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Abstract

Neurofeedback training using real-time functional magnetic resonance imaging

(rtfMRI-NF) allows subjects voluntary control of localised and distributed brain activ-

ity. It has sparked increased interest as a promising non-invasive treatment option in

neuropsychiatric and neurocognitive disorders, although its efficacy and clinical sig-

nificance are yet to be determined. In this work, we present the first extensive review

of acquisition, processing and quality control methods available to improve the qual-

ity of the neurofeedback signal. Furthermore, we investigate the state of denoising

and quality control practices in 128 recently published rtfMRI-NF studies. We found:

(a) that less than a third of the studies reported implementing standard real-time

fMRI denoising steps, (b) significant room for improvement with regards to methods

reporting and (c) the need for methodological studies quantifying and comparing the

contribution of denoising steps to the neurofeedback signal quality. Advances in

rtfMRI-NF research depend on reproducibility of methods and results. Notably, a sys-

tematic effort is needed to build up evidence that disentangles the various mecha-

nisms influencing neurofeedback effects. To this end, we recommend that future

rtfMRI-NF studies: (a) report implementation of a set of standard real-time fMRI den-

oising steps according to a proposed COBIDAS-style checklist (https://osf.io/kjwhf/),

(b) ensure the quality of the neurofeedback signal by calculating and reporting

community-informed quality metrics and applying offline control checks and (c) strive

to adopt transparent principles in the form of methods and data sharing and support

of open-source rtfMRI-NF software. Code and data for reproducibility, as well as an

interactive environment to explore the study data, can be accessed at https://github.

com/jsheunis/quality-and-denoising-in-rtfmri-nf.
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1 | INTRODUCTION

Real-time fMRI: Real-time functional magnetic resonance imaging

(rtfMRI) involves the dynamic processing, analysis and visualisation of

a subject's changing blood oxygen level-dependent (BOLD) signal and

related information while the subject is inside the MRI scanner. It was

initially proposed and developed by Cox, Jesmanowicz, and

Hyde (1995) as a tool for real-time data quality monitoring, functional

activation mapping and interactive experimental design. Since its

inception this technology has expanded to include a variety of soft-

ware tools that allow pre-experimental and pre-surgical functional

localisation (Binder, 2011; Hirsch et al., 2000), real-time functional

activity mapping (as is available in the software accompanying MRI

systems from all major vendors), brain computer interfacing

(e.g. Sorger, Reithler, Dahmen, & Goebel, 2012), brain state decoding

(LaConte, 2011), real-time neurofeedback (Sitaram et al., 2017) and

interactive demonstrations for educational purposes (Weiskopf

et al., 2007).

BOLD self-regulation through neurofeedback: Neurofeedback train-

ing as an application of real-time fMRI (rtfMRI-NF) has gained much

interest in the past decade due to its ability to help subjects achieve

learned regulation of regional brain activation, as was initially demon-

strated by Yoo and Jolesz (2002) in a motor task experiment. Inter-

ested readers are referred to Sitaram et al. (2017) for a recent review

of rtfMRI-NF functionality, technology and applications. Shortly, by

feeding a representation of quantified brain activity back to the sub-

ject in the scanner in near-real-time, and asking subjects to increase

or decrease the presented metric by adopting one of several possible

training strategies (or none at all), subjects have been able to regulate

their own BOLD signal. This is evidenced by increased activation

levels and cluster sizes in the areas of interest measured over multiple

training sessions (see, e.g. deCharms, 2007).

Clinical applications: In further steps, learned brain activity regula-

tion through neurofeedback training has been used in neuropsycho-

logical and psychiatric disorders to test for behavioural correlates,

aiming to investigate non-invasive rtfMRI-NF as an alternative to

more invasive treatment modalities like pharmacological interventions,

surgery or deep brain stimulation. Several studies have reported sig-

nificantly beneficial behavioural, symptomatic or experiential changes

after rtfMRI-NF training in a variety of clinical or other populations,

including major depressive disorder (Linden et al., 2012), tinnitus

(Emmert et al., 2017), attention deficit and hyperactivity disorder

(Alegria et al., 2017), obesity (Spetter et al., 2017) and nicotine crav-

ings (Canterberry et al., 2013).

