose accumulation
into retinal cells by modulating GLUT-1 (glucose transporter
1) expression [148]. Furthermore, ARB was reported to in-
fluence the expression of glyoxalase I, a key regulator of AGEs
[11]. Lastly, even though AT1R and AT2R are considered
to have opposing functions AT2R inhibition may also

effectively treat DR by suppressing VEGF and angiopoietin-2
expression levels in experimental retinopathies [33, 149].

4.4. Age-Related Macular Degeneration (AMD). AMD is one
of the leading causes of blindness especially in western coun-
tries. The greatest risk factors are aging and smoking [1],
and the central phenotypes are choroidal neovascularization
(CNV; wet AMD) and atrophy of photoreceptors and RPE
cells (dry AMD). While no cure exists for dry AMD, wet
AMD is currently treated with VEGF inhibitors [112, 113].
Inflammation exacerbates the wet AMD phenotype since in-
filtrating macrophages promote CNV formation [150–152].
Experimental CNV can be induced using laser coagulation
to mechanically disrupt Bruch’s membrane. The size of the
laser-induced lesions after treatment with ACEI [153], ARB
[16], and PRRB [154] is significantly reduced. Furthermore,
AT1R-deficient mice are resistant to laser-induced CNV
[154]. RAS inhibition may protect against CNV formation by
inhibiting RAS activity and suppressing ERK signaling (di-
rectly with (pro)renin receptor-mediated intracellular signal-
ing) [154].

RPE cells are positioned between the choroidal vascula-
ture and photoreceptors and have function to maintain the
visual (retinoid) cycle and to form a tight seal that prevents
choroidal vessel invasion. Angiotensin II signaling in RPE
cells increases abnormal production [155–157] and excessive
turnover [158] of ECM via MMP (matrix metalloprotein-
ase)-2 and -14 thereby weakening the seal that prevent chor-
oidal EC invasion. These studies suggest that RAS inhibition
may be an effective treatment for AMD as well as DR.

4.5. Glaucoma. Glaucoma is another age-related and high
incidence ocular disease [2]. The feature of this disease is
neurodegenerative of RGCs, but it can be caused by hetero-
geneous and complex mechanisms. One direct mechanism to
induce RGC death is to increase the intraocular pressure
(IOP). Studies devoted to developing new methods of con-
trolling IOP are critical and ongoing. However, a subpopu-
lation of glaucoma patients have normal IOP (normal ten-
sion glaucoma, NTG). This complicates the development of
effective therapies since both forms are induced by seemingly
separate mechanisms. Some RAS components including ang-
iotensin II receptors are expressed in CB cells [90, 159, 160]
that secrete aqueous humor and regulate IOP. Like other
antihypertensive drugs such as calcium channel blockers,
ACEI or ARB decreases IOP in humans and other primates
[161–165] although IOP is considered to be regulated inde-
pendently of systemic blood pressure. In an experimental
model of high IOP and glaucoma, ARB treatments effectively
suppress RGC death [23]. These findings suggest that RAS
inhibition may be effective for treating glaucoma patients
with high IOP.

5. RAS Inhibition Protects Brain and
Retinal Neurons

Angiotensin II receptors are expressed inside and outside of
the BBB [75, 76, 79–81] and the BRB [8, 92, 99, 100] indicat-
ing that both circulating and tissue RAS exist in the CNS,
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and if dysregulated, could elicit pathological effects. Indeed,
RAS inhibition can attenuate the degree of inflammation in
the brain and the eye [166, 167]. Inhibiting RAS can prevent
experimental brain injuries induced by middle cerebral
artery occlusion [168, 169] by suppressing vascular inflam-
mation [170], including BBB breakdown [171], and/or regu-
lating neural apoptosis directly [169]. Interestingly, AT2R is
more highly expressed in developing neuronal tissues in vivo
than in adult tissues [172] and AT2R stimulation promotes
axonal regeneration of optic nerve [173] and minimizes
formation of ischemia-induced cerebral lesions [174]. This
suggests that ARB, which not only blocks AT1R but also caus-
es angiotensin II to bind AT2R [175], may be an ideal drug
for treating inflammatory diseases in the CNS. Inhibition
of RAS may also prevent stress-induced behaviors including
anxiety, depression, and panic by suppressing the release
of corticotrophin-releasing factor [176–178]. Furthermore,
recent studies suggest that brain RAS may potentiate Al-
zheimer’s disease progression by stimulating the production
of beta amyloid [179–182].

