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SREBP2-dependent lipid gene transcription
enhances the infection of human dendritic
cells by Zika virus

Emilie Branche1, Ying-Ting Wang1, Karla M. Viramontes1, Joan M. Valls Cuevas1,
Jialei Xie2, Fernanda Ana-Sosa-Batiz1, Norazizah Shafee 1, Sascha H. Duttke 3,
Rachel E. McMillan2,4, Alex E. Clark 2,5, Michael N. Nguyen 1,
Aaron F. Garretson 2, Jan J. Crames1, Nathan J. Spann5, Zhe Zhu 6,7,
Jeremy N. Rich6,8, Deborah H. Spector5, Christopher Benner2,
Sujan Shresta 1 & Aaron F. Carlin 2,9

The emergence of Zika virus (ZIKV) as a global health threat has highlighted
the unmet need for ZIKV-specific vaccines and antiviral treatments. ZIKV
infects dendritic cells (DC), which have pivotal functions in activating innate
and adaptive antiviral responses; however, the mechanisms by which DC
function is subverted to establish ZIKV infection are unclear. Here we develop
a genomics profiling method that enables discrete analysis of ZIKV-infected
versus neighboring, uninfected primary human DCs to increase the sensitivity
and specificity with which ZIKV-modulated pathways can be identified. The
results show that ZIKV infection specifically increases the expression of genes
enriched for lipid metabolism-related functions. ZIKV infection also increases
the recruitment of sterol regulatory element-binding protein (SREBP) tran-
scription factors to lipid gene promoters, while pharmacologic inhibition or
genetic silencing of SREBP2 suppresses ZIKV infection of DCs. Our data thus
identify SREBP2-activated transcription as a mechanism for promoting ZIKV
infection amenable to therapeutic targeting.

Zika virus (ZIKV) is an arthropod-borne member of the Flaviviridae
family of RNA viruses, which includes dengue virus (DENV), West Nile
virus, and Japanese encephalitis virus. Outbreaks of ZIKV inmany parts
of the world, including the Americas, led the World Health Organiza-
tion to declare ZIKV a public health emergency of global concern in
2016. Although most ZIKV infections cause short-lived and mild
symptoms, they can also lead to severe complicationswith devastating
consequences, particularly Guillain–Barré syndrome in adults1,2 and

congenital Zika syndrome in infants born to ZIKV-infected mothers3–8.
Despite intense research on ZIKV pathogenesis, the mechanisms by
which the virus productively infects target cells remain unclear.

Dendritic cells (DCs) play crucial roles in detecting viral patho-
gens and orchestrating short- and long-term antiviral responses
through both the innate and adaptive immune systems. DCs exist as
multiple subsets, including plasmacytoid DCs, classical DCs, and
monocyte-derived DCs (moDCs), with diverse ontogeny, phenotypes,
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and functions. Upon viral infection, DCs activate vigorous antiviral
responses focused on the production of and response to type I
interferons (IFNs), and they then undergo maturation to become
potent antigen-presenting cells for virus-specific T cells. However,
many viruses have evolved mechanisms to subvert DC function,
thereby suppressing host defenses.

ZIKV can infect multiple DC subsets, including moDCs9–11.
Analysis of ZIKV-infected moDCs and primary myeloid DCs from
infected individuals have shown that ZIKV suppresses the antiviral
response, including production of type I IFN, as well as DC matura-
tion and activation9,12. However, little is known about the molecular
mechanisms and pathways by which ZIKV enables productive infec-
tion of DCs. Previous studies have analyzed the transcriptional pro-
grams activated in cells infected with ZIKV, but it has proven difficult
to identify transcription factors (TFs) responsible for changes in gene
expression13–16. Therefore, in the present study, we employed a highly
sensitive approach recently developed by our laboratory to decon-
volute the genomic profiles of purified ZIKV-infected and bystander
uninfected cells, thereby facilitating the identification of key reg-
ulatory TFs that control DC responses specifically during ZIKV
infection17–19.

Here we identify transcriptional programs regulated by ZIKV by
comparing genome-wide transcriptional profiles of highly purified
ZIKV-infected and uninfected bystander moDCs with mock-infected
cells. Notably, ZIKV infection is associatedwith increased expressionof
genes enriched in lipid metabolism-related functions. Chromatin
immunoprecipitation sequencing (ChIP-seq) analyses reveals that
sterol regulatory element-binding proteins (SREBPs), the master reg-
ulatory TFs of lipid metabolism, are preferentially recruited to the
promoters of lipid metabolism-related genes, and capped small RNA-
seq (csRNA-seq) analysis demonstrates increased transcription initia-
tion of these genes. Further mechanistic investigation demonstrates
that SREBP2 activity promotes ZIKV infection of moDCs. These find-
ings identify a novel mechanism by which ZIKV creates a favorable
environment for replication in moDCs and also suggest that SREBP2-
dependent lipid metabolism is a potential therapeutic target to sup-
press ZIKV infection.

Results
ZIKV productively infects human moDCs
To investigate ZIKV–moDC interactions that determine the outcome
of infection, we established a moDC model in which primary human
monocytes were differentiated to moDCs in culture and then infected
for various lengths of times with the Asian lineage ZIKV strain SD00117

at amultiplicity of infection (MOI) of 0.5. Viral infectionwasmonitored
by flow cytometry of cells stained with 4G2, a pan flavivirus envelope
(E) protein-specific monoclonal antibody (mAb). The mean infectivity
rates at 6, 12, 18, 24, and 48 h post-infection (pi) were 0.3%, 17.1%,
34.7%, 43.5%, and 23.2%, respectively (Supplementary Fig. 1a). A single
population of 4G2+ cells was observed up to 48h pi, consistent with a
single round infection without spread to uninfected bystanders (Sup-
plementary Fig. 1b). Infectious viral particles in the culture super-
natants, as measured using cell-based focus-forming assays (FFAs),
increased progressively from 6h until 24 h pi, after which the same
level of infection was observed until ≥48 h pi (Supplementary Fig. 1c).
Thus, moDCs support productive ZIKV infection with a peak infection
time of 24h pi.

ZIKV infection reprograms expression of lipid metabolism-
related genes in moDCs
To detect host genes specifically regulated by ZIKV, we infected
moDCs derived from 4 donors with ZIKV SD001 (MOI 0.5) for 24 h and
then separated cells from the same culture into ZIKV-infected (ZIKV+)
and ZIKV-exposed but uninfected bystander (ZIKV−) moDCs by stain-
ing with 4G2 followed by fluorescence-activated cell sorting (FACS)

(Fig. 1a)17. Mock-infected cells (referred to as MockmoDCs) from each
donor were included in each assay. The cells were analyzed by
ribosomal-depleted strand-specific RNA-seq, and the RNA-seq reads
were aligned to a combined human (GRCh38/hg38) and ZIKV genome.
Only the ZIKV+ population had significant reads aligning to the ZIKV
genome (Fig. 1b), confirming the efficiency of the FACS method for
separation of ZIKV+ and ZIKV− cell populations.