Criticism and open questions: In order for rtfMRI-NF to show

proven clinical utility and efficacy, reproducibility of methods, of

results and of inferences are imperative (Goodman et al., 2016;

Munafò et al., 2017). Evidence for widespread and clinically significant

effects of rtfMRI-NF training has however been called into question

by recognising a lack of replication studies (Sulzer et al., 2013), of

blinded placebo-controlled study designs (Thibault, MacPherson,

Lifshitz, Roth, & Raz, 2018) and of reproducible methods (Stoeckel

et al., 2014). As an example, deCharms et al. (2005) showed in a pilot

study that 8 out of 12 chronic pain patients (total N = 36 subjects)

could learn to regulate the BOLD response in the rostral anterior cin-

gulate cortex, leading to significant changes in pain perception in this

group.

However, their subsequent study assessing adverse events asso-

ciated with repeated fMRI scanning (Hawkinson et al., 2012) found no

significant changes with regards to baseline in adverse event reporting

in pain patients undergoing multiple rtfMRI neurofeedback sessions

(69 out of total N = 114 patients). This apparent inability to replicate

pilot findings in a larger sample size, which featured as a prominent

discussion at the first Swiss rtfMRI Neurofeedback Conference

(Decharms, 2012), suggests the need to re-evaluate current small-

sample positive findings and incentivise the publication of null results,

so as to counteract publication bias in neurofeedback literature.

Ongoing debate in the field still focuses on important and unan-

swered questions and challenges, many previously highlighted by Sul-

zer, Haller, et al. (2013). For example: How is neurofeedback learning

and its success quantified, and is this quantification consistent enough

to allow generalisation across studies? How do outcomes of active

neurofeedback training perform compared to that of alternative and

conventional treatment methods, and compared to outcomes of sham

neurofeedback? Are perceived clinical benefits specific to certain

populations, individual learning strategies, feedback calculation, feed-

back display, study design, data analysis, or other sources of variance?

Widespread evidence to support specific, robust and reproducible

findings for these research questions is still lacking, which should be

seen as an incentive to improve methods reproducibility and to con-

duct large-scale replication studies investigating specific effects of

rtfMRI-NF.

Methods reproducibility and quality: Central to several aspects

influencing the reproducibility of both methods and results in rtfMRI-

NF is the concept of quality, which pertains to real-time fMRI data,

to the neurofeedback signal and to methods reporting. Take the

assumption that the neurofeedback signal calculated from the real-

time fMRI data aims to represent brain activity relating to the sub-

ject's ongoing cognitive processes (Koush, Zvyagintsev, Dyck,

Mathiak, & Mathiak, 2012). It is well-known that the resting state or

task-induced BOLD signal contains several scanner-, sequence-,

subject- or experiment-related nuisance signals and artefacts

(Caballero-Gaudes & Reynolds, 2017; Liu, 2016; Murphy, Birn, &

Bandettini, 2013; Power et al., 2014). If such confounding factors are

not sufficiently accounted for during acquisition or minimised

through real-time processing, the feedback signal will remain con-

founded and will thus not sufficiently reflect brain activity of interest.

This may lead to sham learning or to a nuisance signal being trained

instead of the subject's BOLD response (Koush et al., 2012;

LaConte, 2011), which affects reproducibility of results and infer-

ences. Similarly, doubts about the quality of the feedback signal can

exist due to the as yet unknown influences of feedback presentation

(e.g. the widely used thermometer display vs. a more naturalistic dis-

play or virtual environment) and feedback signal calculation

(e.g. temporal smoothing parameters, signal scaling, and the way in

which percentage signal change is calculated). Few studies in this
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field have meticulously investigated such detail. This, added to the

lack of methods standardisation and best practices for methods

reporting, hinders reproducibility and generalisability.

Research goal: The above-mentioned open questions, methodo-

logical uncertainties and lack of standardisation should guide efforts

to move towards improved reproducibility in the field of fMRI

neurofeedback. Specifically, a systematic effort is needed to build up

evidence that disentangles neurofeedback training outcomes from

placebo effects, that clarifies the efficacy of neurofeedback compared

to existing treatments, and that demonstrates the specificity of

neurofeedback effects while accounting for other sources of variance.

To support this effort, this work reviews the methods currently

available to the researcher to improve the data quality and signal-to-

noise ratio (SNR) of the rtfMRI-NF signal and of real-time fMRI data

and studies in general. Specifically, we investigate three research

questions:

1. What are challenges to effective denoising and improving quality

in rtfMRI-NF?

2. Which steps have recent rtfMRI-NF studies taken to improve data

quality and SNR?

3. Which methods for denoising data and improving data quality and

SNR are available to the researcher studying rtfMRI-NF?

To preface addressing these questions, a background on the

BOLD signal and its confounds and on the details of the calculated

neurofeedback signal is provided. Although both acquisition and

processing methods are covered in this work, focus is given to the lat-

ter. We conclude with a general discussion and future recommenda-

tions based on the reviewed literature.

