
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Hua Tan,
National Human Genome Research
Institute (NIH), United States

REVIEWED BY

Lele Song,
University of Pennsylvania,
United States
Binsen Li,
University of California, Los Angeles,
United States
Jin Zhang,
University of Mississippi Medical
Center, United States

*CORRESPONDENCE

Jinghua Wu
wujh@ncst.edu.cn
Jinghua Zhang
jhzhang_te@163.com

SPECIALTY SECTION

This article was submitted to
Cancer Genetics,
a section of the journal
Frontiers in Oncology

RECEIVED 19 August 2022
ACCEPTED 29 September 2022

PUBLISHED 13 October 2022

CITATION

Su Y, Sai Y, Zhou L, Liu Z, Du P, Wu J
and Zhang J (2022) Current insights
into the regulation of programmed
cell death by TP53 mutation in cancer.
Front. Oncol. 12:1023427.
doi: 10.3389/fonc.2022.1023427

COPYRIGHT

© 2022 Su, Sai, Zhou, Liu, Du, Wu and
Zhang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Mini Review
PUBLISHED 13 October 2022

DOI 10.3389/fonc.2022.1023427
Current insights into the
regulation of programmed
cell death by TP53
mutation in cancer

Yali Su1, Yingying Sai1, Linfeng Zhou1, Zeliang Liu2,
Panyan Du1, Jinghua Wu1* and Jinghua Zhang1*

1Department of Clinical Laboratory, North China University of Science and Technology Affiliated
Tangshan Maternal and Child Heath Care Hospital, Tangshan, China, 2Department of Clinical
Laboratory, North China University of Science and Technology Affiliated Hospital, Tangshan, China
Gene mutation is a complicated process that influences the onset and

progression of cancer, and the most prevalent mutation involves the TP53

gene. One of the ways in which the body maintains homeostasis is

programmed cell death, which includes apoptosis, autophagic cell death,

pyroptosis, ferroptosis, NETosis, and the more recently identified process of

cuprotosis. Evasion of these cell deaths is a hallmark of cancer cells, and our

elucidation of the way these cells die helps us better understands the

mechanisms by which cancer arises and provides us with more ways to treat

it.Studies have shown that programmed cell death requires wild-type p53

protein and that mutations of TP53 can affect these modes of programmed

cell death. For example, mutant p53 promotes iron-dependent cell death in

ferroptosis and inhibits apoptotic and autophagic cell death. It is clear that TP53

mutations act on more than one pathway to death, and these pathways to

death do not operate in isolation. They interact with each other and together

determine cell death. This review focuses on the mechanisms via which TP53

mutation affects programmed cell death. Clinical investigations of TP53

mutation and the potential for targeted pharmacological agents that can be

used to treat cancer are discussed.

KEYWORDS

TP53 mutation, ferroptosis, pyroptosis, apoptosis, autophagic cell death, cancer
TP53 and programmed cell death in cancer

TP53 is a tumor suppressor gene that plays an important role in the cell cycle, DNA

repair, and cell senescence and apoptosis (1). This gene codes for the p53 protein, which

is a transcription factor that prevents abnormal proliferation and division of cells (2).

Recent research has found that TP53 is involved in the regulation of various types of

programmed cell death (PCD), which include apoptosis (3), autophagy (4, 5), pyroptosis
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(6), and ferroptosis (7), and pathways for generation of reactive

oxygen species (ROS) (8–10). For example, p53 promotes

apoptosis by upregulating apoptosis-related proteins in order

to stabilize the organism (11, 12). However, mutant p53 has the

reverse effect on PCD.

