
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5873  | https://doi.org/10.1038/s41598-021-84176-y

www.nature.com/scientificreports

Determine neighboring region 
spatial effect on dengue cases 
using ensemble ARIMA models
Loshini Thiruchelvam1, Sarat Chandra Dass2, Vijanth Sagayan Asirvadam3*, Hanita Daud4 & 
Balvinder Singh Gill5

The state of Selangor, in Malaysia consist of urban and peri-urban centres with good transportation 
system, and suitable temperature levels with high precipitations and humidity which make the state 
ideal for high number of dengue cases, annually. This study investigates if districts within the Selangor 
state do influence each other in determining pattern of dengue cases. Study compares two different 
models; the Autoregressive Integrated Moving Average (ARIMA) and Ensemble ARIMA models, using 
the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) measurement to gauge 
their performance tools. ARIMA model is developed using the epidemiological data of dengue cases, 
whereas ensemble ARIMA incorporates the neighbouring regions’ dengue models as the exogenous 
variable (X), into traditional ARIMA model. Ensemble ARIMA models have better model fit compared 
to the basic ARIMA models by incorporating neighbuoring effects of seven districts which made of 
state of Selangor. The AIC and BIC values of ensemble ARIMA models to be smaller compared to 
traditional ARIMA counterpart models. Thus, study concludes that pattern of dengue cases for a 
district is subject to spatial effects of its neighbouring districts and number of dengue cases in the 
surrounding areas.

Dengue is a vector-borne disease, transmitted by two types of mosquito vectors; the Aedes Aegypti and Aedes 
Albopictus, where the life-cycle of the vector and transmission of the disease are closely related to climate 
variables1. Dengue is endemic in tropical and subtropical regions worldwide, and this includes Malaysia, spe-
cifically the state of Selangor2. Of the total number of 120,836, 101,357 and 83,849 dengue cases that occurred 
in Malaysia, during the years of 2015, 2016, and 2017 respectively, 52.30%, 50.96% and 54.00% of these cases 
occurred in the state of Selangor3. The state level health authorities would alert all the districts in the abovemen-
tioned states (namely, Petaling, Klang, Hulu Selangor, Hulu Langat, Kuala Selangor, Gombak, Sepang, Kuala 
Langat and Sabak Bernam) if there is/are always hotspot(s) or many confirmed dengue cases being identified 
within these localities4.

These Aedes mosquito vector populations are difficult to control and to eliminate as their eggs can mature 
and hatch even after a prolonged drought1. However, control against the mosquito vectors is known to be the 
best measure for curbing the rise of dengue cases at present. Vaccination for this disease is still under study as 
the efficacy of the vaccine has yet to yield reliable outcomes. One such example is dengue vaccine named Deng-
vaxia which has been developed by Sanofi Pasteur Ltd, but further investigations has found this vaccine was only 
effective for those who have been infected previously with dengue, however may cause a more severe disease and 
hospitalization to those who are sero-negative (not being infected prior)5.

In view of these developments, forecasting increases in dengue cases is still relevant and important for 
health authorities in Malaysia. Dengue prediction models are an important complementary tools to deter-
mine when an increase in dengue cases will occur and thereby to deploy methods of controlling the vector 
population early.

In looking into possible factors to be included in dengue prediction models, a previous study6 emphasized 
six factors contributing to dengue increase: serotype shift, climate change, human behavior, poor environmental 
sanitation, mobility of population and the ineffectiveness of the vector control activities. Therefore, these factors 
mentioned should be considered while building the dengue forecasting models as studies have suggested that the 
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circulating serotype contributes to the rising trend of dengue cases7–9. However determining the circulating sero-
type requires laboratory testing which is time consuming compared to the climate factors. Moreover weather 
based dengue early warning surveillance systems are considered as simple, low cost, and more efficient systems10. 
Several dengue affected countries also have studied dengue-climate relationships and incorporated climate vari-
ables into their dengue forecasting models9.