2 | BACKGROUND

2.1 | The BOLD signal, noise, artefacts and
correction methods

The noisy BOLD signal: The T2*-weighted BOLD signal typically

acquired using standard gradient-echo echo-planar imaging (EPI) in

fMRI represents hemodynamic and metabolic responses, through a

neurovascular coupling, to alterations in neuronal activity (Ogawa,

Menon, Kim, & Ugurbil, 1998). It results from a complex interaction

between neural metabolism, blood oxygen concentration (specifi-

cally the local concentration of paramagnetic deoxyhemoglobin),

cerebral blood flow (CBF) and cerebral blood volume (CBV)

(Logothetis, 2003).

Given its dependence on neuronal metabolism, cerebral blood

flow/volume and the inherent properties of MRI (and the EPI

sequence in particular), it should be no surprise that the BOLD signal

has several confounds and remains difficult to isolate as a proxy for

true neuronal activity (Diedrichsen & Shadmehr, 2005). fMRI is typi-

cally plagued by a variety of noise fluctuations and artefacts originat-

ing either from the subject, from the experimental conditions, from

the inherent properties of the acquisition sequence, or from the scan-

ner and its (interfering) environment.

Denoising the BOLD signal: Much research effort has been given

to ridding fMRI of noise. These efforts can be divided into two main

categories: acquisition and data processing. Acquisition methods typi-

cally entail pulse sequence alterations or MRI parameter choices that

improve the BOLD sensitivity, increase SNR, or preempt and mini-

mise the effects of artefacts that may occur during scanning. Data

processing methods to remove noise have been widely reported and

typically take the form of model-based or model-free methods.

Examples of model-based denoising or artefact removal steps in fMRI

pre-processing pipelines include: slice-time correction, 3D volume

realignment, frequency band filtering, spatial smoothing, distortion

correction, outlier removal/scrubbing (Siegel et al., 2014), regression

of movement parameter residuals (Friston, Williams, Howard,

Frackowiak, & Turner, 1996), global signal regression (Power, Plitt,

Laumann, & Martin, 2017) and physiological noise regression (Birn,

Diamond, Smith, & Bandettini, 2006; Glover, Li, & Ress, 2000).

Model-free methods mainly include the identification and removal of

artefacts through the use of spatial independent component analysis

(ICA; Perlbarg et al., 2007; Griffanti et al., 2014). For a thorough

understanding of fMRI noise and denoising methods, readers are

referred to in-depth reviews by Murphy et al. (2013), Power

et al. (2014), Caballero-Gaudes and Reynolds (2017), Liu (2016),

Kundu et al. (2017) and Power et al. (2018).

In the absence of noise correction: Studies have investigated the

implications of not correcting sufficiently for (or ignoring) fMRI noise,

confounds and artefacts. Head motion, for example, has been shown

to result in false activity patterns when coupled to the timing of the

task paradigm (Hajnal et al., 1994), to cause simultaneous decreases in

long-distance correlations and increases in short-distance correlations

within functional connectivity networks (Power, Barnes, Snyder,

Schlaggar, & Petersen, 2012), and to cause problems in interpretations

of functional connectivity measures across groups (Van Dijk,

Sabuncu, & Buckner, 2012). The hemodynamic response function

(HRF) is known to vary spatially across the brain, as well as between

subjects and between studies (Handwerker, Gonzalez-Castillo,

D'Esposito, & Bandettini, 2012; Huettel & McCarthy, 2001), but the

time-to-peak in standard task-fMRI experiments is typically assumed

to be ~4–6 s brain-wide. Gitelman, Penny, Ashburner, and

Friston (2003) investigated this assumption and showed the impor-

tance of deconvolution prior to modelling psychophysiologic interac-

tions when considering functional/effective connectivity measures

across the brain. HRF variability was further explored in a recent

study by Rangaprakash, Wu, Marinazzo, Hu, and Deshpande (2018)

which found that, if not accounted for, it could lead to identification

of false functional connectivity measures. Noise sources resulting in

global signal fluctuations (e.g. respiratory cycles) can also lead to

incorrect attribution of signal to brain activity if regional BOLD fluctu-

ations are considered in isolation (Noll & Schneider, 1994), that is,

without regard to possibly confounding global signal correlations.

Noise sources remain problematic whether fMRI data are consid-

ered in real-time or offline. It is therefore important when considering
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real-time fMRI to address these known noise fluctuations and arte-

facts so as to increase the BOLD SNR, and to consider the implica-

tions of not correcting for these nuisances.