We identified a total of 1099 and 379 genes that were upregulated
to a greater extent (fold-change [FC] > 2 and false discovery rate
[FDR] < 0.01) in ZIKV+ moDCs compared with ZIKV− or Mock moDCs,
respectively. Of these genes, 176 were upregulated in ZIKV+ cells
compared with both ZIKV− and Mock moDCs (Fig. 1c), indicating that
they were specifically induced by ZIKV infection. The 1099 and 379
genes upregulated in ZIKV+ vs. ZIKV− orMock cells, respectively, were
enriched for gene ontology (GO) and pathway terms related to lipid
synthesis, viral defense, and immune responses (Fig. 1d). The 176 genes
exclusively upregulated in ZIKV+ cells were also enriched for lipid
synthesis pathway terms but not for most viral response or immune
response categories (Fig. 1d); indeed, expression of the latter two gene
sets were largely suppressed in ZIKV+ compared with ZIKV− moDCs
(Supplementary Fig. 2a). These findings suggest that ZIKV actively
suppresses the synthesis of immune response-related genes in infec-
ted moDCs. Although type I and III IFN genes were most strongly
upregulated in ZIKV+ moDCs, interferon-stimulated gene (ISG)
expression was suppressed in ZIKV+ compared with ZIKV− moDCs
(Supplementary Fig. 2a). Thus, although infected moDCs are capable
of upregulating IFN expression, they cannot respond to the secreted
IFNs,which is consistentwith the known ability of ZIKV to suppress IFN
signaling in human cells by targeting the TF signal transducer and
activator of transcription protein 2 (STAT2)20.

The relatively small number of genes specifically induced by ZIKV
infection (Supplementary Fig. 2b) included a high frequency of uni-
formly upregulated genes related to lipid metabolism, including cho-
lesterol and fatty acidbiosynthesis-relatedgenes (Fig. 1e).We validated
the RNA-seq results by qRT-PCR analysis of two fatty acid biosynthetic
genes, fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD),
and two cholesterol biosynthetic genes, 7-dehydrocholesterol reduc-
tase (DHCR7) andHMG-CoA reductase (HMGCR), whichweremarkedly
upregulated in ZIKV+ moDCs compared with either ZIKV− or Mock
moDCs (Fig. 1f). We determined the functional outcome of these
transcriptional changes by quantifying lipid levels in moDCs by intra-
cellular staining with the lipid-binding fluorescent dye BODIPY 493/
503 followed by flow cytometry, revealing higher accumulation of
neutral lipids in ZIKV+ compared with ZIKV− and Mock moDCs (Sup-
plementary Fig. 2c). Taken together, these data demonstrate that ZIKV
infection of moDCs induces expression of a large number of choles-
terol and fatty acidmetabolism-related genes and results in an increase
in lipid stores.

Reprogramming of lipid metabolism-related genes is cell type-
and virus-specific
ZIKV can infect many immune and non-immune human cell types,
including neural progenitor cells (NPCs), hepatocytes, and
macrophage21. We previously showed that genes involved in lipid
synthesis are broadly upregulated in ZIKV+ compared with ZIKV− and
mock-infected human monocyte-derived macrophage (HMDMs)
(Supplementary Fig. 3a)17. To determine whether lipid metabolism
genes are also regulated by ZIKV infection of other cell types, we
employed the same approach that we used for moDCs to infect, iso-
late, and perform RNA-seq on human pluripotent stem cell-derived
NPCs and Huh7.5 cells, a human hepatoma cell line. We first compared
the expressionof the key rate-limiting enzymes in cholesterol and fatty
acid synthesis in ZIKV+ and ZIKV− moDCs with the equivalent popu-
lations of NPCs, Huh7.5 cells, and HMDMs. Compared with the
observation inmoDCs andHMDMs, ZIKV infection had a smaller effect

Article https://doi.org/10.1038/s41467-022-33041-1

Nature Communications |         (2022) 13:5341 2



on upregulation of lipid synthesis genes in NPCs and had little-to-no
effect in Huh7.5 cells (Fig. 2a–c). Moreover, the baseline expression
level of lipid genes in uninfected NPCs and Huh7.5 cells was much
higher than in the two innate immune cell types (Supplementary
Fig. 3b). Investigation of the expression of SCD in human tissues

through the Genotype-Tissue Expression Project (gtexportal.org)
showed that SCDwas expressed at the lowest levels in immune organs
(spleen and blood) compared with the other tissues analyzed (Fig. 2d).
These findings were confirmed by clustering of normalized expression
of Acetyl-CoA Carboxylase Alpha (ACACA), FASN, SCD, HMGCR, and
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Fig. 1 | ZIKV infection of humanmoDCs reprograms expression of lipid-related
genes. a Human moDCs from four different donors were infected for 24h with
ZIKV SD001 at MOI 0.5. Cells were then stained for the viral envelope (E) protein
using mAb 4G2 and sorted into ZIKV-infected (ZIKV+) and bystander uninfected
(ZIKV−) cells. Total RNAwas isolated and subjected toRNA-seq.Mock-infected cells
(Mock) were analyzed in parallel. b Percent of reads aligned to the ZIKV genome in
each cell population. c Venn diagram showing the number of unique and shared
genes upregulated (fold-change >2, false discovery rate <0.01) in ZIKV+ vs ZIKV− or

MockmoDCs. dGene ontology analysis of genes significantly upregulated in ZIKV+
vs ZIKV− or Mock moDCs. e Heat map of the relative expression of selected genes
implicated in lipidmetabolism. fqRT-PCRanalysisof the relative expressionof fatty
acid (FASN and SCD) and cholesterol (DHCR7 andHMGCR) synthesis genes. Data are
presented as the mean± SD. n = 4 (b) and n = 3 (f) biologically independent
experiments. Symbols represent moDCs derived from individual donors. *P <0.05,
**P <0.01, ***P <0.001 by one-way ANOVA with Tukey’s correction for multiple
comparisons. Source data and exact P values are provided as a Source Data file.
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Squalene Epoxidase (SQLE) (Human Protein Atlas; proteinatlas.org),
which demonstrated lower expression of these genes in immune tis-
sues (bone marrow, lymph nodes, spleen) and higher expression in
brain and liver (Fig. 2e)22. Notably, although lipid gene expression was
high in liver and brain, resident immune cells in these tissues, such as

Kupffer cells and microglia, respectively, expressed lower levels of
HMGCR and FASN than did other cell types from those tissues (e.g.,
hepatocytes, neurons) (Supplementary Fig. 3c). Thus, ZIKV infection
regulates the expression of lipid-related genes in a cell type-specific
manner, and upregulation of lipid-related genes may be of particular
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importance to ZIKV infection of immune cells, in which baseline
expression of these genes is low.

We next investigated whether regulation of lipid metabolism
genes inmoDCs is ZIKV strain-specific by examining cells infectedwith
ZIKV-EGFP-BeH819015 or ZIKV PRVABC5923,24. qRT-PCR analysis
showed that DHCR7, SCD, and HMGCR mRNA levels were significantly
increased in moDCs infected with ZIKV-EGFP-BeH819015 (Fig. 2f) or
ZIKV PRVABC59 (Fig. 2g) compared with Mock and ZIKV− moDCs, as
was observed following infection with ZIKV SD001. Analysis of
unsortedmoDCs containing amixtureof ZIKV+ andZIKV− cells did not
reveal significant upregulation of these genes (Fig. 2f and Supple-
mentary Fig. 3d). These data demonstrate that lipid metabolism-
related genes are induced by infection of moDCs with multiple Asian
lineage strains of ZIKV. Further, they highlight the importance of
analyzing isolated ZIKV+ cells to increase the sensitivity of detection of
virally regulated host genes.