Besides the climate, several studies have also discussed the spatial aspects of dengue patterns in developing 
effective prediction models. These studies discussed the global dengue prediction models11,12 and also spread 
across states13, districts14,15 and at localized levels16–18. Studies have shown that dengue prediction models are best 
to be localized to distribution of the mosquito vector populations that varies with biological and environmental 
factors15. Several different scales of localization have been used by previous studies, for example one study inves-
tigated dengue patterns with a range of only 100 m within houses of children suspected to have fever18, which 
represents the distance that female Aedes Aegypti mosquitoes could fly up to. Further expanding this distance, 
previous studies have clustered dengue incidences as hotspots within a range of 100 m–1 km19,20. Here, the direct 
chain of dengue transmission, flight range of the mosquito, human movement within localities and the similar 
serotype-specified immunity acquired by the respective residents were considered as contributing factors.

Movement of dengue-infected individuals would result in increasing the size of the outbreak clusters 
where many studies have instead considered localization at district levels instead of localities. A study carried 
out in Southern Vietnam found that high and low numbers of dengue cases occurred at time points close to each 
other for districts located within 100km2 radius, with villages located at a shorter distance of 52km2 radius of each 
other having more temporal coorelations15. In addition, a study in Taiwan suggested that temporal coorelations 
in neighbouring areas can be used to determine the risk of a dengue outbreak occuring in future21. The authors 
reported that the risk of an outbreak occuring in a area corresponds to the the probability of its neighbour-
ing areas having a higher number of dengue cases. This possibility is measured as indices over time (temporal 
indices) and a total of three indices are used, consisting of probability for dengue occurrences, duration of an 
epidemic and the intensity of an endemic. Therefore, with these examples, it can be suggested that dengue cases 
are subject to spatial effect too, that is, the pattern of dengue cases in an area can be influenced by the cases in 
neighbouring areas. Considering the importance of neighbouring regions, this study aims to investigate spatial 
effects for the selected study area. For this purpose, this study applies two Box-Jenkins based model structures, 
the Autoregressive Integrated Moving Average (ARIMA) and its extension, Autoregressive Integrated Moving 
Average with Exogenous variable (ARIMAX) models (described as Ensemble ARIMA for this study) for predict-
ing dengue cases22,23.

Thus, specifically this study consists of three research objectives. First, is to build a single ARIMA dengue 
prediction model. The next step is to build an ensemble ARIMA model that incorporates the spatial effects of 
neighboring regions which represents an ARIMAX model structure with the ARIMA representing own regions’ 
dengue estimation model, and the external variables (X) from the neighboring regions’ dengue estimation mod-
els. Finally, the third objective is to compare and select the optimum dengue prediction models for each study 
region for single and ensemble model using AIC (Akaike Information Criterion) and BIC (Bayes Information 
Criterion) model selection tools.

Materials methods
Study region.  The study region consists of seven districts in the  state of Selangor, Malaysia. These dis-
tricts are, Hulu Selangor, Petaling, Klang, Kuala Selangor, Hulu Langat, Gombak and Sepang. Data on dengue 
cases were obtained from the Ministry of Health (MoH), Malaysia. The data used is on a weekly basis and was 
collected from the years 2009–2013, consisting of 260 weeks. Since the dengue trajectories are non-stationary, 
first order differencing with d = 1 is applied to convert dataset to stationary time series. The ARIMA and ARI-
MAX methodologies were then applied to the resulting differenced and stationary time series. It is found that 

Figure 1.   Locations of study districts in Selangor, Malaysia.
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d = 1 was sufficient to achieve stationarity and thus, higher order differencing was not needed. Figure 1 shows 
the study districts whereas the neighbouring regions for each study district which is needed to develop the 
ensemble models as in Eq. (2), is described in Table 1. These neighboring districts are aligned with a previous 
study emphasizing dengue cases within regions around 52km2 in average, are more likely to be correlated and 
their patterns may influence one area to another15. Thus, this study considered districts within 52km2 as the 
neighbouring districts and the distance on road are computed. 

ARIMA and ensemble ARIMA models for dengue prediction
In order to determine best dengue prediction model, a comparison study is carried out between models with 
(i) dengue cases of own region only and (ii) dengue cases of own region together with dengue models of neigh-
bouring regions. These models are represented as the ARIMA and ensemble ARIMA (which can be viewed as 
ARIMAX extension) models, respectively, and developed using the Box-Jenkins (BJ) approach consisting of 
three stages: Model Identification, Parameter Estimation and Residual Diagnostics.