2.2 | Real-time fMRI

The vast majority of real-time fMRI implementations use single echo

echo-planar imaging (EPI) as the preferred acquisition method, likely

due to its prevalence in conventional functional imaging. Acquired

slices are reconstructed on the MRI scanner hardware, and upon com-

pletion, each functional image volume is typically exported and shared

on a local network from where it is accessible by the real-time fMRI

application software. Figure 1 illustrates a standard real-time fMRI

setup, including components of a neurofeedback application.

Time frame definitions: The ‘real-time’ time frame is loosely

defined to be the interval between two successive functional image

scans, that is, the repetition time (TR), indicating that the concept

‘real-time’ varies according to the application. Ideally, all required

reconstruction, export and processing steps for each functional

image should be completed sufficiently prior to or by the time the

next image in the session is acquired, thus allowing the presentation

of up-to-date image information to the researcher and/or subject.

Given the nature of the HRF, real-time fMRI not only includes a

delay of one TR typically used for data processing (reported to be

~1–3 s in standard rtfMRI-NF applications), but also a substantial

delay due to the indirect measurement of neuronal activity (~4–6 s).

As such, typical implementations of real-time fMRI often only allow a

representation of brain activity about 5 s or more after such changes

occurred on a neuronal level, leading to the term ‘near-real-time’.

This definition is distinct from the same term used by some studies

to refer to a real-time fMRI processing stream that delivers brain

activity and other information within minutes after completing the

functional scan session (e.g. Voyvodic, 1999). These time frame defi-

nitions assume a streamlined infrastructure for real-time fMRI vol-

ume reconstruction and export with negligible latency issues, which

in reality will vary and could result in potentially serious synchronisa-

tion challenges.

Note that neurofeedback presentation does not have to be

synchronised with image acquisition and can be updated continuously

or intermittently depending on the fMRI acquisition rate, software

implementation and experimental design. Differences between con-

tinuous and intermittent feedback can also influence the selection of

online pre-processing and analysis strategies, as well as training goals

and assumptions about the involved cognitive and neural processes.

For such considerations, evidence from studies including Johnson

et al. (2012), Oblak, Lewis-Peacock, and Sulzer (2017), Emmert

et al. (2017) and Hellrung et al. (2018) could be useful when selecting

between feedback types.

Real-time processing steps: The data processing steps necessary to

derive a near-real-time representation of brain activity vary according

to the application and implemented toolset, but typically follow the

course of conventional task-based or resting state fMRI analysis,

where data are first pre-processed to remove artefacts or noise fluc-

tuations and then analysed with model-based or model-free statistical

methods to extract information of interest. Real-time fMRI

neurofeedback pre-processing typically consists of 3D volume realign-

ment, spatial smoothing, linear or polynomial trend removal and tem-

poral filtering, while few applications report the use of slice-timing

correction, physiological noise correction methods or real-time distor-

tion correction. These reported pre-processing steps are delineated

further in Section 4.

Univariate statistical analysis methods implemented in real-time

include recursive correlation between voxel time-series and a refer-

ence vector (Cox et al., 1995), t-tests (Voyvodic, 1999), multiple lin-

ear regression (Smyser, Grabowski, Frank, Haller, & Bolinger, 2001)

and general linear model (GLM; Bagarinao, Matsuo, Nakai, &

Sato, 2003). Multivariate methods applied to real-time fMRI are less

common, with the real-time implementation of a support vector

machine classifier (SVM; LaConte, Peltier, & Hu, 2007) being the

first example, and sparse logistic regression (Shibata, Watanabe,

Sasaki, & Kawato, 2011) and sparse multinomial or linear regression

F IGURE 1 A typical real-time
fMRI technical setup, showing
detailed components of a
neurofeedback application.
DecNef, decoded neurofeedback;
FCNef, functional connectivity
neurofeedback; RT, real-time;
PSCNef, percentage signal
change neurofeedback

3442 HEUNIS ET AL.



(Shibata, Watanabe, Kawato, & Sasaki, 2016) being used for recent

real-time pattern decoding.

Algorithmic adaptations: To decrease the required per-volume

processing time, algorithms generally make use of sliding window

(Gembris et al., 2000) or incremental approaches (Bagarinao

et al., 2003) when analysing time-series data (see Figure 2). While

time-windowed algorithms allow more sensitivity to temporal brain

activity fluctuations by only analysing a recent subset of the acquired

data, they are characterised by a decrease in statistical power

(Weiskopf, Sitaram, et al., 2007), the converse being the case for

incremental or cumulative algorithms that analyse all acquired data. A

distinction is made here between incremental methods that use the

data in each new iteration to update a growing statistical model so as

to avoid recomputation (e.g. the incremental GLM developed by

Bagarinao et al., 2003, that incrementally estimates and updates the

coefficients of a GLM), and cumulative methods that repeat the oper-

ation during each iteration on all data acquired up to that iteration.

