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Review

Myocardial Glucose Metabolism

Overview
Life critically depends on the beating of the heart, an energy-

consuming process fueled by hydrolysis of adenosine triphosphate 
(ATP) to adenosine diphosphate (ADP). In fact, the heart is the 
organ with the highest specific oxygen consumption, reflecting 
its intense, mostly aerobic, metabolic activity. The most impor-
tant substrates for energy production in the normal myocardium 
are fatty acids, glucose and lactate, in decreasing order of impor-
tance. Together, anaerobic and aerobic metabolism of these sub-
strates account for almost all of energy production in the normal 
adult heart, the respective contribution of each depending on the 
metabolic and hormonal status.1 Catabolic breakdown of glu-
cose occurs in two stages: glycolysis, an anaerobic, cytoplasmic 
stage with low ATP yield (2 ATP/glucose), followed by aerobic 

oxidation of glycolysis-derived pyruvate in the mitochondria. 
Pyruvate is first converted to acetyl-CoA by the action of pyru-
vate dehydrogenase complex (PDC), the rate-limiting enzyme 
for glucose oxidation. Acetyl-CoA then enters the Krebs cycle, 
wherein it is oxidized to CO

2
 with production of reducing equiv-

alents, thereafter used in the electron transport chain to produce 
ATP with a much higher yield (34 ATP/glucose).2

Importance of glucose metabolism for the myocardium
Among the myocardial substrates, glucose accounts for less 

than 25% of the energy production under normal conditions.3 
It should not be surmised from this rather low figure that glu-
cose is entirely dispensable for the heart. Indeed, although iso-
lated perfused hearts can aerobically run for hours on fatty acids 
only, glucose becomes extremely important during episodes of 
ischemia and reperfusion.4 There are mostly two reasons for this 
requirement for glucose during metabolic stress: (1) energy can 
be obtained from glucose through glycolysis even in situations 
of hypoxia or ischemia and (2) ATP obtained from glycoly-
sis, although scarce, is important for the maintenance of ionic 
homeostasis. Indeed ATP production and use is highly compart-
mentalized in the myocardium, and glycolytic ATP is preferen-
tially used to fuel the sarcolemmal and sarcoplasmic reticulum 
ion pumps.5,6

Regulation of glucose metabolism
Glucose metabolism in the myocardium is tightly regulated; 

there are three major steps regulating the rates at which the two 
stages of glucose breakdown proceed (Fig. 1): (1) Glucose trans-
port from the extracellular space; (2) the phosphofructokinase 
reaction, which is the first committing step of glycolysis; and (3) 
the intramitochondrial conversion of pyruvate to acetyl-CoA, 
which is the first step of pyruvate oxidation.

1) Glucose transport occurs mostly by facilitated diffu-
sion through selective transport proteins of the GLUT family. 
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JAK-STAT signaling occurs in virtually every tissue of the 
body, and so does glucose metabolism. in this review, we 
summarize the regulation of glucose metabolism in the myo-
cardium and ponder whether JAK-STAT signaling participates 
in this regulation. Despite a paucity of data directly pertain-
ing to cardiac myocytes, we conclude that JAK-STAT signaling 
may contribute to the development of insulin resistance in the 
myocardium in response to various hormones and cytokines.



e26458-2 JAK-STAT volume 2 issue 4

In cardiac myocytes, mostly two isoforms of 
glucose transporter, GLUT1 and GLUT4, are 
involved. GLUT1, which predominates dur-
ing fetal and early postnatal period7 is located 
mainly in the sarcolemma under basal con-
ditions.7,8 GLUT4 on the other hand is the 
main isoform present in fully differentiated 
cardiac myocyte. GLUT4 is mainly located in 
intracellular membrane compartments and is 
translocated to the cell surface in response to 
various stimuli. As a result, the major determi-
nant of glucose uptake into cardiac myocytes 
at physiological glucose concentrations is the 
number of GLUT4 transporters present at the 
cell surface. However, in addition to facilitated 
diffusion, cotransport of sodium and glucose 
by the cotransporter SGLT1 has been recently 
reported in mouse heart and found to be stim-
ulated in response to insulin and leptin.9