Both ARIMA and Ensemble ARIMA models can be represented as Eqs. (1) and (2) respectively.

where: Ŷ ′
t−1 is the observation at time (t − 1) obtained from its own region’s dengue model, X ′(l)
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each φi ∈ R in Eqs. (1) and (2) representing the correlation for previous dengue cases, θi ∈ R in Eqs. (1) and 
(2) representing the correlation for moving average of previous error terms to be included and finally βi ∈ R 
representing the correlation coefficient for the neighbouring regions’ dengue models considering each (l) . The 
parameters are estimated using the Maximum Likelihood (ML) approach, and residual diagnostics are carried 
out on the obtained models to ensure the errors are white-noise. The developments of ARIMA and Ensemble 
ARIMA models are illustrated in Fig. 2a,b, respectively.

Akaike Information Criterion (AIC) and Bayes Information Criterion (BIC).  As two models are 
obtained for each study region, the optimum model needs to be identified, and therefore, the AIC and BIC values 
are used as the model selection tools. The best model would be the one with lowest AIC and BIC values. Since 
AIC safeguards against underfitting and BIC against overfitting, by considering both these AIC and BIC values, 
the selected model will have good prediction capability and will be parsimonious24.

The AIC and BIC values25 are defined as in Eqs. (3) and (4) respectively:
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Table 1.   Districts and their respective neighbouring(s) districts.

No District Nearest neighbour/s and distance (from respective district by road)

1 Hulu Selangor Gombak (43km2)

2 Petaling, Kuala Selangor (51km2), Gombak (33km2), Hulu Langat (52km2), Klang (30km2)

3 Klang Kuala Selangor (49km2), Petaling (30km2)

4 Kuala Selangor Gombak (55km2), Petaling (52km2), Klang (49km2)

5 Hulu Langat Gombak (38km2), Petaling (52km2), Sepang (49km2)

6 Gombak Hulu Selangor (43km2), Kuala Selangor (55km2), Hulu Langat (38km2), Petaling (33km2)

7 Sepang Hulu Langat (49km2)
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since there are m number of β-coefficients of neighbouring regions’ dengue models and one variance parameter,σ 2

Figure 2.   (a) Flow-chart of Box–Jenkins approach for ARIMA model development. (b) Flow-chart of Box–
Jenkins approach for ensemble ARIMA model development.
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Results
Data description.  The data descriptions of dengue cases for each study district are given in Table 2.

Prior to model building and selection, the value of dengue cases of each study region is normalized into 
the same range (0–1): Letting A represent a generic notation for a variable which represents number of cases, 
normalization entails the formula given in Eq. (5).

Single dengue prediction models.  Phase I: ARIMA model development.  The development of the den-
gue prediction model is illustrated for Petaling district in Figs. 3, 4 and 5. Figure 3 shows the weekly dengue case 
trajectory for Petaling district during years of 2009–2013 which shows clearly the cases are not stationary as they 

(5)AN =
A− Amin

Amax − Amin

Table 2.   Summary measures of dengue cases across study regions.

Region Hulu Selangor Petaling Klang Sepang Hulu Langat Gombak Kuala Selangor

Dengue cases

Average 7.48 98.46 41.25 6.63 77.11 44.95 5.87

[Range] [0, 47] [14, 676] [10, 150] [0, 61] [17, 405] [4, 174] [0, 26]

Figure 3.   Plot dengue cases for Petaling district.

Figure 4.   Plot of ACF and PACF for Petaling district.
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have many noticeable peaks. First order differencing (d = 1) was carried out and visible lag orders are identified 
using the ACF and PACF plots. The PACF plot in Fig. 4 shows significant peaks at p = 1 and p = 2, hence, ARIMA 
(2,1,0) model is selected as a viable option. Figure 5 shows the ACF and PACF plots which depicts residuals from 
the fitted model have no significant peaks outside the 95% confidence intervals for the first three lags, indicat-
ing that the residuals are possibly white noise. Hence, ARIMA (2,1,0) model structure is set for dengue cases of 
Petaling district (taking the case for a district).