To determine if induction of lipid gene upregulation in moDCs
by ZIKV was specific or shared with other closely related flaviviruses,
we performed similar experiments withmoDCs infected with a DENV
serotype 2 (DENV2) clinical strain UIS353. Similar to ZIKV, DENV2
infection of moDCs peaked at 24 h pi and induced secretion of
infectious viruses, as assessed by flow cytometry of 4G2+ cells and
FFA of culture supernatants (Supplementary Fig. 3e, f). Indeed, ZIKV
andDENV2 infection ofmoDCs derived from up to 6 donors revealed
no significant differences in either percent infection or infectious
virus secretion at any time point (Supplementary Fig. 3e–g). Despite
similar efficiencies of ZIKV and DENV to infect moDCs, DENV infec-
tion failed to upregulate the expression of most lipid biosynthesis-
related genes, as detected by RNA-seq of ACACA, FASN, SCD,HMGCR,
and SQLE in DENV+, DENV−, and Mock moDCs at 24 h pi (Fig. 2h).
These results were confirmed by qRT-PCR analysis of SCD andDHCR7
mRNA levels (Fig. 2i). Collectively, these results indicate that lipid-
related gene expression in moDCs is stimulated by several strains of
Asian lineage ZIKV, but not by DENV2 UIS353, suggesting that this
mechanism may be of particular importance for ZIKV infection of
immune cells.

SREBP TFs control lipid-related gene transcription in ZIKV-
infected moDCs
We next sought to identify TFs involved in the induction of lipid
metabolism genes in ZIKV-infected moDCs by using csRNA-seq19, a
highly sensitive method for analysis of gene regulatory networks that
quantifies changes in transcription initiation at both promoters and
distal regulatory elements19. In contrast to analysis of mRNA levels,
which may be altered by changes in synthesis, processing, or degra-
dation, csRNA-seq captures active transcription initiation events
occurring at the time of analysis, similar to methods that quantify
nascent RNAs25. However, unlike the latter methods, csRNA-seq
requires only total RNA, not intact nuclei, and is therefore compa-
tiblewith cell fixation. To identify genes anddistal regulatory elements
undergoing active transcription in fixed ZIKV+, ZIKV−, and Mock
moDCs (Fig. 3a), we performed csRNA-seq and identified ~76,701
transcription start regions (TSRs) comprised of one or more closely
spaced transcription start sites (TSSs). Of these TSRs, ~37% were in
promoters and 63% were in distal regulatory elements. As expected,
only the ZIKV+moDCs contained csRNA-seq reads aligning to the ZIKV
genome (Supplementary Fig. 4a). ZIKV− moDCs contained 2494 and
3096 upregulated (FC > 2, FDR <0.01) TSRs compared with Mock or
ZIKV+ moDCs, respectively (Fig. 3b). In comparison, ZIKV+ moDCs
contained far fewer upregulated TSRs: 395 compared with Mock and
595 compared with ZIKV− moDCs, and of these, 121 were overlapping
(Fig. 3b). TSRs in the promoter proximal region (−500bp to +500 bp
from GRCh38/hg38 annotated TSS) are more reliably linked to the
expressionof a specific gene than are distalTSRs. TSRs in thepromoter
proximal regions of 48 genes were upregulated in ZIKV+ compared

with both ZIKV− and Mock moDCs. These genes were highly enriched
for pathways related to SREBP-activatedgene expression and fatty acid
metabolism (Fig. 3c),which is consistentwith the crucial roleplayedby
SREBPs in regulating the expression of genes involved in lipid
biosynthesis26. De novo motif analysis demonstrated that TSSs speci-
fically induced by ZIKV infection were enriched for ETS, enhancer box
(E-box), and CCAATmotifs (Fig. 3d). ETS motifs can be bound by PU.1,
a lineage-determining TF that positively regulates genes in myeloid
lineages; SREBPs are basic helix–loop–helix leucine zipper (bHLH-LZ)
TFs that can bind to E-box and sterol regulatory element (SRE) motifs
(Fig. 3d)27,28; and the CCAAT motif can be bound by Nuclear Tran-
scription Factor Y (NFY), a TF known to cooperate with SREBPs to
activate transcription (Fig. 3d)29–31. Upregulation of promoter proximal
TSRs occurred broadly across lipid biosynthetic genes and was gen-
erally specific to ZIKV+ cells (Fig. 3e). RNA-seq and csRNA-seq
demonstrated increased read density over SCD and HMGCR exons
and TSSs, respectively (Fig. 3f and Supplementary Fig. 4b). This sug-
gests that the increases in lipid gene transcripts observed in ZIKV+
moDC are at least partly due to upregulation of nascent transcription.
Increased TSSs in TSRs associated with the SCD and HMGCR promoter
proximal region were located directly downstream, ~50–200 bp, from
E-box motifs, which suggests that TF binding to these motifs con-
tributes to the initiation of transcription at these sites (Fig. 3f and
Supplementary Fig. 4b). These results support thefindings detectedby
RNA-seq analysis and indicate that ZIKV infection of moDCs induces
transcription at only a small number of promoters and enhancers
(Supplementary Figs. 2b and 3b), and that the response is highly
enriched for genes involved in lipid synthesis and involves TF motifs
implicated in SREBP-dependent regulation (Fig. 3c–e).

In addition to SREBP TFs, X-Box Binding Protein 1 (XBP1) induces
transcription of selected lipid metabolism-related genes in response
to endoplasmic reticulum (ER) stress32. During ER stress, the endor-
ibonuclease domain of inositol-requiring enzyme 1α (IRE1α) initiates
nonconventional cytoplasmic splicing of unspliced XBP1 (uXBP1) to
spliced XBP1 (sXBP1), which is then translated into the active XBP1
TF33. XBP1 binds ER stress response element (ERSE) or unfolded
protein response element (UPRE) motifs to induce expression of
stress response genes32. Although we did not identify upregulated
ERSE or UPREmotifs in ZIKV+moDCs by csRNA-seq, previous studies
have shown that ZIKV can promote infection by activating IRE1α and
XBP134,35. To determine if this occurs during ZIKV infection ofmoDCs,
we performed qRT-PCR to quantify active sXBP1 and inactive uXBP1
in Mock, ZIKV− and ZIKV+ moDCs at 24 h pi. ZIKV infection did not
alter XBP1 splicing in moDCs, while treatment with the ER stress
inducer tunicamycin increased and decreased sXBP1 and uXBP1
mRNA levels, respectively, as expected (Supplementary Fig. 4c, d). In
response to ER stress, XBP1, ATF6, and ATF4 TFs induce expression
of genes involved in ER stress resolution (PPP1R15A), ER-associated
degradation (EDEM1, HERPUD1), as well as ER chaperones (HSPA5,
DNAJB9, PDIA3, DNAJB11) in addition to XBP132. ER stress genes were
upregulated in moDCs in response to infection with DENV2, but not
ZIKV (Supplementary Fig. 4e), identifying another difference in the
outcomes of infection of moDCs by these flaviviruses. As ZIKV
infection did not induce XBP1 splicing, transcription initiation at
ERSE or UPREmotifs, or expression of ER stress response genes XBP1
is unlikely to be responsible for the observed induction of lipid
metabolism genes in response to ZIKV infection. Thus, SREBPs are
the TFsmost likely to upregulate the expression of lipid metabolism-
related genes in ZIKV-infected moDCs.