The most important stimuli triggering 
translocation of GLUT4 in cardiac myo-
cytes are insulin, ischemia and workload.10,11 
Signaling in response to insulin and leading 
to stimulation of glucose transport in short 
involves recruitment and activating tyrosine 
phosphorylation of insulin receptor substrates 
proteins (IRS-1, -2, and -3), activation of 
phosphoinositide-3-kinases (PI3K), and acti-
vating phosphorylation of Akt.12 Ischemia on 
the other hand increases the AMP to ATP 
ratio within the cardiac myocytes, leading 
to activation of the AMP-activated kinase 
(AMPK) by both allostery and phosphoryla-
tion on threonine 172 of the catalytic AMPKα 
subunit.13 Both activated Akt and AMPK 
phosphorylate and inactivate the Rab-GTPase 
AS160; this relieves an inhibition of GLUT4 
translocation.14 For a more detailed discussion 
of the mechanisms controlling GLUT4 trans-
location in the myocardium, the interested 
reader is referred to a recent review.15

2) The phosphofructokinase reaction 
converts fructose-6-phosphate to fructose-
1,6-bisphosphate. This is the first committed 
step in glycolysis, and as such, it determines 
the rate at which glycolysis proceeds down-
stream. The activity of 6-phosphofructo-
1-kinase (PFK-1) is allosterically regulated in 
negative feedback loops by ATP and citrate. 
Importantly, in cardiac myocytes it is strongly 
activated by a glucose metabolite that is not 
part of the glycolysis pathway sensu stricto, 
fructose-2,6-bisphosphate. This metabolite is 
produced from fructose-6-phosphate by the 
enzyme 6-phosphofructo-2-kinase 2 (PFK-2; 
the heart isoenzyme is different in both gene 

Figure 1. Principal points of regulation of glucose metabolism in cardiac myocytes. Glucose 
enters cardiac myocytes by facilitated diffusion through GLUT (mostly GLUT4) transporters and 
to a minor extent by cotransport with sodium through SGLT1. Glycolysis yields pyruvate, which 
is converted to acetyl-CoA to undergo mitochondrial oxidation in the Krebs cycle. Principal 
points of regulation are transmembrane transport, regulated by translocation of GLUT4, the 
PFK-1 reaction, which is stimulated by F2,6BP, and activity of the pyruvate dehydrogenase 
complex, regulated by phosphorylation by PDH kinases or dephosphorylation by PDH phos-
phatases. See text for details. Abbreviations: AMPK, AMP-activated protein kinase; F1,6BP, fruc-
tose-1,6-bisphosphate; F2,6BP, fructose-2,6-bisphosphate; F6P, fructose-6-phosphate; GLUT1 
or 4, facilitative glucose transporters; ins, insulin; iRα/β, insulin receptor, subunit α, respec-
tively β; PDC, pyruvate dehydrogenase complex; PDK1-4, pyruvate dehydrogenase kinase 1 
to 4; PDPC1-2, pyruvate dehydrogenase phosphatase 1 or 2; PFK-1, 6-phosphofructo-1-kinase; 
PFK-2, 6-phosphofructo-2-kinase; SGLT1, sodium-glucose cotransporter 1; wiSK, wortmannin-
sensitive and insulin-stimulated protein kinase.
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and function from the liver and muscle isoenzymes).16 Similar 
to glucose transport, activity of the heart PFK-2 is stimulated 
in response to insulin, ischemia and workload. Insulin signaling 
activates a wortmannin-sensitive protein kinase (WISK), whose 
molecular identity remains unsure, but which is distinct from 
Akt; ischemia, as described above, activates AMPK and workload 
activates Akt. All three kinases phosphorylate and activate PFK-
2, thereby accelerating glycolysis.