Computational advances: In general, real-time fMRI pre-processing

and statistical analysis pipelines are simplified and/or optimised ver-

sions of their standard offline counterparts because priority is given

to fast algorithms (those that converge in as few as possible iterations)

and to the inclusion of the minimum sufficient steps to achieve an

acceptable level of data quality, so as to decrease per-volume

processing time. This trade-off between maintaining a high level of

method accuracy and minimising the required per-volume processing

time has initially been a large constraint to expanding the complexity

of real-time fMRI processing steps, but has become increasingly easier

to manage with advances in modern computing technology and algo-

rithm development. The use of parallel computing using clusters

(e.g. Bagarinao et al., 2003), multiple processing cores (e.g. Koush et al.,

2017a), and parallel cloud computing (Wang et al., 2016; Cohen

et al., 2017), as well as the use of graphical processing units (GPUs;

Eklund, Andersson, & Knutsson, 2012; Scheinost et al., 2013; Misaki

et al., 2015), allow substantial decreases in required per-volume

processing times and could accordingly afford real-time fMRI tools a

comparative level of complexity and accuracy as that of their offline

counterparts. New research avenues become possible like whole-

brain real-time fMRI (Misaki et al., 2015), full correlation matrix analy-

sis (Wang et al., 2016), and complex processing for more effective

noise removal (Misaki et al., 2015). With such computing power

advancements, research outputs become more dependent on how the

researcher selects MRI sequence parameters and signal processing

steps, and less so on per-volume time restrictions. This shift enables

increases in real-time BOLD quality.

2.3 | Real-time fMRI neurofeedback

The rtfMRI-NF signal presented to the subject varies per study, but

has been based on measures derived through three main computing

methods: (a) BOLD activity percentage signal change typically in a sin-

gle or differential region of interest (PSCNef), (b) functional connectiv-

ity between BOLD activity in multiple ROIs (FCNef) and

(c) multivariate (or multivoxel) pattern analysis (MVPA), typically

within a single ROI (DecNef).

Percentage signal change neurofeedback: The majority of volunteer

and patient rtfMRI-NF studies have used a single or multiple ROI

approach to calculate the feedback signal, specifically using the

F IGURE 2 A representation of the three most commonly used real-time general linear model (GLM) algorithms, indicating the differences in
how data available for each iteration are incorporated into the algorithms. A cumulative GLM (cGLM) uses all available data at each iteration to
calculate the parameter estimates per iteration. A windowed GLM (wGLM) uses a window size of the most recent w (= 3 in this example) volumes
to calculate parameter estimates for a specific iteration. An incremental GLM (iGLM) incorporates volume data for each new iteration into an
existing state. PE, parameter estimate; t, time; vol = volume
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percentage signal change (PSCNef) of the spatially averaged signal

obtained from all voxels within the defined ROI(s), as illustrated in

Figure 3. Various regions of interest have been selected for different

reasons, with the insula, amygdala, and the cingulate, auditory, visual

and motor cortices often forming the basis for neurofeedback

(Thibault et al., 2018). Regions of interest are most often acquired

using a subject-based functional localizer run before neurofeedback

commences (Weiskopf, Sitaram, et al., 2007), although template based

or anatomical ROIs have also been used. Several important factors

need to be accounted for when using single ROIs as the feedback tar-

get. This includes increased signal dropout resulting from EPI imaging

of lower or mid-brain regions (e.g. the limbic system or medial tempo-

ral region) due to increased magnetic susceptibility gradients near

air/tissue borders, leading to lower BOLD SNR.

Functional connectivity neurofeedback: FCNef (Watanabe, Sasaki,

Shibata, & Kawato, 2017) was introduced to target applicable brain

networks and their correlation rather than isolated activity in specific

ROIs (Ruiz et al., 2013), and it has shown promise as an alternative to

PSCNef. The principle is explained in Figure 4, where the average sig-

nal from different ROIs (in this case the motor and parietal cortices) is

correlated across a moving time window to calculate the feedback sig-

nal. Various connectivity measures can be used as a basis for the

neurofeedback signal, including Pearson's Correlation (Zilverstand,

Sorger, Zimmermann, Kaas, & Goebel, 2014) and Dynamic Causal

Modelling (Koush et al., 2013). When using FCNef, care has to be

taken to prevent global signal fluctuations from biasing the calculated

connectivity measure (and thus the feedback signal), based on con-

cerns raised by Power et al. (2012) and Van Dijk et al. (2012) that

were highlighted earlier.