ZIKV infection increases SREBP recruitment toupregulated lipid
metabolism genes
To determine whether or not ZIKV infection activates SREBP TFs in
moDCs, we performed ChIP-seq on Mock, ZIKV+, and ZIKV− cells.
A total of 16,800 SREBP-binding sites were identified, of which 187
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were specifically upregulated (FC > 1.5, FDR < 0.1) in ZIKV+ compared
with ZIKV− or Mock moDCs. Of these, 35 were upregulated in ZIKV+
compared with both ZIKV− and Mock cells, whereas no SREBP-
binding sites were similarly increased in ZIKV− cells (Fig. 4a). The 35
genes identified as specific to ZIKV+ cells were most strongly asso-
ciated with lipid biosynthetic processes (Fig. 4b), and de novo motif
analysis of these sites showed specific enrichment for SRE motifs
(bound by SREBP TFs) and CCAAT binding motifs (bound by
NFY, which cooperates with SREBPs) (Fig. 4c). Analysis of upregu-
lated peaks showed greater increases in SREBP binding and local
transcription initiation in ZIKV+ cells compared with ZIKV− moDCs
(Fig. 4d, e). SREBP binding was increased in ZIKV+ moDCs at the-
promoters of FASN, LDLR, and DHCR7 genes overlying SRE
motifs and was associated with increased csRNA-seq TSR reads
immediately downstream of SREBP binding (Fig. 4f and Supple-
mentary Fig. 5). Analysis of all promoter proximal csRNA-seq
TSRs upregulated specifically in ZIKV+ moDCs demonstrated
increased SREBP binding immediately upstream of the TSR (Fig. 4g).
Taken together, ZIKV infection increases SREBP binding at lipid
metabolism-related genes and SREBP binding is associated with
increased downstream transcription initiation, consistent with acti-
vation of these promoters.

Inhibition of SREBP2 reduces productive ZIKV infection
of moDCs
Membrane-bound SREBP precursor proteins form a complex with
SREBP cleavage-activating protein (SCAP) in the ER (Fig. 5a)36. SCAP
binds reversibly to insulin induced gene (INSIG)−1 or INSIG-2 in the
presence of sterols, thereby retaining the inactive form of SREBPs in
the ER37. When INSIG–SCAP interactions are disrupted, the
SREBP–SCAP complex is transported in COPII vesicles to the Golgi,
where SREBPs are proteolytic cleaved by site-1 and site-2 proteases.
Proteolytic cleavage releases N-terminal SREBP fragments, which
dimerize and bind to specific DNA sequences such as SRE or E-box
motifs found near the promoters of enzymes involved in cholesterol
and fatty acid biosynthesis38. SREBP1a, the longer isoform of SREBP1,
can induce all SREBP-responsive genes, whereas SREBP2 preferentially
activates genes involved in cholesterol synthesis39.

As ZIKV infection specifically increased SREBP recruitment and
nascent transcription of lipid synthesis genes in moDCs, we hypothe-
sized that inhibition of SREBP TFs would suppress infection.
To test this hypothesis, we evaluated the effects on ZIKV infection of
N,N-dimethyl-3β-hydroxycholenamide (DMHCA), a selective liver X
receptor (LXR) modulator that has a sterol-like structure and
suppresses SREBP processing, most likely by binding to SCAP40,41.
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Incubation of uninfected moDCs with DMHCA did not significantly
affect cell viability or metabolism (Supplementary Fig. 6a), confirming
that it is not cytotoxic. Preincubation of moDCs with DMHCA 4h prior
to infection with ZIKV PRVABC59 or SD001 inhibited infection by 36%
and 47%, respectively (Fig. 5b and Supplementary Fig. 6b). DMHCA
treatment also reduced the level of intracellular virus RNA by 8-fold,
extracellular virus RNA by 86-fold, and the number of secreted infec-
tious ZIKV PRVABC59 and SD001 particles by >1000-fold and 257-fold,
respectively (Fig. 5c–e and Supplementary Fig. 6c). Comparing the
effects of DMHCA when added 4 h before or 2.5 h after ZIKV infection,
this inhibitor primarily blocks infection post-entry (Supplementary
Fig. 6d, e). Although DMHCA could inhibit virus replication, assembly,

budding, and/or egress, quantification of intracellular and extra-
cellular infectious virus particles at 24 h pi showed no significant dif-
ference betweenDMHCA- and vehicle-treatedmoDCs (Supplementary
Fig. 6f), suggesting that DMHCA does not affect secretion of viral
particles. Taken together, DMHCA inhibits ZIKV post-entry,most likely
by suppressing replication, assembly, and/or budding, rather than
egress of infectious particles.

We next examined whether DMHCA might inhibit ZIKV infection
in moDCs by interfering with the production of cholesterol and/or
fatty acids. SCD1 catalyzes the rate-limiting step in the synthesis of
monounsaturated fatty acids, such as oleic acid (OA), and is critical for
ZIKV infection of Huh7 cells, likely through production of OA35,42. In
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contrast, treatment of moDC with DMHCA and either OA or choles-
terol added 1 h after ZIKV infection revealed that exogenous choles-
terol, but not OA, fully reversed the inhibitory effect of DMHCA on
ZIKV infection (Fig. 5f and Supplementary Fig. 6g). Thus, DMHCA
inhibition of ZIKV infection ismediated, at least in part, via a reduction
in cellular cholesterol levels. To determine whether this might involve
inhibition of SREBP-mediated activation of cholesterol synthesis genes
and/or LXR-mediated stimulation of cholesterol efflux, we treated
moDCs with GW3965, a non-sterol agonist of LXR TFs, which induce
genes involved in cholesterol efflux. Treatment of moDCs with
GW3965 had no significant effect on ZIKV infection (Supplementary
Fig. 6h), suggesting that DMHCA most likely inhibits infection by
suppressing SREBP-dependent cholesterol synthesis. To test this, we
silenced SREBF1 and SREBF2, the genes encoding SREBP1 and SREBP2,
in moDCs by transfection with gene-specific siRNAs and validated
knockdown by qRT-PCR of SREBF1 and SREBF2 mRNA levels and wes-
ternblot analysis of SREBP1 and SREBP2 protein levels (Supplementary
Fig. 7a–d). Knockdownof SREBF2 reduced the production of infectious
viral particles to ~50% of control levels, whereas SREBF1 knockdown
hadnoeffect (Fig. 5g). AlthoughSREBP2 knockdowncan activate type I
IFN signaling and ISG transcription in HMDMs43, qRT-PCR analysis of
moDCs revealed that SREBF1 or SREBF2 knockdown had no effect on
expression of the ISG IFIT1 in ZIKV+ or ZIKV− moDCs (Supplementary
Fig. 7a, b). Thus, these results demonstrate a crucial role for SREBP2-
dependent cholesterol production in themechanismof ZIKV infection
of primary human moDCs.

Discussion
ZIKV represents an important pathogen that not only generates severe
sequelae of infection, but also serves as a platform to understand the
pathophysiology of neurotropic viruses. In this study, we interrogated
the mechanistic underpinnings of ZIKV infection of primary human
moDCs by leveraging a novelmethodof genomic profiling that detects
changes in host gene expression specifically in infected but not unin-
fected neighboring cells. Only 176 genes were specifically upregulated
by ZIKV infection, and among these, lipid metabolism was the most
enriched transcriptional pathway. ZIKV promoted expression of lipid
metabolism genes by increasing SREBP TF binding to and transcrip-
tional initiation of these genes. Pharmacologic or genetic inhibition of
SREBP2 decreased ZIKV infection of moDCs by limiting cellular cho-
lesterol content, which is likely to suppress ZIKV infection at the
replication, assembly, and/or budding stages. Thus, ZIKV promotes
activation of SREBP2-dependent cholesterol synthesis to infect human
moDCs, thereby revealing a novel ZIKV-specific therapeutic strategy.