Normal p53 protein is degraded rapidly. However, when

transcribed by an mutated TP53 gene, p53 accumulates in tumor

cells, accelerating the development and progression of cancer

(13). TP53 mutation has been identified in approximately half of

all cancers, and analysis of the MSK MetTropism database on

the cBioPortal website shows that the mutation frequencies vary

according to the type of cancer (Figure 1) (14, 15). It has been

confirmed that the most common location for mutation of TP53

is in amino acid residues 102–292 of its DNA binding domain

(16). These mutations are usually highly expressed in malignant

cells and produce three carcinogenic properties: loss of p53

function, resulting in inability to activate downstream target

genes; dominant negative effects (DNE), resulting in blocking

the function of normal p53 protein in cells; and acquisition of

new functions that usually promote tumor development (17). In

brief, mutated TP53 loses its normal function as a tumor

suppressor gene and becomes an oncogene instead (13). In

recent years, there have been many discoveries of new ways of

death, and many studies have clarified the mechanism of these

modes of death in cancer. At the same time, there are more and

more in-depth studies on TP53 gene mutations in tumors, but

there is no discussion on how TP53 mutations regulate

programmed cell death. Therefore, this paper will explore the

relationship between TP53 mutation and programmed death,

and provide new ideas about the treatment of tumors.
TP53 mutation in cancer

The TP53 gene is located on the short arm of chromosome

17 and consists of 11 exons, the role of which is to encode the

p53 protein (18). The p53 protein is normally present at a low

level. However, p53 levels have increased when DNA is

damaged by environmental stimuli or spontaneous

replication errors, oncogenes and ROS are activated. Normal

(wild-type) p53 performs a range of biological tasks, including

regulating the cell cycle, repairing damaged DNA, controlling

target gene transcription, stabilizing the genome, and
Abbreviations: PCD, programmed cell death; ROS, reactive oxygen species;

GPX4, glutathione peroxidase 4; SLC7A11, solute carrier family 7 member 11;

xCT, cystine-glutamate antiporter; ALOX15, arachidonate 15-lipoxygenase;

SAT1, spermidine/spermine N1-acetyltransferase 1; NRF2, nuclear factor

erythroid 2-related factor 2; IL, Interleukin; Apaf-1, apoptosis protease

activator factor-1; mTOR, mammalian target of rapamycin; DRAM,

damage-regulated autophagy modulator; NETs, neutrophil extracellular

traps; NADPH oxidase, NOX, nicotinamide adenine dinucleotide

phosphate oxidase.
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regulating numerous biological processes, including

angiogenesis, apoptosis, metabolism and cell senescence (19–

21). These diverse biological functions reflect the large number

of genes regulated by p53. It is estimated that p53 directly

regulates about 500 target genes (22). Using the TP53-binding

proteins listed on the STRING website (https://string-db.org/)

(Figure 2) and our basic settings are as follows: minimum

required interaction score [“Low confidence (0.150)”],

meaning of network edges (“evidence”), max number of

interactors to show (“no more than 50 interactors” in 1st

shell) and active interaction sources (“experiments”). The

instructions for interactive gene expression profiling analysis

outlined on the GEPIA2 website (http://gepia2.cancer-pku.cn/

#analysis), we have now compiled a list of the top 100 TP53-

related targeting genes from The Cancer Genome Atlas

database. We then investigated the relationship between

TP53 and each of the top five genes (GEMIN4, ELAVL1,

SMARCC1, RBMX, and SRSF3) using the Pearson ’s

correlation coefficient (Figure 3).

The most common mutations in the TP53 gene are missense

mutations in its DNA binding domain. Although these missense

mutations affect only one amino acid, they can have a significant

impact on the p53 protein (23). For example, some p53 variants

result in a new functional phenotype that can promote tumor

development by inactivating tumor proteins p63 and p73 (24,

25). Furthermore, mutations in the TP53 gene can be used as a

biomarker of cancer and to monitor the prognosis and guide

treatment. For example, recent studies have shown that somatic

mutations in TP53 (p53-R273H) play a key role in

chemotherapy-induced colorectal cancer stem cells. It is also

proved that p53-R273H mutation enhances colorectal cancer

stemness through regulating specific lncRNAs (26). Moreover,

studies have also found that somatic mutation of TP53 (p53-

R248Q) functions as an oncogene in promoting endometrial

cancer by up-regulating REGg. Therefore, REGg is a promising

therapeutic target for endometrial cancer with the p53-R248Q

mutation (27).TP53 mutations tend to be associated with a

poorer prognosis in cancer because the mutant p53 they

produce often leads to loss of apoptotic function and the

ability to arrest the cell cycle.
Programmed cell death and cancer

PCD has an important role in maintaining dynamic

homeostasis in multicellular organisms. During both normal

development and aberrant physiological conditions and diseases,

PCD removes cells that are at risk of becoming cancerous and

those that have been invaded by pathogens (28). Several distinct

types of PCD have been identified, including apoptosis,

necroptosis (a regulated type of necrosis), autophagy,

pyroptosis, ferroptosis, NETosis, and, most recently,
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FIGURE 1

Mutation features of TP53 in tumors identified in the MSK MetTropism database on the cBioPortal website. The symbol "+" indicates the number
of samples corresponding to the cancer analysis, which is identified in detail with the cBioPortal website.
FIGURE 2

We obtained TP53-binding proteins through the STRING website (https://string-db.org/).
Frontiers in Oncology frontiersin.org03

https://string-db.org/
https://doi.org/10.3389/fonc.2022.1023427
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Su et al. 10.3389/fonc.2022.1023427
cuproptosis (29–33). In these modes of death, apoptosis,

pyroptosis and necroptosis seem to be related to each other

through the caspase family. A study has shown that caspase-1

can initiate apoptosis in the absence of gasdermin D (34).