Retinal dysfunction as detected in ERG recordings can
be observed in early diabetic animal models and in humans
before vascular changes and neural cell loss are observed
[135]. Amazingly, these deficits can be prevented by in-
hibiting RAS [9, 183, 184]. We have reported that ARB pre-
vents retinal dysfunction (e.g., decrease of amplitude and an
extension of the implicit time of ERG) in EIU [8] and in STZ-
induced early diabetic retinas [9]. Furthermore, in these in-
flamed retinas, we determined that angiotensin II prompted
the degradation of the presynaptic protein synaptophysin
through the ubiquitin proteasome system (UPS) [8, 9]. UPS-
mediated degradation of rhodopsin (part of the light-res-
ponsive complex in photoreceptors) can also be observed in
EIU via STAT3 activation (which operates downstream of
AT1R) [8, 185]. Additionally, STAT3 signaling serves as a
negative regulator of rhodopsin in differentiating photore-
ceptors during retinal development [186, 187]. Thus, regu-
lating angiotensin-II-induced protein degradation could ser-
ve as an important neuroprotective measure [188] (Figure 3).

Another target of inflammation is reactive glia including
microglia, astrocytes, and Muller glia. Activated glia cause
gliosis and alter proper neuronal morphology. Microglia are
resident CNS myeloid-derived cells and mediate critical im-
mune and inflammatory responses. AT1R signaling indu-
ces activation of microglia via NFκB and AP-1 [189, 190].
GFAP (glial fibrillary acidic protein) is a differential and re-
active marker of astrocyte and Muller glia, respectively, and
its transcription is regulated by STAT3 activation [191]. The
activation of astrocytes and Muller glia in experimental re-
tinopathy can be prevented by ARB [8, 192] (Figure 3),
although it is important to consider that the contributions of
reactive glia can be context dependent [193].

IOP-independent RGC apoptosis can be observed in
STZ-induced diabetes [136], after ischemia/reperfusion
[194], after optic nerve crush [195], and after intraocular
NMDA (N-methyl-D-aspartic acid) injections [196] in ani-
mal models. RGC loss in diabetic hypertensive models can be
prevented by ARB which restores oxidative redox and mito-
chondrial functions [22]. ACEI or ARB also prevents RGC

apoptosis in ischemia/reperfusion models by suppressing
toxic oxidative stress [21]. ARB can also rescue dying amacri-
ne cells in OIR [20]. Polymorphisms of RAS pathway genes
are reported to be associated with brain infarction or its
early lesion [197–199] and AT2R gene polymorphisms are re-
ported to be associated with the risk of NTG [107]. These
findings may indicate that RAS inhibitors may directly pro-
tect retinal neurons from apoptosis and further suggest that
RAS inhibition may be useful for therapeutic treatments of
IOP-independent glaucoma.

6. Conclusion

RAS, which has been classically known as blood pressure reg-
ulator, is becoming widely recognized as a proinflammatory
mediator. Many age-related ocular diseases may be caused
or exacerbated by chronic inflammation. Cells in the eye
are responsive to circulating and tissue RAS and increasing
evidence indicates that RAS inhibition may prevent various
ocular diseases including uveitis, AMD, and glaucoma. Based
on the findings from multiple clinical trials, RAS inhibitors
are effective therapeutic agents for treating DR although the
results of these studies must be examined critically since the
inhibitors were not universally beneficial. Other groups in-
cluding our own have shown that RAS inhibitors protect
neurons from oxidative stress and apoptosis by preventing
posttranslational ubiquitination of proteins critical for re-
tinal functions. Although not mentioned previously in this
paper, another new and exciting RAS inhibitor, aliskiren (a
direct renin inhibitor), has been developed. It may actually
mediate more robust vascular protection than either ACEI
or ARB [200]. Therefore, work is underway to characterize
existing RAS inhibitors and to develop novel inhibitors since
they hold great promise for attenuating chronic inflam-
mation and for treating multiple ocular and nonocular
diseases.
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PRRB: (Pro)renin receptor blocker
VEGF: Vascular endothelial growth factor
VEGFR: VEGF receptor
OIR: Oxygen-induced retinopathy
AGE: Advanced glycation end-product
PDR: Proliferative diabetic retinopathy
DME: Diabetic macular edema
EUCLID: EURODIAB Controlled Trial of Lisinopril

in Insulin-Dependent Diabetes
DIRECT Diabetic Retinopathy Candesartan Trial
RASS: Renin-Angiotensin System Study
STZ: Streptozotosin
GLUT-1: Glucose transporter 1
CNV: Choroidal neovascularization
MMP: Matrix metalloproteinase
IOP: Intraocular pressure
NTG: Normal tension glaucoma
GFAP: Glial fibrillary acidic protein
NMDA: N-methyl-D-aspartic acid.
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