Flaviviruses have evolved diverse mechanisms to hijack cellular
lipids to enhance viral entry, replication, and egress44–50. West Nile
virus infection increases cholesterol trafficking from the plasma
membrane to viral replication complexes51,52. DENV infection induces
redistribution of the FAS complex to replication sites to increase local
fatty acid production and activates lipophagy to break down lipid
droplets53–55. In contrast to the effects of ZIKV infection, DENV2-
infected moDCs did not exhibit upregulated transcription of choles-
terol and fatty acid synthesis enzymeswhen assessed at peak infection.
It is possible that DENV stimulates lipid gene transcription inmoDCs at
very early time points, similar to SCD expression in Huh7 cells42.
However, our data from Huh7.5 cells suggest that transcriptional
responses to ZIKV infection in hepatocytes, which play a central role in
lipid metabolism and express lipid biosynthesis genes at high levels,
may differ from the responses in innate immune cells. Alternatively,
like other flaviviruses, DENV may alter lipid metabolism by post-
transcriptional mechanisms, whereas ZIKV activates SREBP TFs to
increase de novo lipid synthesis.

Type I IFN and viral infection downregulates the transcriptional
activity of SREBP, in part by inhibiting its processing56–59. However, we
found that ZIKV activates SREBP TFs in infected moDCs. Our finding

may be explained by the observation that sterol and fatty acid meta-
bolic networks can modulate the functions of immune cells58,60–62.
Decreasing flux through the SREBP2 cholesterol biosynthetic pathway
can spontaneously activate type I IFN response and augment antiviral
immunity43. Our results comparing ZIKV infection in moDCs vs NPCs,
together with publicly available databases indicating that baseline
cholesterol and fatty acid expression is comparatively lower in innate
immune cells and tissues relative to non-immune cells, suggests that
maintenance of SREBP TF activity at low levels in innate immune cells
contributes to IFN and antiviral signaling. By activating SREBP TFs,
ZIKVmaynotonly induce theproduction of lipids required for the viral
replication cycle but also increase de novo cholesterol synthesis that
can suppress antiviral immune responses.

Pharmacologic agents that can inhibit SREBP activity, such as 25-
hydroxycholesterol (25HC), nordihydroguaiaretic acid, PF-429242,
AM580, and fatostatin, inhibit the activity of many viruses47,63–73. Like
25HC, DMHCA also blocks SREBP2 activation, presumably by limiting
SREBP–SCAP transport out of the ER41. In contrast with 25HC, which
appears to primarily block ZIKV entry by altering lipids in the plasma
membrane69, themajority of the antiviral activity ofDMHCAappears to
be post-entry. Thus, DMHCA and 25HCemploy distinctmechanisms to
block ZIKV infection. ZIKV infection of moDCs was inhibited by
knockdown of SREBF2, but not SREBF1, at least at the knockdown
efficiencies achieved here, which suggests that DMHCA blocks ZIKV in
part by inhibiting SREBP2 activation. A recent parallel genome-wide
CRISPR screen also identified SREBF2, but not SREBF1, as a key host
factor in SARS-CoV-2 and HCoV-OC43 infection of Cas9-expressing
Huh7.5 hepatoma cells74. Thus, SREBP2, but not SREBP1, appears to
play an important role in replication of these viruses. Whether SREBP2
is activated in a direct or indirect manner in ZIKV+ moDCs is under
investigation.

Serum from ZIKV-infected individuals contain higher than normal
levels of phospholipids, including phosphatidylethanolamine and
plasmenyl-phosphatidylethanolamine75,76. Quantitative analyses of lipid
species during ZIKV infection in multiple human cell types have iden-
tified significant alterations in fatty acids and phospholipids77,78. In
humanNPCs, ZIKV increases ceramide levels78, while inhumanplacental
explants, ZIKV infection increases cellular neutral lipids, including fatty
acids and certain phospholipids77. In both of these examples, the lipid
alterations created a favorable environment for ZIKV infection. In our
analysis, ZIKV+moDCs displayed upregulated transcription of enzymes
involved in the synthesis of both cholesterol and fatty acids, which can
independently stimulate phospholipid biosynthesis79,80. Additionally,
ZIKV infection of moDCs upregulated LPIN1, which catalyzes the con-
version of phosphatidic acid to diacylglycerol, a key precursor for the
synthesis of triglyceride, phosphatidylcholine, and phosphatidyletha-
nolamine. Thus, transcriptional upregulation of selected SREBP target
genes and phospholipid biosynthetic enzymes could contribute to the
proviral lipid changes observed in humanNPCs, placental explants, and
individuals with acute ZIKV infection.

Our infection-specific genomic profiling approach identified
ZIKV-regulated transcriptional programs by comparing responses in
pure populations of ZIKV+ vs mock-infected vs uninfected bystander
cells. The results of thepresent study, togetherwith our earlier analysis
of ZIKV infection of macrophages17, show that accurate identification
of cellular responses to viral infection can be obscured when infected
and bystander cells are analyzed together. In support of our approach,
we observed ZIKV-induced induction of DHCR7, SCD, andHMGCR only
in purified ZIKV+ cells, and not in a mixed population. Although RNA-
seq can identify the functional importance of gene expression changes
during viral infections, it is less useful for determining the TFs
responsible for those changes. We demonstrate here for the first time
that csRNA-seq can be applied to host–pathogen interactions to
identify the key regulatory TFs driving host transcriptional responses.
We further show that csRNA-seq can be performed on formaldehyde-
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fixed and FACS-sorted cells. As such, in contrast to other nascent
methods, like global run-on sequencing (GRO-seq)81 and precision run-
on sequencing (PRO-seq)82, csRNA-seq allows fixation that can inacti-
vate infectious startingmaterial as well as FACS separation of complex
populations based on cell type or infection status. This method also
requires significantly less expertize and starting material while still
identifying differentially regulated TSRs at all regulatory elements,
including promoters and enhancers, at single-nucleotide resolution,
which boosts the power to identify regulatory TFs19. These advantages
make csRNA-seq a key technique to study transcription initiation and
gene regulation in infectious diseases and other conditions involving
heterogeneous populations. Integrating transcriptional analysis of
pure populations of virally infected cells with csRNA-seq to identify
regulatoryTFs and follow-up confirmation byChIP-seq thus represents
a powerful approach to studying virally induced gene regulatory net-
works in primary human cells or tissues.

In summary, we performed unbiased genomic profiling of pure
populations of ZIKV-infected moDCs and demonstrated that ZIKV
infection upregulates a small set of genes that are highly enriched for
lipid biosynthetic enzymes. ZIKV+ cells demonstrated elevated SREBP
TF binding at lipid genes that was associated with increased nascent-
like RNA synthesis. Pharmacologic antagonism or siRNA-mediated
knockdown of SREBP2 inhibited ZIKV infection in moDCs. Thus, tar-
geting host lipid metabolism could provide antiviral therapies for
many important human pathogenic viruses that lack FDA-approved
therapies. Understanding how distinct viruses manipulate host lipids
will be critical for developing optimal lipid-targeting therapies.

Methods
Reagents
Key reagents, antibodies, primers, and probes used in this study are
listed in Supplementary Table S1.