Ensemble ARIMA model development.  Single dengue models are enlarged by including its neighbour-
ing districts’ (as in Table 1), forming the ensemble dengue models. Single models are built using dengue cases 
time series from its own district, whereas ensemble models are built based on combining own district, and 
neighbouring districts’ dengue models. The ensemble ARIMA model, by taking the example of Petaling district 
is described as in Eq. (6).

where ARIMA(2, 1, 0)P is the ARIMA (2,1,0) model using observations from the dengue prediction model of 
Petaling district, the exogenous (X) part is built using observations from the four neighbouring regions’ ARIMA 
dengue prediction models of Hulu Langat, Gombak, Kuala Selangor and Klang: ĤL, Ĝ, K̂S and K̂ , respectively. 
These observations are obtained from the respective single models, which are the ARIMA (1,1,2) * model for 
Hulu Langat district, ARIMA (2,1,0) model for both Gombak and Klang districts and finally ARIMA (3,1,0) for 
Kuala Selangor district. Parameters α,β , γ and δ are the coefficients of the respective dengue prediction models.

Comparisons between single and ensemble ARIMA dengue prediction models.  Figure 6 shows 
the results obtained for single (AIC-S and BIC-S) and ensemble ARIMA model (AIC-E and AIC-E) compari-
sons. The results obtained indicate that ensemble models have lower AIC and BIC values in all of the seven 
districts considered (refer to Table 3). This explains that across all seven study districts, ensemble models have 
better fit and predicts dengue cases better compared to single dengue models.

(6)
en− ARIMA(2, 1, 0,X)P = ARIMA(2, 1, 0)P + (X)

en− ARIMA(2, 1, 0,X)P = ARIMA(2, 1, 0)P +

(
αŶHL + βŶG + γ ŶKS + δŶK

)

Figure 5.   Residual Plot of ACF and PACF for Petaling district ARIMA (2,1,0).
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Figure 6.   Comparison between ARIMA and ensemble ARIMA models.
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Discussion
This finding explains that the pattern of dengue cases at neighbouring districts influences and suggests that 
human movements and contact between neighbouring districts is a factor in dengue transmission and the spread 
of the disease. Human mobility is neighbouring areas  allows for the possibility of an infected person to trans-
mit dengue virus to the surrounding areas26. Previous studies have shown that urban areas with high population 
densities and with increased movement of infected individuals contributes to increase spread of the disease27–29. 
Sources for human mobility can be obtained from the geo-location information in mobile phone data30–32 and 
from data on the use of public transportation33,34, air travel patterns and data on human mobility35. In all these 
studies, authors managed to conclude that inclusion of human mobility data enhanced the dengue prediction 
models which is shown as ensemble of neighbouring regions in this study.

Conclusion
Firstly, modelling dengue cases using ARIMA models in this study, is considered crucial and appropriate since 
these models can incorporate feedback information. Feedback information is necessary for modelling infectious 
disease trajectories, such as dengue, whose current values are strongly correlated to past values. In order to fit 
ARIMA models to dengue trajectories which are typically non-stationary, one has to first apply differencing in 
order to convert these times series into stationary ones36,37.

Based on the single-ensemble model comparisons, this study concludes that dengue cases are subject to spatial 
effects, that is, patterns of dengue cases in neighboring areas do influence dengue case pattern of the study area.

Among the limitation of this study is that besides spatial effects, there are many other factors that may influ-
ence dengue cases. These include climate, new serotypes, herd immunity and strain-cross immunity, impact of 
vector control programs that have been carried out and finally mosquito vector densities38,39. A better fit model 
can be obtained by including all these factors.

Finally, dengue prediction models in this study are only built for seven districts in Selangor as incorporat-
ing larger area may not yield an optimal model given that the dengue prediction models are localized, where 
they only describe their own respective district’s dengue case patterns. Future work shall investigate other districts 
in other states in Malaysia, especially Wilayah Persekutuan, Kuala Lumpur and Johor which have reported high 
number of dengue cases39.
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