Decoded neurofeedback: Real-time fMRI multivoxel pattern analy-

sis (also known as brain state decoding, decoded neurofeedback or

DecNef, Watanabe et al., 2017) applies multivariate techniques to

fMRI data, first by constructing a decoder using pre-neurofeedback

session data with known task-modulation or states, which is then

used in real-time to decode each acquired volume for similarity to the

target brain state pattern (see Figure 5). Support vector machine

(SVM) algorithms for real-time classification have been incorporated

into several rtfMRI-NF toolboxes (AFNI—LaConte et al., 2007; Turbo-

BrainVoyager—Sorger et al., 2010; FRIEND—Basilio et al., 2015). In

addition, sparse logistic, sparse multinomial and sparse linear regres-

sion algorithms have been often used as decoders, depending on both

the software implementation and the nature of the required

neurofeedback signal (e.g. binary or linear). For further detail,

LaConte (2011) and Watanabe et al. (2017) provide reviews of meth-

odology and studies, respectively, using real-time fMRI DecNef.

For more examples of studies using the methods above, readers

are referred to Watanabe et al. (2017) and Thibault et al. (2018).

Watanabe et al. (2017) explored advances in FCNef and DecNef

F IGURE 3 A linear
neurofeedback signal (right)
calculated as the average
percentage signal change within
the anterior cingulate cortex.
Examples of other regions of
interest are also displayed (left)

F IGURE 4 A linear neurofeedback
signal (right) calculated as the functional
connectivity (e.g. windowed Pearson's
correlation) level between the motor and
parietal cortex ROIs
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based real-time fMRI, providing a list of nine studies using these

methods, explaining concepts and listing new challenges and possible

solutions in the realm of FCNef and DecNef methods. Thibault

et al. (2018) conducted a critical systematic review of 99 rtfMRI-NF

studies (mostly PSCNef) to evaluate the effectiveness of reported

experimental protocols to train subjects to self-regulate their BOLD

signal.

Apart from the feedback type and target region, several aspects

of rtfMRI-NF can influence the ability of subjects to learn self-

regulation of the neurofeedback signal (Kadosh & Staunton, 2019).

Experiments need to take account of the advantages or disadvantages

of, amongst others, the regularity of neurofeedback presentation

(continuous vs. intermittent), external rewards for learning outcomes,

simultaneous visual display of task and feedback information, instruc-

tions given to subjects on learning strategy, variability in individual

learning strategy of subjects, real-time data quality measures, and the

use of control groups and blinding in order to reach the full potential

of a rigorously designed and reproducible rtfMRI-NF experiment.

Importantly, studies need to clarify these decisions (based on available

evidence, pilot results or sound reasoning) and report their choices

transparently, in aid of the effort to delineate the multiple mecha-

nisms and influences leading to neurofeedback learning and accompa-

nying behavioural effects.

3 | QUALITY IN REAL-TIME FMRI
NEUROFEEDBACK

Quality is an umbrella term that is applicable to real-time fMRI data,

to the neurofeedback signal and to the methods reporting process.

Generally, fMRI data quality is a measure of how well the acquired

BOLD data reflects the signal of interest, that is, neural activity, and it

is influenced by variability in multiple factors including the subject, the

experimental design and acquisition (spatial resolution, image contrast,

field strength etc.). If fMRI data quality is high, the implication is that

signals that are not of interest (i.e. noise) are either absent from or not

biasing our interpretation of the processed data, and there is lower

possibility of making false inferences. This improves results and infer-

ential reproducibility, and thus scientific progress. As an extension of

fMRI data, high quality of the real-time fMRI neurofeedback signal

implies that a signal closely reflective of brain activity (and not of

noise or artefacts) is fed back to the subject in real-time. Quality in

methods reporting implies that a published study contains enough

information about the applicable experimental-, acquisition- and data

processing steps that would allow different researchers to reproduce

the methods. Here, high quality has a direct and beneficial influence

on methods reproducibility.

When aiming to improve quality in real-time fMRI neurofeedback

it is therefore advised to (a) separate the effects of noise (measure-

ment-, system-, or subject-based) from true BOLD fluctuations,

(b) quantify and report the quality of real-time fMRI data and the cal-

culated neurofeedback signal and (c) accurately and sufficiently report

the use of applicable real-time fMRI denoising methods.