Cell culture
BHK-21 cells (ATCC, #CCL 10) were grown in MEMα medium supple-
mented with 10% fetal bovine serum (FBS), 1% penicillin/streptomycin,
and 1% HEPES. C6/36 Aedes albopictus mosquito cells (ATCC, # CRL-
1660) were cultivated in Leibovitz’s L-15 supplemented with penicillin,
streptomycin, HEPES, and 10% fetal bovine serum (Gemini Bio-Pro-
ducts). C6/36 infection was performed in 5% fetal bovine serum. Cells
were grown at 28 °C without CO2

83,84. Huh7.5 cells were obtained from
APATH, LLC and cultured in DMEM (Invitrogen) supplemented with
10% FBS, and 1% penicillin/streptomycin. The human-induced plur-
ipotent cell line WT-126 was derived in the lab of Alysson Muotri85,86.
WT-126 cells were incubated in Minimum Essential Medium (Invitro-
gen) supplemented with 10% fetal bovine serum (HyClone Labora-
tories). To obtain NPCs, embryoid bodies (EBs) were formed by
mechanical dissociation of cell clusters and plating onto low-
adherence dishes in hESC medium without FGF2 for 5-7 days. After
that, EBs were plated onto poly-ornithine/laminin (Sigma)-coated
dishes in DMEM/F12 (Invitrogen) plus N2. Rosettes were obtained after
7 days and dissociated with Accutase and cultured on Geltrex-coated
plates in neurobasal medium supplemented with 1× B27, 1× N2, 1×
GlutaMAX, pyruvate, penicillin/streptomycin, and 20 ng/ml each EGF
and FGF. Homogeneous populations of NPCs were achieved after 1–2
passages with Accutase in the same condition. NPCs were passaged by
dissociation with Accutase. All mammalian cells were cultured in a 5%
CO2 humidified atmosphere.

Differentiation of primary human monocytes to moDCs
All uses of humanmaterial have been approved by the La Jolla Institute
Institutional Review Board (IRB), Protocol VD-057-0217, and the UCSD
IRB, Protocol 181624. All recruited volunteers provided written
informed consent. Human blood was obtained from healthy volun-
teers, deidentified, centrifuged over Histopaque without acceleration,

and brake at 300×g for 30min at 4 °C, the buffy coatwas removed and
washed once, and red blood cells were lysed with molecular grade
water.Monocytes were purified by negative selection using the human
Pan Monocyte Isolation Kit (Miltenyi Biotec) according to the manu-
facturer’s recommendations. To generate moDCs, monocytes were
seeded in six-well polystyrene plates at 1.5 × 106 cells/ml in complete
moDC medium (RPMI 1640 supplemented with GlutaMAX, 1% peni-
cillin/streptomycin, 2.5%HEPES buffer, 100 ng/ml recombinant human
granulocyte-macrophage colony-stimulating factor, and 100ng/ml
recombinant human interleukin 4 and incubated for 7 days at 37 °C.
The medium was changed every 2–3 days.

Viruses
ZIKV PRVABC59, an Asian lineage strain isolated in 2015 from an
individual in Puerto Rico87, and DENV2 UIS353, a clinical isolate col-
lected in 2004 in Bucaramanga Santander, Colombia from acute sera
from an infected patient, were obtained from the World Reference
Center for Emerging Viruses and Arboviruses. ZIKV-EGFP-BeH81901523

was provided by Dr. Tariq Rana (UCSD). ZIKV BeH819015 was isolated
from an individual in Brazil in 201588. ZIKV SD001, an Asian lineage
strain isolated by our laboratory in San Diego in 2016 from an acutely
infected individual returning from Venezuela17. ZIKV strain FSS13025,
an Asian lineage strain isolated in 2010 from a pediatric patient89, was
obtained from the World Reference Center for Emerging Viruses and
Arboviruses. All viruses were cultured using C6/36 Aedes albopictus
mosquito cells as described previously83,84 and were titrated using a
BHK-21 cell-based FFA as described previously90.

ZIKV/DENV infections
On day 7 of differentiation, moDCs were infected with ZIKV SD001,
ZIKV PRVABC59, ZIKV-EGFP-BeH819015, or DENV UIS353 at MOIs
indicated in the text. moDCs were mixed with virus, incubated for 2 h
at 37 °C, washed with phosphate-buffered saline (PBS), and then
resuspended in freshmedium and incubated for the indicated times at
37 °C. NPCs were infected as in91. Briefly, cells were plated one day
before infection and infected at a MOI of 1 for 2 h, then washed with
PBS and incubated for 24 h in supplemented Neurobasal medium
described above. Huh7.5 cells were seeded one day prior to infection,
infected at an MOI of 1 with ZIKV PRVABC59 for 2 h, washed with PBS,
and supplemented with Huh7.5 medium described above for 22
additional hours.

Separation of virally infected and uninfected cells by cell sorting
for RNA-seq, csRNA-seq, and qRT-PCR
moDCswere infectedwith ZIKV or DENV2 for 24 h atMOIs of 0.5 and 1,
respectively. Huh7.5 cells and NPCs were infected with ZIKV for 24 h at
an MOI of 1. The cells were then collected, incubated with Zombie
Violet™ Fixable Viability stain (BioLegend) for 20min at 4 °C, washed,
fixed with 4% paraformaldehyde, and permeabilizedwith 0.1% saponin
in the presence of RNasin ribonuclease inhibitor (400 U/ml). The cells
were centrifuged, resuspended in wash buffer (PBS containing 0.2%
bovine serumalbumin [BSA], 0.1% saponin, and 400U/ml RNasin), and
incubated for 5min with human Fc Blocker in staining buffer (1% BSA,
0.1% saponin, 1600U/mlRNasin) at 4 °C. The cells were then incubated
with Alexa Fluor 647-conjugated 4G2 (anti-flavivirus group antigen),
incubated for 30min at 4 °C, and centrifuged at 1000×g for 3min at
4 °C. The cells were washed in wash buffer, re-centrifuged, and finally
resuspended in sort buffer (PBS containing 0.5% BSA and 1600U/ml of
RNasin). ZIKV+, ZIKV−, DENV+, and DENV− cells were sorted using a
FACSAria (BD Biosciences) or MA900 (Sony) sorter.

RNA-seq and csRNA-seq
Sorted cellswere centrifuged at 4 °C, andRNAwas isolated from the cell
pellet RecoverAll Total Nucleic Acid Isolation Kit (Ambion, AM1975).
Starting at the protease digestion step, all steps were performed

Article https://doi.org/10.1038/s41467-022-33041-1

Nature Communications |         (2022) 13:5341 10



according to the manufacturer’s recommendations with the following
exceptions. Cells were incubated indigestion buffer supplementedwith
RNasin Plus for 3 h at 50 °C. After in-column DNase treatment, RNAwas
eluted and the quality was determined using BioAnalyzer Eukaryote
Total RNA Pico Chip. RNA libraries were generated using the TruSeq
Stranded Total RNA-seq Kit (Illumina) according to the manufacturer’s
instructions, and then single-end sequenced for 51 cycles on an Illumina
HiSeq 2000 or NextSeq 500 according to the manufacturer instruc-
tions. csRNA-seqwas performed as previously described19. Briefly, small
RNAs of ~20–60 nucleotides were size selected with generous spacing
from >1 µg of total RNAwith generous spacing on a 15% acrylamide, 7M
urea, and 1× TBE gel (Invitrogen EC6885BOX), eluted, and precipitated
overnight at −20 °C. Because RNA fragmentation occurs with de-
crosslinking, input libraries were generated to eliminate potential false
positives andensure accurateTSSpeak calling. csRNA-seq librarieswere
twice cap selected prior to decapping and libraries were generated as
described above. Input libraries were treated with the RppH pyropho-
sphatase (NEB M0356) prior to adapter ligation to include the whole
repertoire of small RNAs with 3′-OH. Samples were quantified by Qbit
(Invitrogen) and sequenced using the Illumina NextSeq 500 platform
using 75 cycles of single-end sequencing according to the manu-
facturer’s instructions.

