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Abstract: Although the parasite Toxoplasma gondii is one of the most pervasive neurotropic pathogens
in the world, the host-parasite interactions during CNS infection and the consequences of neurological
infection are just beginning to be unraveled. The chronic stages of infection have been considered
dormant, although several studies have found correlations of infection with an array of host
behavioral changes. These may facilitate parasite transmission and impact neurological diseases.
During infection, in addition to the presence of the parasites within neurons, host-mediated
neuroimmune and hormonal responses to infection are also present. T. gondii induces numerous
changes to host neurons during infection and globally alters host neurological signaling pathways,
as discussed in this review. Understanding the neurophysiological changes in the host brain is
imperative to understanding the parasitic mechanisms and to delineate the effects of this single-celled
parasite on health and its contribution to neurological disease.
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1. Introduction

The concept of the ”extended phenotype” describes how the expression of an organism’s genes
affect not only that organism, but may have a wide reaching impact [1]. In the case of Toxoplasma gondii,
mechanisms induced by parasitic genes can lead to neurophysiological changes that alter host
behavioral changes and can facilitate the life cycle of the parasite.

The loss of fear phenotype is well characterised: chronically infected rodents no longer respond
to cat odour with fear and indeed the physical response is reversed to attraction [2]. It is surmised that
in the wild this results in increased rodent predation and facilitate the spread of the parasite to Felidae,
the definitive host of T. gondii wherein all sexual lifecycle stages take place [3]. However, the molecular
mechanisms underlying the loss of fear phenotype are poorly delineated. Humans are considered
“accidental hosts” as they do not perpetuate the parasite life cycle. However, there is no evidence that
T. gondii differentiates between intermediate hosts and it is likely to exert similar neurophysiological
effects on all intermediate hosts, including humans. Given the ubiquity of T. gondii in the human
population, it is essential to understand these neurophysiological changes and the parasite induced
cellular mechanisms that cause them as they have many potential far-reaching clinical consequences.

T. gondii is one of the world’s most pervasive parasites, infecting a wide variety of mammals
that act as intermediate hosts. Infection can occur through congenital passage, consumption of
oocysts that are present in the environment, or tissue cysts present in infected meat. Although
precautions can be made to prevent infection (see the Centers for Disease Control www.cdc.gov/
parasites/toxoplasmosis/), there is a risk of accidental infection, especially for children. Initial acute
infection is transient, characterized by the presence of tachyzoites [4]. Toxoplasmosis, only observed in
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the immunocompromised or those infected while in utero, is caused by unchecked, rapidly dividing
tachyzoites. Recently published data has demonstrated tachyzoites are able to cross the blood-brain
barrier via infection and lysis of barrier endothelial cells [5]. After approximately three weeks, the
host’s immune system controls tachyzoite growth, by which time some parasites have differentiated
into bradyzoite developmental stages. The bradyzoites become encysted, forming the chronic stage of
infection that can persist for the lifetime of the host. Historically considered a latent stage and only
associated with pathogenesis in the immunocompromised host, recent data has demonstrated that
bradyzoites continue to replicate [6,7]. However, as the host-parasite interactions are delineated, the
chronic stages have become more clinically significant [8].

2. Host Behavioral Consequences

T. gondii infection is associated with altered neurological functioning. Indicators of motor function
such as response times, memory, and co-ordination are reduced during chronic human and rodent
infection [9–11]. Chronic T. gondii infection in the human population has been correlated with a
diverse range of human diseases, including Alzheimer’s and Huntington’s [12,13]. The association
between T. gondii infection and mental health disorders such as depression, psychosis, self-directed
violence, and schizophrenia have been widely studied [14–18]. Schizophrenia is the most extensively
investigated of these. Indeed, two meta-analyses of the association collectively spanning 70 studies
over 55 years concluded that there is a positive correlation between T. gondii seropositivity and
schizophrenia [19,20]. Despite this evidence, countries with a high incidence of T. gondii seroprevalence
do not have corresponding increased schizophrenia incidence [21].

Given the diverse range of disorders associated with infection, it is clear that the
neurophysiological changes induced are exceptionally complex. Unravelling the many mechanisms
involved in the host-parasite interaction is essential to further understand mammalian neurobiology
and why T. gondii is correlated with several human diseases.