3) Activity of the pyruvate dehydrogenase complex (PDC) 
commits glycolysis-derived pyruvate to intramitochondrial oxi-
dation in the Krebs cycle. The PDC is a multienzyme complex 
carrying out three successive reactions leading to the biosynthe-
sis of acetyl-CoA. The first and rate-limiting reaction is decar-
boxylation of pyruvate by the pyruvate dehydrogenase enzyme 
(PDH-E1). The PDH-E1 can be inhibited by phosphorylation 
on three specific serine residues on its α subunit by PDH kinase, 
of which there exists four isoforms (PDK1–4).17 Conversely, 
two PDH phosphatases (PDPC1 and PDPC2) dephosphorylate 
and activate PDH-E1; this phosphatase activity is stimulated by 
insulin.18

JAK-STAT Signaling in the Myocardium

Overview
Many signaling pathways have been found in myocardium, 

including the Janus kinase (JAK)-signal transducer and activa-
tor of transcription (STAT) pathway. The JAK-STAT signaling 
pathway transduces signals from extracellular ligands such as 
cytokines, growth factors and hormones to the nucleus to orches-
trate the appropriate cellular response.

Four members of the JAK family, (JAK1, JAK2, JAK3, and 
TYK2) and seven STAT proteins (STAT1, STAT2, STAT3, 
STAT4, STAT5A, STAT5B, and STAT6) have been identified 
in mammals.19 Although STAT proteins are structurally related, 
their activations and effects present a high degree of specificity 
for the different STAT isoforms. The JAK/STAT pathway can be 
activated by many cytokines, including all interferons and most 
interleukins, many growth factors and some hormones.

In non-stimulated cells, JAK proteins are associated with the 
membrane receptors and are inactive. Inactive STAT proteins are 
located in the cytosol in a monomeric form. Activation occurs 
when the cytokine binds to its membrane receptor, the bound-
receptor dimerizes and JAK proteins are activated by trans-
phosphorylation. Activated JAK proteins can phosphorylate the 
tyrosine residues located in the intracellular section of the recep-
tor, which become the docking sites for the Src 2 domains (SH2) 
of the STAT proteins that are recruited. Recruited STAT proteins 
are thus activated via JAK proteins by phosphorylation on the 
tyrosine residue situated near the SH2 domain. Once phosphory-
lated on the tyrosine residue, STAT monomers form hetero- or 
homo-dimers, which translocate to the nucleus where they can 
bind to the DNA and induce the transcription of target genes.20 
Although this is the classical activation process, other tyrosine 
kinases are able to activate STAT proteins; for example, growth 
factor receptors containing an intrinsic tyrosine kinase activ-
ity (EGF and PDGF receptors) as well as non-receptor tyrosine 

kinases (Src, Abl) can directly activate the members of the STAT 
family.

Activation of the JAK-STAT signaling pathway is a complex 
process, which can be stopped or negatively regulated by several 
processes including dephosphorylation, nuclear export and nega-
tive regulators such as SOCS (suppressors of cytokine signaling) 
and PIAS (protein inhibitor of activated STAT).21 For a more 
detailed discussion of the mechanisms of STAT regulation, the 
interested reader is referred to a recent review.22

Role of JAK-STAT in the heart
JAK1, JAK2, and TYK2 and all the members of STAT family 

are expressed in the heart.23,24 Among these proteins STAT3 and 
STAT1 are the most studied.