Caspase-1 is an enzyme that produces the classical pathway of

pyroptosis. The activated caspase-1 plays a role by cleaving

Gasdermin D (Figure 6). This study shows that cells can

initiate apoptosis through caspase-1 in the absence of

pyroptosis. In addition, a study has shown that caspase-8 can

inhibit necroptosis mediated by RIPK3 and MLKL (35). This

study demonstrates that the occurrence of apoptosis will inhibit

the occurrence of necroptosis.Autophagic cell death appears to

be associated with NETosis, because it has been shown that

mTOR regulates NET formation by posttranscriptional

control of expression of hypoxia-inducible factor 1 a (HIF-

1a) (36).
At present, cancer is a common cause of premature death. A

study predicts that the number of cancer patients worldwide will

increase to the next 50 years, twice the number estimated to have

been diagnosed in 2018 (37). Therefore, human research on

cancer has never stopped. Therefore, clarifying the mechanism

of programmed cell death can provide more possibilities for

clinical treatment of cancer. For example, some studies have
Frontiers in Oncology 04
found that Schizandrin A can inhibit the proliferation of non-

small cell lung cancer and breast cancer cells by inducing

apoptosis (38, 39). Meanwhile, Badgley et al. (40) found that

deletion of SLC7A11 induced tumor-selective ferroptosis and

inhibited Pancreatic ductal adenocarcinoma growth.
TP53 mutation and PCD

Role of TP53 mutation in ferroptosis

Ferroptosis is an iron-dependent form of PCD that is triggered

by deactivation of. the lipid repair enzyme glutathione peroxidase 4

(GPX4) and loss of glutathione reductase, resulting in a low level of

reduced glutathione and accumulation of lipid peroxides, which

react with ferrous ions to generate ROS (Figure 4). Iron is a

potentially toxic nutrient that is regulated by p53 to maintain

homeostasis. Several studies have demonstrated that p53 can

promote iron-dependent PCD via transcriptional inhibition of the

expression of solute carrier family 7 member 11 (SLC7A11, which is

a transmembrane protein and a component of the cystine-

glutamate antiporter (xCT) (41–44). p53 can also mediate

expression of arachidonate 15-lipoxygenase by inducing
FIGURE 3

Using the GEPIA2 approach, we compiled the top 100 TP53-related targeting genes in The Cancer Genome Atlas database of cancers. We also
investigated the relationship between TP53 and each of the top five genes (GEMIN4, ELAVL1, SMARCC1, RBMX, and SRSF3) using Pearson’s
correlation method.
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spermidine/spermine N1-acetyltransferase 1, thereby promoting

iron-dependent PCD (45).

TP53 mutation causes loss of the ability to destroy tumor cells

and is found in approximately 50 percent of human cancers (46)

and ferroptosis can be accelerated when acetylation of TP53 is lost

(47, 48). For example, p533KR can suppress tumor growth and

regulate the metabolic target in cells by direct combination of TP53

with the promoter, which stops transcription of xCT and promotes

ferroptosis (49). We analyzed the most clinically prevalent TP53

mutation by the MSK MetTropism database on the cBioPortal

website, as shown in Figure 5. In small cell lung cancer cell lines, the

representative cell lines with five mutations (R248Q, R273H,

R175H, G245S, or R249S) were found to be more ferroptosis-

sensitive than a wild-type TP53 cell line (46, 50). The genetic

mutation may cause p53 to lose tumor-inhibiting activity of the

wild-type protein (LOF, loss of function) or gain new properties

(also known as functional gain, GOF) (51). Nonsense mutation,

frameshift mutation or homozygous deletion may cause the

function of p53 to be lost (52). Tumour cells have lost inhibitory
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activity due to a lack of expression of the p53 protein. Missense

mutations frequently lead to new functions acquired for p53. In

contrast, gain-of-function (GOF) causes tumor cells to

overaccumulate mutated p53 protein.These mutated p53 proteins

not only eliminate the tumor inhibitory function of wild-type p53,

but also endow mutant proteins with new activities, which can

actively promote all stages of tumor progression and increase

resistance to anticancer therapy (53). In esophageal cancer and

small cell lung cancer, TP53 controls transcription of GPX4 and

SLC7A11 via nuclear factor erythroid 2-related factor 2 (NRF2),

which is sensitive to drug-induced oxidative stress (54) and

regulates ferroptosis by controlling the transcriptional expression

of GPX4 and SLC7A11 (55).