3. Neuro-Immune Response

The immune response to this pathogen is an obvious potential contributor to neurological and
behavioral changes. The brain is principally considered an immune-privileged tissue as it lacks a
lymphatic system and tight capillary junctions within the blood-brain barrier prevent diffusion of
large molecules, limiting lymphocyte access to the organ. This provides limited shelter from the host
immune response for a pathogen, yet responses to infection are still measurable and necessary to
suppress reactivation of chronic stages [22,23]. Chronic T. gondii infection is characterized by increased
levels of host immune activity and neuroinflammation [24]. Evidence suggests that in the mouse model,
T cell recruitment peaks at approximately 30 days post-infection and subsequently decreases [25].

Molecular initiators of the immune response to chronic infection include pathogen-associated
molecular patterns (PAMPs) such as T. gondii profilin, which is able to act as a ligand for the toll-like
receptor-11 (TLR11) [26]. This elicits a robust response from TLR11+ dendritic cells, inducing
the MyD88 dependent activation of nuclear factor-κB (NF-κB), and up-regulating expression of
pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-12 (IL-12), and
interleukin-1β (IL-1β) [27]. T. gondii infected MyD88−/− mice were found to have reduced IL-12 and
interferon-γ (INF-γ) in the sera compared to wild type controls and high mortality. TLR11−/− mouse
models exhibited greater immunopathology and natural killer cell associated interferon-γ. They also
had an increased tissue cyst burden, implying that this pathway plays an important role in regulating
the chronic phase of infection [26,28].

IL-12 also plays an important role in the recruitment of natural killer (NK) cells and T cells [29].
Indeed, SCID mice combatted T. gondii infection with a NK cell mediated INF-γ response [30]. Microglia
and to a lesser extent macrophage are important producers of INF-γ and crucial for cell mediated
protection. Mice and humans with mutant alleles in genes of the IFN-γ signalling pathway are unable
to suppress bradyzoite activation and are extremely susceptible to infection. Once released, IFN-γ can
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diffuse throughout the brain and bind to cell surface receptors, inducing the JAK/STAT signalling
pathway, which results in phosphorylated STAT1 and increased transcription of immunity-related
GTPases, the transcription factor IRF1, and major histocompatibility complex class II molecules [31].

INF-γ also stimulates the release of indoleamine 2,3-dioxygenase (IDO), catabolising
tryptophan [32]. Indeed, T. gondii requires tryptophan and limiting tryptophan concentration is
a mechanism by which parasite growth can be restricted [33]. Tryptophan is the precursor to serotonin
and, hence, increased IDO concentration during infection may reduce synthesis of this neurotransmitter.
Products of tryptophan catabolism kynurenic acid and quinolinic acid in the brain were found to
increase oxidative stress, damaging cells, and eventually leading to apoptosis [34]. Kynurenic acid is
an antagonist for glutamate ionic receptors and is able to inhibit α7 nicotinic acetylcholine receptors,
modulating dopaminergic and glutamatergic neurotransmission [35]. Elevated kynurenic acid is
also observed in the brains of schizophrenia and bipolar sufferers [36,37]. Chronic T. gondii infection
induces early activation of tryptophan metabolism and kynurenic acid production; as observed in a
Huntington’s disease mouse model [13]. A seven-fold increase in kynurenic acid was found in the
brain of infected animals [38].

Cerebral immune responses are likely to be a compounding factor during infections, augmenting
predisposition to mental health disorders such as depression [39]. This is likely to be particularly true
for infections of the central nervous system. However, other neurotropic infections that induce a chronic
immune response, such as chronic infections with cytomegalovirus and meningitis, are not associated
with the specific behavioral changes observed with T. gondii infection. Based on these, it remains
unclear how a chronic immune response could induce the specific behavioral and neurophysiological
changes observed during T. gondii infection. Indeed, the specific “fatal feline” attraction and other
behavioral changes are only observed following an established chronic T. gondii infection, typically
with T. gondii infection 60 days post infection, at which point the host immune response is weakest [40].
The loss of fear phenotype was even observed in mice infected with an attenuated T. gondii strain after
clearance of the parasite and when no immune response was detectable [41].

4. Hormonal Changes with Chronic Infection

Parasite induced changes to the host endocrine system provide another possible mechanism to
alter host behavior and induce the “fatal feline” attraction phenotype. There have been observable sex
differences regarding host changes in response to T. gondii infection. However, the majority of studies
have been performed with male rodents, biasing much of our knowledge regarding the involvement
of hormones. One example of sex specific effects on behavior is the observation that female rats exhibit
the loss of fear of cat odor phenotype, except during estrus [42,43].