Multiple studies have demonstrated a beneficial and protective 
role of STAT3 in the heart. This role has mainly been pointed 
out by data from animal experiments. As STAT3 knockout mice 
result in early embryonic lethality,25 specific cardiac myocyte 
STAT3 knockout (STAT3-KO) mice have been a useful tool to 
investigate STAT3 in the heart. The use of these mice and of the 
pharmacological inhibitor of JAK2 (AG490) demonstrates a pro-
tective and anti-apoptotic role of STAT3. This role has mainly 
been demonstrated in the model of ischemia reperfusion injury. 
Thus STAT3-KO mice submitted to 1 h ischemia followed by 
24 h of reperfusion show a significantly increased infarct size.26 
STAT3 is also involved in pro-survival processes such as isch-
emic pre- and post-conditioning. Ischemic pre- and post-condi-
tioning protocols result in a significant reduction in infarct size 
and an improvement of cardiac function when compared with 
non-conditioned hearts. In STAT3-KO mice and in experiments 
using pharmacological JAK inhibitors, these protective effects are 
reduced.24,27-29 It is also possible to mimic ischemic conditioning 
with pharmacological compounds. In this context STAT3 has 
been shown to play a role in cardioprotection afforded by tumor 
necrosis factor α, insulin, melatonin, sphingosine-1-phosphate, 
and high density lipoproteins.30-34 The beneficial effect of STAT3 
in the heart is confirmed in experiments using mice overexpress-
ing STAT3 in the myocardium. These mice are less sensitive to 
ischemia-reperfusion injury and to doxorubicin (a cardiotoxic 
drug) exposure than wild-type mice.35 For a more detailed dis-
cussion on the effects of STAT3 in the heart, the interested reader 
is referred to a review.36 Similar cardioprotective effect have been 
described for STAT5 activation.37

In addition of these pro-survival actions, STAT3 is involved 
in adaptive hypertrophy. Hypertrophy is initially beneficial and 
contributes to reduce wall stress and oxygen consumption in the 
overloaded heart; this serves to maintain normal cardiac out-
put. Transgenic mice with myocardium STAT3 overexpression 
show signs of hypertrophy by 12 weeks of age. The hearts display 
enlarged left ventricles and enhanced expression of hypertro-
phic genes (β-myosin heavy chain, atrial natriuretic peptide).35 
Members of the IL-6 family (LIF, CT-1 and IL-6) activate the 
JAK-STAT3 signaling pathway via the activation of the gp130 
receptor and have been shown to be potent mediators of cardiac 
hypertrophy.23,38 gp130 receptor engagement can prevent heart 
failure through inhibition of apoptosis and induction of compen-
satory hypertrophy, via STAT3 activation.39
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In contrast to the protective role of STAT3, STAT1 has 
been attributed deleterious actions. Indeed, in cultured cardio-
myocytes STAT1 is activated by hypoxia–reoxygenation and 
enhances apoptosis by activating the pro-apoptotic targets cas-
pase1, Fas, and FasL.40 Inhibition of STAT1 confers protection 
against hypoxia–reoxygenation. In vivo, STAT1 is activated dur-
ing ischemia-reperfusion and hearts from STAT1-KO mice sub-
mitted to ischemia-reperfusion have a smaller infarct than wild 
type mice.41 Recently, STAT1 has been shown to reduce autoph-
agy, which participates in post-infarction cardioprotection.41 
Interestingly, experiments in cultured fibroblasts and cardiac 
cells using STAT overexpression showed that the pro-apoptotic 
action of STAT1 can be counteracted by the relative expression of 
STAT3.40,42 The balance between STAT1 and STAT3 activation 
might thus play a role in the determination of cell fate.

Interaction between JAK-STAT Signaling 
and Myocardial Glucose Metabolism

Participation of JAK-STAT in insulin and AMPK signaling
Given the ubiquitous nature of both JAK-STAT signaling and 

glucose metabolism, one may wonder about the involvement of 
the former in the regulation of the latter in the heart. The first 
question to ponder is whether JAK-STAT signaling is activated 
in response to insulin or metabolic stress, the two most impor-
tant stimuli of glucose metabolism in the myocardium. Indeed 
it has been shown very early that insulin activates JAK2 in all 
insulin-responsive tissues, including the heart, in vivo in rats;43 
this observation was further extended to JAK1 in cultured cells.44 
Independently STAT5 was found to be tyrosine-phosphorylated 
in response to insulin;45 it was later confirmed that STAT5 phos-
phorylation could occur both independently of and through JAK 
activation.46,47 STAT3 was also found to be activated in response 
to insulin in the heart, thus mediating the cardioprotective effects 
of the hormone.31,48 In an intriguing crosstalk between canoni-
cal pathways, JAK2 activated by other hormones such as growth 
hormone (GH) or leptin can phosphorylate IRS-1 and IRS-2 on 
tyrosine residues and thereby recruit and activate PI3K.49,50 This 
however is not sufficient to stimulate glucose metabolism.