The available evidence indicates that targeting ferroptosis may

be an effective strategy for destroying cancer cells with TP53

mutation. There has been a report indicating that a combination

of sulfasalazine and radiotherapy has a positive effect on tumor cells

with mutation or other abnormality of TP53 (56). In another study,

a combination of xCT blockade and administration of eprenetapopt
FIGURE 4

The ferroptosis pathway and role of p53 in ferroptosis. p53 can promote iron-dependent cell death via transcriptional inhibition of expression of
solute carrier family 7 member 11 (SLC7A11) expression. At the same time, TP53 controls transcription of GPX4 and SLC7A11 via nuclear factor
erythroid 2-related factor 2 (NRF2). p53 can also mediate the expression of arachidonate 15-lipoxygenase (ALOX15) by inducing spermidine/
spermine N1-acetyltransferase 1 (SAT1), thereby promoting iron-dependent cell death.
FIGURE 5

The most clinically prevalent TP53 mutation by the MSK MetTropism database on the cBioPortal website.
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(APR-246) destroyed esophageal cancer cells with mutant p53

(p53-R273H and p53-R175H) (49).
Role of TP53 mutation in pyroptosis

Pyroptosis can occur via a classical pathway or a non-

classical pathway (Figure 6). In the classical pyroptosis

pathway, pro-caspase-1 forms an inflammasome by combining

apoptosis-associated speck-like protein with the inflammatory

corpuscle receptors NLRP1, NLRP3, NLRC4, and AIM2 in

response to infection. The inflammasome then activates

precursors of caspase-1 to produce active caspase-1. Caspase-1

has two purposes: first, to cleave Gasdermin D (GSDMD) into a

31-kDa GSDMD-N fragment, which further mediates

pyroptosis, and a 22-kDa GSDMD-C fragment; and second, to

recruit, activate, and release proinflammatory cytokines, such as

interleukin (IL)-1b and IL-18, to mount an extracellular

inflammatory response (57, 58).

Pyroptosis occurs in many diseases and regulates cell death

via a mechanism involving inflammation (59). However, it has

both advantages and disadvantages in terms of tumorigenesis.

On the one hand, pyroptosis is an innate immune mechanism

that is able to suppress development and progression of cancer;

on the other, it can promote inflammation and provide a

microenvironment conducive to tumor growth (60). Although

there is scant evidence to suggest that the mechanism of tumor

inhibition is related to induction of pyroptosis in previously

normal cells undergoing transformation to tumor cells, release of

IL-1b and IL-18 can lead to infiltration and activation of
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immune cells at tumor sites, thereby supporting the anti-

tumor immune response (61). Nevertheless, pyroptosis

signaling pathways release inflammatory mediators that

promote proliferation of tumor cells, angiogenesis, metastasis,

DNA damage, and epigenetic changes (62–64).

Although pyroptosis differs from other types of cell death in

mechanism (65), there is some evidence indicating a positive

correlation between TP53 and pyroptosis in non-small cell lung

cancer (66). Moreover, other studies have shown that high

expression of GSDMD and GSDMC is associated with

decreased progression-free survival in patients with serous

ovarian cancer carrying TP53 mutation (67). p53 induces

transcription of the Ipaf (NLRC4) gene, which activates

caspase-1, indicating that TP53 is associated with pyroptosis

(68). Comparison of the expression levels of 51 pyroptosis-

related genes between normal and malignant tissues in The

Cancer Genome Atlas data set revealed that expression of TP53

was upregulated. In pyroptosis-related diseases, the most

frequent mutation is in TP53, followed by NLRP3 (69).

In light of the above findings, we can infer that TP53

mutation and pyroptosis have a complex relationship, the

study of which will expand our understanding of tumor

behavior and generate novel treatment strategies.
Role of TP53 mutation in apoptosis

Apoptosis is a type of PCD that maintains homeostasis when

cells are damaged by disease or harmful substances (70). For

example, in cancer, apoptosis can destroy tumor cells and
FIGURE 6

The pyroptosis pathway and role of p53 in pyroptosis. p53 can control pyroptosis by directly inducing transcription of the Ipaf (NLRC4) gene.
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prevent growth and metastasis of tumors (71). As a tumor

suppressor gene, TP53 plays an important role in regulating

apoptosis. Cells subjected to cytotoxic or radiation-induced

stress sense this external pressure via kinases and then

phosphorylate or acetylate p53 protein at various locations,

resulting in activated p53 (72), which upregulates expression

of BH3-only proteins (including Bid, Bim, Bad, Bmf, Bik/Nbk,

Blk, Noxa, Bbc3, and DP5) at the transcriptional level (73).