Induction of the host immune response could concertedly function with activating hormonal
changes in the host. Host stress responses induced by a chronic immune response can activate the
hypothalamic-pituitary-adrenal (HPA) axis, regulating homeostasis in the main body systems [44].
Activation of this pathway increases blood glucocorticoid concentration. Elevated glucocorticoid
concentration is associated with neurodegeneration and synapse regression [45]. Furthermore,
increased glucocorticoid concentration is correlated with many of the same disorders as T. gondii
infection including schizophrenia and Alzheimer’s disease [46,47]. Activation of the HPA axis is a
promising candidate to serve as a contributing factor to the changes with T. gondii infection. However,
evidence linking this to host behavioral change is lacking.

Altered testosterone levels have been observed with T. gondii infection, although the literature
lacks consensus. Evidence suggests that testosterone activation may cause sexual arousal, directed
towards feline odour in some rodents [48]. Interestingly, if male rats have been castrated prior to
infection, they do not exhibit the loss of fear phenotype, suggesting that testosterone plays a direct
role in this behavior [49]. Both testosterone and activation of the HPA axis are able to stimulate release
of arginine vasopressin, a neurotransmitter associated with reproductive behavior. In chronically
infected rats hypomethylation of the arginine vasopressin gene promoter region was observed in the
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amygdala [50]. Published data has reported both increased and decreased testosterone associated with
T. gondii seropositivity in humans [51–53].

5. Neurophysiological Changes

Tropism for a particular brain region remains a straightforward explanation for host behavioral
manipulation. However, the published data does not support this model and there is a lack of
consensus in the literature (reviewed in [54]). In the largest study to date, in which 109 rats were
infected by the natural route with oocysts, only mild tropism for the colliculus was found and there
was a high degree of variability [55]. Furthermore, random distribution of tissue cysts was found
within the forebrains of 45 chronically infected rats [56]. Given this, there is a paucity of evidence to
correlate cyst location with host behavioral changes, with low cyst burden evident in many infected
animals. This raises the important question, how can low numbers of cysts located disparately in
brains of different hosts elicit the same host behavioral responses? Given current evidence, a plausible
explanation is that T. gondii is able to induce host manipulation independent of tissue cyst location.

Although tissue localization is not supported, there is clear evidence of T. gondii tropism for
neurons in which encysted parasites were exclusively found [57,58]. This is not due to selective
invasion, as cultured primary explants find T. gondii infection in astrocytes, microglia, andneurons [59].
Hence, there may be properties of neurons that promote cyst development. This highlights the point
that a considerable amount about neuron-parasite interactions is unknown. What is the mechanism
by which the parasite is able to recognize neuronal cells or the property of neurons that promotes
cyst development? Further, are specific neuronal sub-populations preferentially infected? Studies in
neuronal cells and the recent development of stem cell cultures may shed light on these questions [60].

The morphology of neurons is altered by tissue cysts. 3D imaging analysis found cysts
predominantly in neuronal processes such as dendritic spines rather than soma [61]. The formation of
these, up to 70 µm in diameter and increasing in size as infection progresses, may reduce neuronal
functionality [6]. Indeed, dendritic spine length and density of infected mice was significantly reduced
compared to uninfected control animals [62,63]. Interestingly, dendritic spine loss and loss of dendritic
function is also associated with schizophrenia and other mental health disorders [64]. It should be
noted that initial infection, mediated by rapidly dividing tachyzoites, can cause extensive neuronal
damage. However, behavioral changes have almost exclusively been associated with the chronic stage
of infection. A narrative of purely physical local impairment randomly located is difficult to reconcile
with the specific altered phenotypes associated with T. gondii.

6. Neurotransmitter Changes

The functional capacity of infected neurons is still largely unknown. There is growing evidence
that rather than inhibiting the functionality of neurons, T. gondii is able to subvert their functions.
In the 1970s, Stibbs et al. originally described changes in neurotransmitter concentration with infection,
reporting a reduction in serotonin and norepinephrine, and an increase in total dopamine in the brains
of chronically infected mice [65]. Since then, several publications have found altered neurotransmitter
regulation with T. gondii infection. Recently published findings observed increases in dopamine
turnover in chronically infected mice [66]. Ihara et al. found an increase in dopamine metabolites
and a reduction in norepinephrine and serotonin [67]. Prandovszky et al. also observed elevated
levels of total dopamine and metabolite content in infected catecholaminergic cells [68,69]. It has been
observed in vitro that supplemental dopamine is able to increase parasite proliferation [70]. Treatment
of rats and mice with dopamine receptor antagonists inhibit the establishment of behavioral changes
with T. gondii infection [71,72]. Intracellular dopamine that is not properly packaged into vesicles can
cause cell damage via free radical generation and this, or alternative mechanisms (e.g., neuroimmune
responses, host gene regulation), may contribute to dendritic spine damage observed with T. gondii
infection [73].
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Current evidence suggests that observed changes in cerebral catecholamine concentration is due to
altered synthesis rather than a relocation of surrounding dopamine. Infection did not alter levels of host
tyrosine hydroxylase, DOPA decarboxylase (DDC), or the vesicular monoamine transporter (VMAT)
in catecholaminergic cells, although DDC was observed in the parasitophorous vacuole in vitro and
within tissue cysts in vivo [68]. Catecholamine dysregulation may also be affected by disruption of
catabolism of dopamine (e.g., this would be coherent with the observed reduction in norepinephrine
concentration with infection). A reduction in norepinephrine concentration is implicated in a variety
of movement disorders in humans. This provides a possible explanation for the association between
toxoplasmosis and movement disorders [74,75].