Similarly, several studies have reported activation of STAT3, 
and perhaps STAT1, 5, and 6, in the ischemic myocardium or in 
cardiac myocytes submitted to simulated ischemia,37,40,51-53 situa-
tions that entail AMPK activation. The participation of AMPK 
in STAT activation, or AMPK activation downstream to STAT 
activation, have to the best of our knowledge not been reported. 
We have observed activation of STAT5 in cardiac myocytes in 
response to the ATP-synthase inhibitor oligomycin concomi-
tantly with strong AMPK activation, but again without proof of 
causality.54

Participation of JAK-STAT in the regulation of glucose 
metabolism

Having established that JAK-STAT signaling could be acti-
vated in response to stimuli that increase glucose metabolism, we 
now have to consider whether JAK-STAT signaling actually con-
tributes to the stimulation of glucose metabolism. Regarding this 
issue the literature is remarkably scarce, and almost nonexistent 

as to the myocardium. In skeletal myotubes, which are similar 
to cardiac myocytes in the regulation of glucose metabolism, 
insulin-stimulated GLUT4 translocation and glucose uptake is 
not affected by JAK2 silencing, whereas the proliferative effects 
of insulin are blunted.55 Similarly, pharmacological inhibition 
of JAK2 with AG490 fails to prevent the stimulatory effect of 
leptin on glucose transport in myotubes.56 On the other hand 
leptin increases Na-glucose cotransport in the myocardium by 
increasing expression of SGLT1,9 which was shown to be driven 
by JAK2 activity.57

Let us now turn our attention to the converse possibility, 
which is that JAK-STAT signaling impedes myocardial glu-
cose metabolism instead of stimulating it. Indeed several factors 
known to activate JAK-STAT signaling in the myocardium have 
also inhibitory effects on glucose metabolism (Fig. 2). These 
include angiotensin II (Ang II),58-60 low concentrations of car-
diotrophin-1 (CT-1),54,61 GH,50,62 and leukemia inhibitory factor 
(LIF).63,64 A common effect of these factors is the upregulation 
of suppressor of cytokine signaling 3 (SOCS3) expression,54,60,64 
although to date this has only been shown in non-myocardial 
tissues for GH.65 SOCS3, in addition to exerting a negative feed-
back on JAK-STAT signaling in the myocardium,66-68 is able to 
reduce insulin signaling by preventing autophosphorylation of 
the insulin receptor,69 reducing interaction of IRS with the IR 
and with PI3K70 and by promoting proteasomal degradation of 
IRS.71 In cardiac myocytes overexpression on SOCS3 has indeed 
been associated with insulin resistance induced by PPARα and 
PPARδ agonists72 and by low concentrations of cardiotrophin-1.54 
The requirement of JAK-STAT signaling for the upregulation 
of SOCS3 expression has not to date been firmly established in 
cardiac myocytes; SOCS3 overexpression has only been tightly 
associated with STAT3 activation.66,68 In other tissues and cell 
types SOCS3 transcription is driven by activated STAT373 and 
STAT5,74,75 and it seems reasonable to assume that it could be 
similar in the myocardium. Indeed, in cardiac myocytes exposed 
to low concentrations of CT-1, pharmacological inhibition of 
STAT5 activity suppressed SOCS3 overexpression and restored 
insulin signaling and insulin-stimulated glucose transport.54 
Upstream of STATs SOCS3 expression seems to be at least in 
part dependent on JAK2 activity, as it can be reduced by the 
JAK2 inhibitor AG490.76

Obviously a reduction in glucose metabolism could also 
result from diminished expression of the main glucose trans-
porter GLUT4. Both LIF and low concentrations of CT-1 reduce 
GLUT4 expression in cardiac myocytes.54,64 Whereas there is no 
evidence for the JAK-STAT axis involvement in this effect of LIF, 
only “guilt by association”, pharmacological inhibition of STAT5 
activity indeed restored GLUT4 expression reduced by a low dose 
of CT-1.