Separation of ZIKV+ and ZIKV− cells by cell sorting for ChIP-seq
moDCs were crosslinked by incubation at room temperature with
4mM disuccinimidyl glutarate in PBS for 30min followed by 1% for-
maldehyde for 15min, and then quenchedwith0.125Mglycine.moDCs
were prepared for cell sorting as described above except that RNasin
was replaced with 1× cOmplete protease inhibitors (Roche) in all buf-
fers. After sorting, the cell populations were washed, divided into
5 × 105 cell aliquots, centrifuged, snap-frozen, and stored at −80 °C.

SREBP ChIP-seq
Samples of 5 × 105 cells were resuspended on ice in 130 µl RLNR1 lysis
buffer (20mM Tris/HCl pH 7.5, 150mM NaCl, 1mM EDTA, 0.5mM
EGTA, 0.1% SDS, 0.4% sodium deoxycholate, 1% NP-40 Alternative,
0.5mM DTT, and 1× protease inhibitor cocktail), and transferred to
microtubes with an AFA Fiber (Covaris, MA). All subsequent steps
were performed at 4 °C. Chromatin was sheared by sonication in a 96
Place microTUBE Rack (Covaris #500282) using a Covaris E220
focused-ultrasonicator (Covaris) for 20 cycles with the following
settings: time, 60 s; duty, 5; PIP, 140; cycles, 200; amplitude, 0.0;
velocity, 0.0; dwell, 0.0. Samples were recovered and spun at max-
imum speed for 10min and the pellet was discarded. An aliquot of 1%
of the sample volume was reserved as DNA input control and stored
at −20 °C, and the remaining supernatant was transferred to PCR
strips and brought up to a volume of 200 µl using RLNR1 lysis buffer.
To prepare Ab-coupled beads for ChIP, protein A/GDynabeads (20μl
per sample) were washed twice with 1ml 0.5% BSA in TET/0.1%
(10mMTris-HCl, pH8, 1mMEDTA, 0.1% Tween 20), and resuspended
in the same buffer. Anti-SREBP Abs (Santa Cruz Biotechnology sc-
8984X, Thermo Fisher Scientific PA1-337, R&D Systems AF7119) were
added to the beads and rotated for 1 h at RT. The supernatant was
then removed, and the Dynabeads were collected using a magnet,
washed once with 0.1% BSA in TET/0.1%, and resuspended in 10 µl
RIPA buffer per sample. For ChIP, 10 μl of prepared Ab-Dynabeads
was added to each sample and rotated overnight at 4 °C. The beads
were then washed 3 times with Wash Buffer 1 (20mM Tris-HCl, pH
7.4, 150mM NaCl, 2mM EDTA, 0.1% SDS, 1% Triton X-100), three
times with Wash Buffer 3 (10mM Tris-HCl, pH 7.4 250mM LiCl, 1 mM
EDTA, 1% Triton X-100, 0.7% sodiumdeoxycholate), 3 timeswithTET/
0.2% (as above except 0.2% Tween 20), and once with TE-NaCl
(10mM Tris-HCl, pH 8, 1mM EDTA, 50mM NaCl). Finally, Dynabeads
were resuspended in 25 μl TT (10mM Tris-HCl, pH 8, 0.05% Tween
20). Input samples were resuspended in 25 μl TT and libraries were

generated in parallel with ChIP samples. Library NEBNext End Prep
and Adaptor Ligation were performed using NEBNext Ultra II DNA
Library Prep kit (New England BioLabs) according to the manu-
facturer’s instructions with barcoded adapters (NextFlex, Bioo Sci-
entific). Libraries were incubated with RNase A and proteinase K at
55 °C for 1 h and then at 65 °C overnight. Libraries were PCR amplified
for 14 cycles with NEBNext High Fidelity 2X PCR MasterMix (New
England BioLabs, NEBM0541). Libraries were size selected for
225–350 bp fragments by gel extraction (10% TBE gels, Life Tech-
nologies) and were single-end sequenced for 51 cycles on an Illumina
HiSeq 4000 (Illumina, San Diego, CA).

Drug treatments
moDCs were incubated with the indicated concentrations of N,N-
dimethyl-3β-hydroxycholenamide or ethanol vehicle for 4 h before or
2.5 h after ZIKV infection. GW3965 at 1μMwas added tomoDCs at 2.5 h
after infection. Cholesterol–methyl-β-cyclodextrin at 25μg/ml or
OA–BSA at 75μMor 300μMwere added at 1 h post-infection together
withDMHCA. After addition, the compoundswere present throughout
the 24 h infection period.

qRT-PCR of unspliced and spliced XBP1
After 24 h infection, moDCs were sorted and total RNA was isolated as
described above. As a positive control, moDCs were incubated with
tunicamycin (2μg/ml) for 5 h to induce ER stress. Total RNA was iso-
lated from themoDC populations using the ZymoQuick RNA isolation
kit with in-column DNase digestion according to the manufacturer’s
instructions. RNAwas reverse transcribedusing a Bio-Rad iScript cDNA
synthesis kit. Quantitative PCR was performed with iTaq Universal
SYBR Green Supermix (Bio-Rad) and analyzed on an Applied Biosys-
tems 7300 Real-Time PCR system (Invitrogen). qPCR primers for
unspliced (u) XBP1, spliced (s) XBP1, and total (t) XBP1 (common region
of s/uXBP1) can be found in supplementary table 492.

Western blot analysis
Equal numbers of moDCs cells were collected for each condition and
were lysed using RIPA buffer with the presence of cOmplete protease
inhibitors (Roche). Samples were then heated to 70 °C in LDS sample
buffer (Invitrogen) for 10min. Protein lysateswere separatedby Bolt 4-
12% Bis-Tris plus gel, electrophoretically transferred to a PVDF mem-
brane, and immune-blotted at 4 °C overnight with antibodies (1:1000)
against SREBP1, SREBP2, GAPDH. Membranes were then incubated
with an HRP-conjugated second antibody (Rabbit or Goat, 1:10,000)
for 1 h at room temperature followed by detection by chemilumines-
cence (Bio-Rad). Images were collected by Biorad Chemidoc MP ima-
ging system and analyzed with Image Lab 6.0.1.

MTS cell proliferation/cytotoxicity assay
Approximately 100,000moDCs were plated in a sterile 96-well round-
bottom culture in 50 μl moDC medium. Then 50μl of moDC media
containing 2× concentration of lipid inhibitor or vehiclewas added and
gentlymixed. Cells were incubated at 37 °C. After 28 h, 20μl of reagent
containing 3-(4,5-dimethylthiazol-2-yl)−5-(3-carboxymethoxyphenyl)
−2-(4-sulfophenyl)−2H-tetrazolium (MTS) (Promega, CellTiter 96
Aqueous One Solution Cell Proliferation Assay System G3582) was
added, incubated for 1 to 4 h at 37 °C, and absorbance measured
(490 nm) using a plate reader (uQuant, Bio-Tek Instruments, Inc.).

siRNA-mediated gene silencing
Transfection mixes of SMARTpool ON-TARGETplus SREBF1-targeting,
SREBF2-targeting, or Non-targeting Pool siRNAs were prepared using
the StemFect RNA Transfection kit (Reprocell) according to the man-
ufacturer’s instructions and incubated for 20min at room tempera-
ture. moDCs were then reverse transfected as previously described93.
Briefly, aliquots of transfectionmix (150 pmol siRNA/well) were placed
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on one side of the well in six-well plates and 1ml of moDCs
(1.5 × 106/ml) was added directly onto the transfection mix and incu-
bated at 37 °C for 4 h. Transfection was stopped by addition of 2ml of
complete medium (RPMI 1640 supplemented with GlutaMAX, 1%
penicillin/streptomycin, 2.5% HEPES buffer, 100 ng/ml recombinant
human granulocyte-macrophage colony-stimulating factor, and
100ng/ml recombinant human interleukin 4) and the cells were incu-
bated for an additional 24 h before viral infection.