Although dopamine antagonist treatment blocked behavior changes, it has not yet been
demonstrated that disrupting catecholamine synthesis can reverse observed behavioral phenotypes
with infection. Gaskell et al. found that the Toxoplasma genome contains two copies of a gene
encoding an enzyme with tyrosine hydroxylase activity, the rate limiting enzyme in the synthesis of
l-3,4-dihydroxyphenylalanine (L-DOPA), precursor to dopamine [76]. The in vivo function of this
enzyme in T. gondii is still under investigation, and a double knock-out of both genes has yet to be
achieved. Combined with the observation of host DDC localising to bradyzoite cysts, this provides a
possible explanation for observed elevated dopamine synthesis in dopaminergic cells in the absence of
changes in host tyrosine hydroxylase [68]. Xiao et al. observed down-regulation of D1 type dopamine
receptors (DRD1, 5) and dopamine metabolizing enzyme MaoA with infection [77]. An miRNA
involved in regulating neuronal function, dopamine signalling and synaptic transmission, miRNA-132
expression was also down-regulated during chronic infection [78–80]. Hence, multiple factors may be
altered that together result in elevated dopamine neurotransmission. This is coherent with observations
of a blunted response to amphetamine treatment in locomotor tests in infected animals [81].

Glutamate signalling in the brain may also be “altered” with infection. Recent data has observed
increased extracellular glutamate with chronic infection and a two-fold reduction in expression of
the glutamate transporter (GLT-1) in glial cells [82]. The changes may be induced as a component
of the neuroimmune responses to infection. Glutamate signalling is regulated by γ-aminobutyric
acid (GABA), an inhibitory neurotransmitter that may also play an important role during infection.
In infected animals, the GABAergic pathway remained intact, although global changes in localization of
GAD67, the enzyme responsible for converting glutamate to GABA, were observed [83]. Interestingly,
although only a small number of tissue cysts were found in infected mice, GAD67 location was
disturbed throughout the brain. Increases in glutamate and/or disruption of GABAergic signaling
could produce neurophysiological consequences such as seizures that are associated with T. gondii
infection [84].

7. Parasite Secreted Effector Molecules

There is growing evidence that alterations to host cellular function may be induced by
parasite-secreted factors. Host-parasite communication initiated by rhoptry (ROP) proteins injected
during the tachyzoite infection continue after the formation of the parasitophorous vacuole. During
infection, host-parasite communication is partly mediated by effector molecules secreted from parasite
dense granules (GRA proteins) that are trafficked to the host cell cytosol and nucleus [85]. Recently,
GRA24 was observed to subvert host cell MAP kinase pathways, altering host immune responses
and allowing the parasite to survive undetected [86]. It remains possible that a secreted parasite
derived protein such as a ROP or GRA protein may invoke host behavioral changes though altering
host neurophysiology.

Groundbreaking work by Koshy et al. has demonstrated that T. gondii is able to inject rhoptry
proteins into cells it does not infect [87]. Parasite derived proteins are able to regulate the host immune
response (comprehensive review can be found at [88]). For example, T. gondii dampened INF-γ
stimulated JAK/STAT1 responses and ROP16 induced STAT3/6 phosphorylation; blocking parasite
induced inflammatory responses [89,90]. Furthermore, ROP16 altered IL-12 mediated responses of
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infected macrophage [91], whereas ROP18 phosphorylated p65, a subunit of NF-κB, targeted it for
cellular degradation and suppressed the host immune response [92]. Given that tissue cysts are only
found in a limited number of neurons, a parasite-secreted factor would provide a mechanism for
exerting global effects. The injection of parasite proteins by circulating parasites could impose these
global effects, although this phenomenon has yet to be observed with bradyzoites.