Other mechanisms, independent of gene expression, may oper-
ate to reduce insulin signaling when the JAK-STAT axis is acti-
vated. Thus in cardiac myocytes stimulated concomitantly with 
both Ang II and insulin, the branch of insulin signaling down-
stream of IRS phosphorylation leading to stimulation of glucose 
metabolism, i.e. PI3K activation and subsequent Akt recruitment 
and activation, is reduced.77 This occurs while IRS association 
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with JAK2 is increased, suggesting that JAK2 
activation reduces insulin signaling to glucose 
transport by sequestering IRS.78 In contrast 
ERK1/2 activation in response to insulin is 
potentiated by Ang II;77 ERK1/2 activation is 
known to be detrimental to the stimulation of 
glucose transport in cardiac myocytes.79

In line with these observations, in myo-
tubes rendered insulin resistant by incuba-
tion with ceramides JAK2 silencing restored 
Akt activation and insulin-stimulated glucose 
transport.55 Collectively these results suggest 
that JAK2 may depress the Akt to glucose 
uptake signaling axis selectively in insulin-
resistant states.

A last mechanism by which JAK-STAT 
signaling activation could reduce glucose 
metabolism is by driving expression of a PDH 
kinase; in adipocytes the expression of PDK4 
is mediated by STAT5 in response to prolac-
tin.80 Indeed Ang II, which activates STAT5,58 
induces PDK4 expression in cardiac myocytes, 
although JAK-STAT signaling was not inves-
tigated in the latter study.81 We observed how-
ever in cardiac myocytes exposed to CT-1 and 
displaying STAT5 phosphorylation a slight 
reduction of PDH-E1 phosphorylation.54

In conclusion, despite a paucity of data 
directly pertaining to the myocardium, it 
appears that JAK-STAT signaling does not 
significantly participate in the stimulation of 
glucose metabolism by insulin or metabolic 
stress in the heart. On the contrary, JAK-
STAT signaling most likely mediates the 
development of insulin resistance induced 
by various cytokines. Again, the literature is 
remarkably scarce of results obtained in heart-
relevant experimental models; many of the 
above conclusions are extrapolated from data 
obtained in skeletal muscle or adipocytes, 
and therefore should be taken with caution. 
Whether this shortage of information results 
from an actual lack of experiments or from 
abstaining to report negative results remains 
unknown.
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Figure 2. interference of JAK-STAT signaling with insulin signaling and glucose transport in 
cardiac myocytes. Top: Normal insulin signaling leading to Akt activation and translocation 
of GLUT4. Right: activation of JAK-STAT signaling by Ang ii, LiF, and CT-1 leading to SOCS3 
overexpression and GLUT4 repression. Left: disruption of insulin signaling by SOCS3, with dis-
sociation and degradation of iRS-1. Bottom: sequestration of iRS-1 by JAK2 activated by the 
ligand-bound AGTR1. See text for details. Abbreviations: Ang ii, angiotensin ii; AGTR1, angio-
tensin receptor type 1; CT-1, cardiotrophin-1; gp130, glycoprotein 130; iRS-1, insulin receptor 
substrate 1; LiF, leukemia inhibitory factor; LiFR, LiF receptor; mTORC2, mammalian target of 
rapamycin complex 2; PDPK1, phosphoinositide-dependent protein kinase 1; Pi3Kα, phos-
phoinositide 3-kinase α; PiP3, phosphatidylinositol-3,4,5-trisphosphate; pY, phosphotyrosine; 
SOCS3, suppressor of cytokine signaling 3.
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