These upregulated BH3-only proteins directly activate BAX/

BAK, leading to formation of oligomers on the mitochondrial

membrane, which increase the permeability of the outer

mitochondrial membrane and cause release of cytochrome c

into the cytoplasm. Cytochrome c binds to apoptosis protease

activator factor (Apaf)-1, which recruits procaspase-9 for

formation of apoptotic bodies. In the apoptosome, activation

of caspase-9 by autoproteolytic cleavage initiates the caspase

cascade pathway (29, 74) (Figure 7).

When TP53R175H, mutation occurs, the mutant p53

produced can interact with and inhibit caspase-8, caspase-9,

and caspase-3 to compromise caspase-dependent apoptosis (75–

77). There is some research showing that in non-small-cell lung

cancer (NSCLC) TP53R175H can induce expression of miRNA-

128-2, which acts on E2F5 after transcription, resulting in loss of

its inhibitory effect on transcription of p21 (waf1) in the

cytoplasm and prevention of an anti-apoptotic effect by

cleavage of caspase-3 (78). Another investigation revealed that

in ovarian cancer some TP53 mutations, including TP53P72R, do

not dramatically reduce the apoptotic activity of p53 (79).

Thomas et al. also found that the P72R p53 mutant is

structurally wild-type and exhibits the same affinity for the

DNA sequence recognized by p53 (80). Furthermore, single

nucleotide polymorphism in the TP53 gene may cause
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variation in both Arg72 and Pro72 (81). However, the Arg72

variant has been shown to be more effective in inducing

apoptosis (82). It has also been found that p53 mutants cause

resistance to the apoptosis induced by cisplatin, doxorubicin,

and 5-fluorouracil by coordinating the miRNA network (78). In

addition, some drugs work by restoring wild-type activity in cells

with mutated TP53 or by inhibiting MDM2, which is a key

negative regulator of TP53 (73).
Role of TP53 mutation in
autophagic cell death

Autophagy is a degradation process that removes injured

organelles and abnormally folded proteins via lysosomes and is

associated with tumorigenesis and progression of cancer (83,

84). When deactivated, autophagy can protect tissues from

chronic injury and prevent cancer. However, autophagy can

also provide the energy needed by tumor cells, which helps to

render them insensitive to hypoxia, depletion of nutrients, and

immune stimulation therapy therapy (85). TP53 is thought to

regulate autophagy and it has been shown that p53 can activate

the AMPK-TSC1/TSC2 and PI3K/Akt pathways to inhibit

mammalian target of rapamycin (mTOR) and promote

autophagy (86, 87). Other targets of TP53 with an impact on

autophagy include damage-regulated autophagy modulator

(DRAM), which is a type of lysosomal protein generated by

TP53. However, mutation of TP53 is one of the hallmarks of

cancer. In pancreas and breast cancer cells, one study found that

mutant p53 inhibits key autophagy-related proteins and

enzymes, such as Beclin-1, ATG12, and AMPK, while also

inhibiting the formation of autophagic vesicles by stimulating
FIGURE 7

The apoptosis pathway and the role of p53 in apoptosis. p53 upregulates expression of BH3-only proteins (Bid, Bim, Bad, Bmf, Bik/Nbk, Blk,
Noxa, Bbc3, and DP5) at the transcriptional level.
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mTOR. Mutant p53 can also inhibit autophagy by activating

continuous PI3K Akt/mTOR signaling (88, 89) (Figure 8).

According to the definition of autophagy, accumulation of

mutant p53 with abnormal folding and partial denaturation can

activate autophagy, which indicates that agents that activate

autophagy could destroy tumor cells (90). Garufi et al. identified

a novel type of zinc complex that degrades p53R175H protein by

autophagy (91). Furthermore, Shin et al. confirmed that DHA

stimulates autophagy by increasing the lipidated form of LC3B in

prostate cancer cells with mutant p53 (92).
Role of TP53 mutation in NETosis

In 1996, Takei et al. found that neutrophil suicide under

chemical stimulation by phorbol 12-myristate 13-acetate was

different from that observed in necrosis or apoptosis (93). In this

process, neutrophils can form extracellular structures known as

neutrophil extracellular traps (NETs), which are composed of

chromatin, nuclear histones, neutrophil proteins with antibacterial

properties, and mitochondrial DNA and help to trap and destroy

invasive microorganisms in the extracellular environment (94, 95).