8. Epigenetic Changes

Epigenetic manipulation of the host genome is emerging as a new frontier of host-parasite
interaction. Recent publications have observed infection induced chromatin changes in the host.
Dass et al. found altered DNA methylation of the vasopressin receptor in the amygdala of chronically
infected mice [50]. Altered methylation status of the promoters of spermatogenesis genes in infected
testis was also observed [93]. This suggests that T. gondii is able to co-op host mechanisms of chromatin
regulation. Advances in epigenetics have demonstrated that DNA methylation within cells is not as
restricted to development as was once considered: DNA methylation is a dynamic process [94–96].
Epigenetic modifications are essential for neurological functions such as memory and hormonal and
behavioral responses. Many neurological diseases correlated with T. gondii seroprevalence are the
product of complex genetic and environmental factors. For example, schizophrenia, self-directed
harm, and depression are associated with neuronal DNA methylation changes [97–99]. Understanding
this complex interplay between genetic predisposition, T. gondii as an epigenator, and environmental
factors is crucial in order to delineate the T. gondii extended phenotype.

Further research is important to discern epigenetic changes in the host in response to infection, as
this may provide some explanation for the stability and consistency of behavioral changes between
hosts. An epigenetic basis for behavioral alterations could explain the persistence of the loss of fear
phenotype observed in mice that were infected with an attenuated T. gondii strain even after clearance
of the parasite and when no immune response was detectable [41].

9. Future Directions

Although evidence to correlate T. gondii infection to a variety of human diseases is growing, there
remains a paucity of understanding about the molecular mechanisms involved and the alterations
to neurophysiology. Changes in host cells, both to those infected and exposed to infection, require
full characterization particularly during the cyst stages of infection within neurons. We do not yet
understand the full extent of neurophysiological changes induced by T. gondii infection and how
these alter host behavior. As molecular and genomic tools advance, mapping changes in the host
induced by T. gondii will be essential to understanding how an individual may be predisposed to a
range of disorders. There are also possible GxE interactions between specific susceptible genotypes
(e.g., genes linked to neurological disease such as Disc1) and infection as an environmental factor
that need further exploration. A recent study found that mice with a mutation in Nurr1, which
regulates mesoaccumbens and mesocortical dopamine levels, had higher open field activity when
infected with T. gondii [100]. Advances in the area of stem cell cultures and ex vivo tissue imaging
systems (i.e., CLARITY) will allow visualisation of tissue cysts within transparent neuronal tissue [101].
Understanding the neuron-parasite interaction is essential to understand the mechanisms used by this
unicellular parasite to induce the complex extended phenotype observed. A summary of the possible
direct and indirect mechanisms and neurophysiological changes induced by chronic T. gondii infection
is shown (Figure 1).
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Figure 1. Directly and indirectly mediated effects of chronic T. gondii infection on host neurophysiology.
Model of mechanisms involved with host responses to infection (i.e., neuroimmune and hormonal
changes) indirect and more likely confounding factors, augmenting neurophysiological changes rather
than inducing them. Indeed, the specificity of behavioral changes associated with infection suggest
that direct mechanisms of the parasite-host interaction play a significant role in the neurophysiological
changes associated with chronic T. gondii infection.

10. Conclusions

In light of major programs to understand functionality of the brain in “healthy” and sick
individuals, elucidating the neurophysiological consequences of this ubiquitous parasite are crucial.
Indirect effects of infection such as the host mediated immune and hormonal response are likely to
be contributing factors to host behavioral change. However, they are unconvincing as the primary
effectors of change. Chronic neuro-immune and HPA axis activation may further induce analogous
effects. However, it is unclear how they mediate the specific behavioral phenotypes associated
with infection [102,103]. Parasite-mediated changes such as the epigenetic changes observed can
induce specific changes in host cells. Very specific subtle behavioral changes can be associated
with global modifications in neurotransmission. For example, common schizophrenia medications
inhibit dopamine D2 receptors. These act globally, affecting catecholamine signaling on neurons
expressing the receptors, yet these are beneficial, specifically effecting the positive symptoms of
schizophrenia, although some side-effects are observed [104]. This suggests that the relationship
between neurophysiological changes and behavior is not linear.

Current evidence suggests that host neuronal activity is altered or subverted by chronic
T. gondii infection, leading to an extended phenotype wherein host behavior is permanently changed.
T. gondii infection presents a unique model by which we can understand the complexity of human
neurophysiology. By discovering the complex mechanisms exploited by T. gondii, we will gain insight
into not only the host-parasite interaction but mammalian neurophysiology.
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