Flow cytometry of infected moDCs and neutral lipids in moDCs
Following viral infection, moDCs were collected, stained with Zombie
Violet™ Fixable Viability stain (BioLegend), washed, fixed, and per-
meabilized using BD Cytofix/Cytoperm reagents, and then intracellu-
larly stained with FITC- or AF647-conjugated 4G2 mAb. Cells were
washed twice with BD Perm/Wash Buffer and resuspended in FACS
buffer. To quantify neutral lipid content, moDCs were collected,
stained with BODIPY 493/503, and then treated as described above.
The percentage uninfected and infected cells and the neutral lipid
content in uninfected and infected cells were quantified by flow
cytometry using a LSRII flow cytometer (BD Biosciences) or MA900
cell sorter (Sony) and Flowjo 10.8 software.

Quantification of intracellular and extracellular virus produc-
tion by FFA
To quantify intracellular particles, moDCs were collected, suspended
in PBS, lysed by 4 cycles of freeze-thaw in dry ice and a 37 °C water
bath, and centrifuged. The supernatants were collected and subjected
to FFA. To quantify extracellular particles, the culture supernatants
were collected, clarified by centrifugation, and subjected to FFA
directly. FFA was performed using BHK-21 cells as previously
described90. Briefly, BHK-21 cells wereplated (2.0 × 105 cells/well) in 24-
well plates and incubated overnight at 37 °C. Undiluted or 10-fold
serially diluted samples were added to the cells and the plates were
incubated for 1 h at 37 °C. The supernatant was then removed, and the
cell monolayers were overlaid with CMC-medium and incubated at
37 °C for 3 days. The cells were then fixed, permeabilized, incubated
with 4G2mAb, and incubatedwith horseradish peroxidase-conjugated
goat anti-mouse IgG secondary Ab. Finally, True-Blue peroxidase
substrate was added to the cells and foci were counted. Virus levels
were expressed as focus-forming units per ml (FFU/ml).

qRT-PCR for quantification of human and viral RNA
Total RNA was isolated from unfixed moDCs using the Quick RNA
isolation kit (Zymo Research) with in-column DNase digestion
according to the manufacturer’s instructions. RNA from fixed FACS-
isolated moDCs was prepared as described above for RNA-seq
experiments. RNA was reverse transcribed using iScript cDNA Synth-
esis kit (Bio-Rad), and qPCR was performed with iTaq Universal SYBR
Green Supermix (Bio-Rad) on an Applied Biosystems 7300 Real-Time
PCR system (Invitrogen). Specific primers are listed in Table S1.

NGS data preprocessing
FASTQ files from sequencing experiments were mapped to the UCSC
genome build GRCh38/hg38 (for human) and access KU955593.1 (for
the ZIKV genome). FASTQ files for csRNA-seq experiments were first
trimmed to remove the 3′ sequencing adapter using homerTools
(homerTools trim −3 AGATCGGAAGAGCACACGTCT -mis 2 -minMat-
chLength 4 -min 20). STAR with default parameters was used to map
RNA-seq and csRNA-seq data. Bowtie2 with default parameters was
used to map ChIP-seq data. HOMER was used to convert uniquely
aligned reads into “tag directories” for further analysis.

Integrated NGS data analysis
RNA-seq or csRNA-seq reads aligned to a combined GRCh38/hg38
and ZIKV genome (KU955593.1) were used to calculate the

percentage of reads aligned to the ZIKV genome: ([# reads aligned to
ZIKV genome / # aligned reads to hg38+ZIKV genomes] × 100 −
average numbers of reads aligning to ZIKV genome in mock-infected
cells). RNA-seq reads aligned to the GRCh38/hg38 assembly were
used to generate gene expression fragments per kilobase of exon per
million mapped fragments (FPKM) values using HOMER94. To mea-
sure gene expression, HOMER’s analyzeRepeats.pl utility was used to
quantify reads in transcript exons defined by GENCODE. Differen-
tially expressed genes and regularized logarithm (rlog) normal-
ization values for each gene were calculated using DESeq2 while
accounting for individual donors in the design matrix. csRNA-seq
reads aligned to the GRCh38/hg38 assembly from three replicates
per condition (mock, ZIKV−, ZIKV+) were combined and TSRs iden-
tified using HOMER findcsRNATSS.pl with the corresponding com-
bined input and RNA-seq tag directories. SREBP ChIP-seq peaks were
called using tags from three replicates per condition with input DNA
as background using HOMER’s getDifferentialPeaksReplicates.pl
using the “-style factor” (fivefold enrichment over background and
FDR < 0.001). Differentially regulated TSRs/peaks between condi-
tions were calculated by first merging features from each condition
(or assay) into the union of nonredundant features usingmergePeaks.
Then raw read counts associated with each feature across all
experiments was quantified with annotatePeaks.pl and significantly
differentially enriched TSRs/peaks determined by DESeq2 account-
ing for donor-matched samples in the design matrix (csRNA-seq: >2-
fold, <0.01 FDR, ChIP-seq >1.5-fold, <0.1 FDR)95. Known motif
enrichment and de novo motif discovery were performed using
HOMER’s findMotifsGenome.pl using default parameters. When ana-
lyzing csRNA-seq TSRs, motifs were searched from −200 to +50
relative to the primary TSS of a TSR (i.e., site with the highest csRNA-
seq read count). SREBP peaks were analyzed from −50 to +50 relative
to the center of the peaks, reflecting the locations where TFs
and collaborating TF motifs are located. Normalized histograms,
heatmaps, and read count totals at TSS clusters or ChIP-seq peaks
were calculated using HOMER’s annotatePeaks.pl and reported rela-
tive to a total of 107 uniquely aligned reads per experiment. Func-
tional enrichment calculations were performed on differentially
expressed genes (RNA-seq), promoter proximal (±500 bp from TSS)
csRNA-seq TSRs or SREBP ChIP-seq peaks using Metascape96. Fold-
change values were clustered using Cluster 3.097 and visualized using
Java TreeView98. For comparison of gene expression in different cell
types under mock and ZIKV+ conditions, strand-specific FPKM were
calculated using HOMER’s analyzeRepeats.pl with the following
options -condenseGenes -count exons, and log2 transformed after
adding a pseudocount of 1 to reduce the variance associated
with fluctuations in low expression values and to avoid taking the
log of zero.

Gene expression in human tissues and cell types
Expression of lipid metabolism genes in human tissues and cell types
was determined using Human Protein Atlas version 21.0 (proteinatla-
s.org) and GTEx Analysis Release version 8 (gtexportal.org)22,99.

Statistical Analysis
All data were analyzed and graphs were plotted using Excel or Prism
8.4.3 (GraphPad Software). Data were compared using one-way ana-
lysis of variancewith indicated correction for multiple comparisons or
Student’s t test, as stated in the legends. Data are presented as the
mean ± standard deviation (SD) of cells isolated from at least three
individuals and/or at least three experiments. A P value <0.05 was
considered significant.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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Data availability
The RNA-seq, csRNA-seq, and ChIP-seq data described in this manu-
script have been deposited at National Center for Biotechnology
Information Gene Expression Omnibus (GEO) under the accession
codes GSE161783 and GSE118305. The processed qRT-PCR, flow cyto-
metry, western blot, and FFU data generated in this study are provided
in the Source Data file. Source data are provided with this paper.
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