During this process, neutrophils first recognize PAMP and DAMP

and then activate protein kinase c and nicotinamide adenine

dinucleotide phosphate oxidase (NADPH oxidase, NOX), leading

to generation of ROS (96). ROS then trigger activation of

myeloperoxidase-mediated neutrophil elastase (97), which

promotes decondensation of chromatin (97, 98). Chromatin

swelling then causes rupture of the nuclear envelope and plasma

membrane, releasing NET to capture and destroy pathogenic

factors (99). Research has also shown that NET induces caspase-

1-dependent pyroptosis in macrophages (100). Moreover, Amulic

et al. (101) established that cyclin-dependent kinases 4 and 6, which
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are core members of the cell cycle mechanism, are necessary for

formation of NETs. TP53 is known to regulate pyroptosis,

inflammation, and the cell cycle, but there is no corresponding

research on whether TP53 is related to NETosis.
Role of TP53 mutation in
immunogenic cell death

Recent years have seen emergence of the concept of

immunogenic cell death, which has opened up new possibilities for

the treatment of cancer. It is known that thebody’s immune response

can destroy tumor cells. The principle is that tumor antigens are

presented to T-cells by dendritic cells, and the efficacy of anticancer

therapy is reflected in the types and numbers of immune cells (102).

However, the tumor cells that are destroyed also have

immunogenicity, and dead autologous tumor cells can be used to

create vaccines for adjuvant treatment of cancer (103). Some studies

have found thatTP53 is also involved in immune regulation. P53 can

induceexpressionof transporter-associatedantigenprocessing-1and

endoplasmic reticulum amino peptidase-1, which deliver tumor-

associated antigens to the antigen-presenting cell membrane,

resulting in the antigen-associated major histocompatibility

complex being recognized by T-cells (104). However, mutated p53

can be recognized as a new antigen by T-cell receptors, rendering

TP53mutants sensitive to immunotherapy (105).
Role of TP53 mutation in cuprotosis

Copper is an essential co-factor but can become toxic when

its concentration exceeds the threshold, which suggests that

cancer cells can be destroyed by increasing the concentration
FIGURE 8

The signal pathway that regulates autophagy and the role of p53 in autophagy. p53 can activate the AMPK-TSC1/TSC2 and PI3K/Akt pathways to
inhibit mammalian target of rapamycin (mTOR) and promote autophagy.
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of copper in target cells (106). Recent studies have found that

accumulation of lipoylated protein and loss of the Fe-S cluster

protein result in copper-induced cell death in response to toxic

stress (107). However, it is unclear whether copper-induced cell

death is associated with TP53 mutation.

Role of TP53 mutation in
necroptosis and paraptosis

Necroptosis is also a form of programmed cell death, which is

independent of caspase and morphologically similar to necrosis.

Necroptosis is activated by tumor necrosis factor receptor (TNFR)

and Toll-like receptor (TLR)-4 or TLR3.Upon activation, these

receptors recruit the adapter proteins Fas-associated death domain

(FADD), TNF receptor-associated DD (TRADD), and TIR

domain-containing adapter-inducing interferon-b(TRIF), which
interact with receptor-interacting protein kinase 1 (RIPK1) and

caspase-8 or-10. Ultimately they activate the necroptosis

executioner mixed lineage kinase domain-like (MLKL) (29).Some

studies have found that when mutant TP53 (p53-R273H

orp53R175H) cells are surrounded by normal epithelial cells,

mutant TP53 cells undergo necroptosis and are basally extruded

from the epithelial monolayer. This shows that the necroptosis of

TP53 mutant cells is caused by competition with surrounding

normal cells (108).Furthermore, it has been found that

progesterone (P4) can induce necroptosis in p53-deficient

fallopian tube (FT) cells through the TNF-a/RIPK1/RIPK3/MLKL

pathway (109).These studies show that necroptosis occurs in TP53

mutated cells, but the specific mechanism needs further study.

Paraptosis is a programmed cell death that is morphologically

different from apoptosis and autophagy. It exhibits cytoplasmic

vacuolation, independent of caspase, mitochondrial and

endoplasmic reticulum swelling, but no pyknosis (110). Although

the molecular mechanism of paraptosis is not clear, studies have

shown that paraptosis has been demonstrated to be dependent on

mitogen-activated protein kinase (MAPK) family members, and it

can be inhibited by AIP-1/Alix (111). Only a few studies have

shown a relationship between TP53 and paraptosis. Binghui Li

(112)found that ginsenoside RH2 induces apoptosis and paraptosis-

like cell death in colorectal cancer cells through activation of TP53.
Clinical intervention
for TP53 mutation

As a transcription factor, p53 mainly regulates cell cycle

arrest and apoptosis after activation. TP53 regulates the cell cycle

and apoptosis by transcriptional activation of p21/WAF1. P21

binds to cyclin E/CDK2 and the cyclin D/CDK4 complex, with

the result that the cell cycle remains at G1 phase (113–115). A

tumor with TP53 mutation loses control of the cell cycle,

responds poorly to anti-tumor therapy, and has a bleak

prognosis (116–118). Therefore,clinical malignant tumors are
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often accompanied by mutations of TP53. For example, the

mutation rate of TP53 in triple negative breast cancer is 80%

(119). Triple-negative breast cancer has a very high rate of

metastasis and recurrence in clinical practice, and also shows

strong resistance to radiotherapy and chemotherapy (120). In

clinical treatment of these tumors, it is often necessary to

develop new strategies. Therefore, the study of targeted drugs

for TP53 mutations provides a new way for clinical treatment.

There are three potential treatment strategies for mutant p53,

namely, prevention of degradation of wild-type p53, inhibition of

TP53 mutation, and recovery of the function of mutant p53 (121,

122). Agents that protect wild-type p53, such as Nutlin3a, inhibit

development of tumors by interfering with negative regulators of

p53, especially MDM2 (123). Various strategies designed to recover

the function of p53 function are being developed based on the

diverse structure and specific functional deficiencies of mutant p53

(124). For example, PRIMA-1 (125), PK11007 (126), and ZMC1

(127) can recover the specific DNA binding sequence and

transactivate the p53 target gene by stabilizing the natural

structure of the core region of p53 (Table 1).
Clinical detection of TP53 mutation

DNA sequencing is regarded as the gold standard for

identification of TP53 mutation in a tumor. TP53 mutation is

generally located in exons 5–8 of the DNA conservation

sequence, but it is as yet a limited area of research. Sanger and

high-throughput sequencing are used in both the laboratory and

clinical settings to detect mutated TP53, and sequencing analysis

before treatment helps to ensure that the therapy provided is

appropriate (150, 151). However, although Sanger sequencing is

a simple and readily accessible technology, it is insensitive, and

second-generation sequencing is able to detect low-frequency

mutations below the Sanger sequencing threshold.

Surgical tissue specimens, cell lines, and blood samples can be

used to detect TP53 mutation. Tumor DNA can also be studied

under non-invasive conditions using cell-free DNA, which is

segmented DNA obtained from cells circulating in the blood.

There is some evidence showing that the total amount of

circulating DNA in patients with cancer is higher than that in

healthy subjects (152). In addition to direct molecular analysis of

TP53 gene mutations, overexpression of p53 is often used as an

alternative marker for abnormalities. We compared the p53 level

between normal and primary tumor tissues for eight types of cancer

from the Clinical Proteomic Tumor Analysis Consortium dataset in

the UALCAN database(http://ualcan.path.uab.edu/) and found

higher expression of p53 in tumor tissue (Figures 9A–H).

However, there are TP53 mutations without overexpression

of p53, which may be explained by frameshift mutations

leading to truncated proteins that cannot be detected by

immunohistochemistry. Therefore, to be able to conduct more
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TABLE 1 Agents that target TP53 mutation.

Compound Mechanism References

PRIMA-1 restore the wild-type conformation to mutant P53 and induce apoptosis in cancer
cells

(139)

APR-246(PRIMA-1Met) restore the wild-type conformation to mutant P53 and induce apoptosis in cancer
cells

(140, 141)

reduce glutathione(GSH) and thioredoxin reductase 1 (TXNRD1)

increase ROS levels

COTI-2 promote refolding of mutant p53 and restore wild-type-p53 function (127, 142)

lead to activation of AMPK and inhibit the PI3K-AKT pathway

MIRA1 restore transcriptional transactivation to mutant p53 in living cells (143)

STIMA-1 preferentially kill mutant p53‐carrying tumor cells (144)

activate caspases and induces Bax, PUMA and p21

Zinc metallochaperone-1 (ZMC1/NSC319726) activate mutant p53 by restoring proper zinc loading (145, 146)

decrease cellular GSH levels and increase ROS levels

PK11007 and other similar compounds(PK11000,PK11010,
PK11029,PK11003,PK11012 and PK11015)

alkylation of surface-exposed cysteines 182 and 277 and stabilized the p53 DBD
without impairing its DNA-binding affinity

(147)

increase protein and mRNA levels of the p21 and PUMA

decrease cellular GSH levels and increase ROS levels

ReACp53 and related peptides(CDB3) disrupts mutant-p53 aggregates and stabilise wild-type conformation (148–150)

CP-31398 protect p53 from thermal degeneration,restore the wild type function of some
mutant p53 and up-regulate p53 levels

(151, 152)

PhiKan083(PK083) Binds to the DNA-binding domain of mutant-p53 and restore the wild type
function of some mutant p53

(153–155)

RETRA Treatment of mutant p53-expressing cancer cells with RETRA results in a
substantial increase in the expression level of p73

(156)

PC14586 stabilize the Y220C mutant and restore p53 wild-type (normal) conformation (157)

MDM2 Inhibitor:Nutlin-3 and ALRN-6924 Increase p53 levels and activity (158, 159)

RG7388 and AMG232 disrupt the p53-MDM2 protein–protein interaction and prevent p53 from
proteasomal degradation

(160, 161)
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FIGURE 9

Compare the p53 level between normal and primary tumor tissues for eight types of cancer from the Clinical Proteomic Tumor Analysis
Consortium dataset in the UALCAN database (http://ualcan.path.uab.edu/). (A) Compare the p53 level between normal and primary tumor
tissues for clear cell renal cell carcinoma. (B) Compare the p53 level between normal and primary tumor tissues for colon cancer. (C) Compare
the p53 level between normal and primary tumor tissues for Lung adenocarcinoma. (D) Compare the p53 level between normal and primary
tumor tissues for ovarian cancer. (E) Compare the p53 level between normal and primary tumor tissues for head and neck squamous
carcinoma. (F) Compare the p53 level between normal and primary tumor tissues for hepatocellular carcinoma. (G) Compare the p53 level
between normal and primary tumor tissues for pancreatic adenocarcinoma. (H) Compare the p53 level between normal and primary tumor
tissues for uterine corpus endometrial carcinoma.
tiersin.org

http://ualcan.path.uab.edu/
https://doi.org/10.3389/fonc.2022.1023427
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Su et al. 10.3389/fonc.2022.1023427
detailed research on TP53 mutation, it is necessary to optimize the

sequencing technology and standardize the methods used to assess

pathogenicity (18).

At present, the correlation between TP53 germline variations

andLi-Fraumeni Syndrome (LFS) has been confirmed clinically, and

“Chompret criteria” has been established for LFS. It is estimated that

at least 20% of persons who meet the Chompret criteria show a

detectable variation in the pathogenicity of TP53 (153). At the same

time, the screening criteria for the TP53 Chompret criteria were

updated in 2015 (154). In addition to LFS, the status of TP53 in

chronic lymphocytic leukemia (CLL) has also received attention.

Researchers representing the European Research Initiative on CLL

(ERIC) made recommendations for the analysis of the TP53

mutation within the LLC (155). In addition, the TP53 mutation

can be used as an indicator of poor prognosis in non-small cell lung

cancer, particularly in patients with adenocarcinoma and stage I

(156). Similarly, TP53 mutations are common in breast cancer,

particularly in triple-negative breast cancer where the rate of TP53

mutationscanreach80%(119).AndTP53mutationswereassociated

with increased mortality inpatients with luminal B, HER2-enriched,

and normal-like tumors (157). A growing number of drugs aimed at

TP53 mutations are also used clinically (Table 1).
Conclusions

PCD is an important process for maintaining the dynamic

balance of organisms and can lead to shrinkage of tumors. TP53 is

animportant tumorsuppressorgeneandhasanimportant regulatory

role inPCD.However,TP53mutationsoftenoccur incancercellsand

interfere with regulation of PCD. Cancer cells can evade these death

mechanisms, which is likely to cause tumor growth and metastasis.

Therefore, explorationof the roleofmutantgenes in thedevelopment

of cancer is very important in terms of its treatment. At present, the

mechanisms of TP53 mutation in apoptosis, ferroptosis, and

autophagy are relatively clear but require further research in

pyroptosis, NETosis, cuproptosis, and immunogenic cell death.
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