3.1 | Measuring, comparing and reporting rtfMRI
data quality

Traditionally, apart from expert visual inspection of fMRI datasets to

identify low quality volumes/sessions/subjects/sites (as evidenced by

visible artefacts in fMRI images like excessive motion, RF interference

or ghosting), the temporal signal-to-noise ratio (tSNR) has been an

important quantitative measure of fMRI data quality and the ability of

an experiment to find effects of interest (Murphy, Bodurka, &

Bandettini, 2007; Parrish, Gitelman, LaBar, & Mesulam, 2000;

Welvaert & Rosseel, 2013). tSNR gives an indication of the per-voxel

signal fluctuations rated against the background noise fluctuations,

with an example equation being:

tSNR=
�S
σ

ð1Þ

Here, �S and σ refer to the (per-voxel) mean and SD of the fMRI

time series, respectively. A variation of tSNR is the temporal contrast-

to-noise ratio (tCNR, Geissler et al., 2007), which investigates the

F IGURE 5 A linear
neurofeedback signal (right)
decoded as a representation of
the similarity between voxel
intensities in the trained pattern
(resembling some known brain
state) and the real-time brain
voxel pattern
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difference between functional contrast conditions (e.g. task activity

vs. baseline activity) rather than considering signal fluctuations at all

times. As such, tCNR could be defined as (Koush et al., 2012):

tCNR=
�Scontrast
σall

=
�Scondition−�Sbaselineffiffiffiffiffiffi

σ2
p =

ΔS
�S
� tSNR

� �
ð2Þ

The part of Equation (2) in brackets provides a common definition

of CNR (Krüger & Glover, 2001), where ΔS is the signal change

due to an experimental condition. Equation (2) thus assumes that
�Scondition = ΔS, and that �Sbaseline = 0.

A simple fMRI quality inspection approach could be to compare

the tSNR or tCNR values calculated before and after denoising to see

if the change brings about a data quality increase. It should be noted

that, depending on how noise and signal sources are defined spatially

and on the type of condition and baseline choices, tSNR and tCNR

values could vary and are not automatically standardised. Importantly,

there is little consensus on an SD of tSNR and tCNR (Welvaert &

Rosseel, 2013), which could hinder comparability between different

sites and studies. Additionally, a single metric is unlikely to provide a

full quantitative view of the quality of a complex signal such as fMRI,

and further measures could be insightful.

Quality tools and methods: Historically, AFNI's real-time fMRI

module (Cox et al., 1995) supported the ability to display motion

parameters to the subject in order the suppress head motion (Yang,

Ross, Zhang, Stein, & Yang, 2005) and to feed back a display of vari-

ability in areas affected by physiological noise (e.g. ventricles) in order

to reduce the SD of the fMRI signal (Bodurka, Gonzales-Castillo, &

Bandettini, 2009). These parameters can inherently also serve as real-

time quality indicators.

More recent real-time quality tools include Framewise Integrated

Real-time fMRI Monitoring (FIRMM; Dosenbach et al., 2017), which

focuses on real-time motion tracking and related quality metrics, and

rtQC, a recently presented open-source collaborative framework for

quality control methods in real-time (Hellrung et al., 2017; Heunis

et al., 2019). rtQC currently focuses on highlighting quality issues

between the offline and real-time variants of fMRI data as well as

real-time visualisation of quality control metrics, including a real-time

display of a grayplot (a 2D representation of voxel intensity fluctua-

tions over time; Power, 2017).

Quality reporting practices: In further rtfMRI-NF literature, studies

employing data quality checks focus on pre- and post-real-time appli-

cation of quality control processes. Stoeckel et al. (2014) propose the

calculation and use of tSNR and the concordance correlation coeffi-

cient on pilot data to determine, respectively, whether the rtfMRI-NF

signal is detectable and reproducible between runs. They also pro-

posed a list of seven high-level guidelines to help optimise real-time

fMRI neurofeedback for therapeutic discovery and development:

(a) the rtfMRI signal is accurate and reliable, (b) rtfMRI neurofeedback

leads to learning, (c) the training protocol is optimised for rtfMRI-

based neurofeedback and learning, (d) there is an appropriate test of

training success, (e) rtfMRI neurofeedback leads to behavioural

change, (f) an appropriate rtfMRI neurofeedback-based clinical trial

design is in place and (g) sharing resources and using common stan-

dards. Sorger, Kamp, Weiskopf, Peters, and Goebel (2018) provided a

list of five criteria used for selection of custom feedback ROIs per

subject: including (a) robust and typical hemodynamic response shown

in ROI, (b) high tSNR and tCNR, (c) ample evidence for the ROI's

involvement in the selected activation strategy, (d) insensitivity to sus-

ceptibility artefacts and (e) the ROI should consist of 10–15 neigh-

bouring voxels spanning three fMRI slices. As post-real-time quality

control, Koush et al. (2012) report the use of four quality metrics to

evaluate their real-time denoising algorithms (tSNR, event-related

tSNR, tCNR and statistical t-values), while Zilverstand et al. (2017)

used mean displacement and tSNR to investigate offline data quality

differences between control and test groups. Thibault et al. (2018)

suggested a list of best practices for rtfMRI-NF studies spanning the

whole process from study design to outcome measurement, including

suggestions for: (a) study pre-registration, (b) sample size justification,

(c) inclusion of control neurofeedback measures, (d) inclusion of con-

trol groups, (e) collection and reporting of the BOLD neurofeedback

signal, (f) collection and reporting of behavioural data and (g) outcome

measure definitions and reporting.

In this work, we propose both wider adoption of such best prac-

tices in rtfMRI-NF, as well as more granular specification of data qual-

ity measurement and reporting concerning the processing steps that

could influence the quality of the signal being regulated.

3.2 | Data quality challenges in rtfMRI-NF

Real-time fMRI is plagued by the same noise fluctuations and arte-

facts present in conventional task-based and resting state fMRI with

the main difference being the required real-time removal of these

confounds per volume, versus offline otherwise. This has to be

achieved with an altered technical setup compared to the conven-

tional approach. This time-constrained and technically novel scenario

brings about a range of challenges, discussed below.

3.2.1 | Inseparability of data measures and subject
regulation effects

A major challenge in assessing neurofeedback signal quality is the inher-

ent mediation of the real-time signal by the process of neurofeedback

training. This mediation effect, and in fact neurofeedback learnability

itself, is highly variable within and between subjects and unlikely to be

estimated or predicted accurately. This is known from neurofeedback

based on electroencephalography (EEG), is referred to as the inefficacy

problem (Alkoby, Abu-Rmileh, Shriki, & Todder, 2018), and appears to

generalise across neuroimaging modalities. An estimated 15–30% of sub-

jects are unable to learn control over brain computer interfaces (BCIs;

Vidaurre & Blankertz, 2010), while in a review of psychological factors

influencing neurofeedback learning outcomes, Kadosh and Staun-

ton (2019) found attention, amongst other factors, to be crucial for

neurofeedback learning success. The inability to reliably separate the
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rtfMRI signal into BOLD regulation effects versus noise (or noise-absent

signal) makes standard quantitative measures like tSNR ill-suited to

granularly assess the quality of the neurofeedback signal. Alternative

measures or procedures become necessary, an example being the frame-

work for offline evaluation and optimization of real-time neurofeedback

algorithms recently put forward by Ramot and Gonzalez-Castillo (2019).

3.2.2 | Decreased statistical power

In offline fMRI denoising, data for the whole session is available and

there is effectively no time limit on the processing, which respectively

allows improved statistical power for noise detection and the execu-

tion of complex algorithms to model and remove noise fluctuations.

Conversely, in rtfMRI-NF the statistical power is decreased, specifi-

cally in a moving window approach or during the start of a cumulative

approach due to the small amount of data samples available. Addition-

ally, the available calculation time in real-time is limited to the span of

a single TR (in the standard case of continuous feedback), albeit

mostly with fewer data to process. This means that rtfMRI algorithms

can less likely detect true BOLD effects (or noise effects) as they

occur, resulting in diminishing quality control of the rtfMRI-NF signal.

3.2.3 | Lack of readily available peripheral
measurements

Most scanner setups require custom modifications to hardware

and/or software in order for extra physiological information to be

transferred in real-time. For example, to our knowledge few reports

exist of physiological data (respiration and heart rate) being trans-

ferred and incorporated into a rtfMRI-NF software pipeline to remove

physiological noise in real-time (e.g. Bodurka et al., 2009; Hamilton

et al., 2016; Misaki et al., 2015). Addressing this challenge (technologi-

cally and algorithmically) could potentially be of substantial benefit to

the quality of the neurofeedback signal, as it would diminish the possi-

bility of subjects being trained on physiological nuisance signals

(e.g. respiration effects) and would thus increase the contingency of

the signal on actual brain activity.

3.2.4 | Difficulty of real-time visual quality control

The neurofeedback signal is calculated and fed back to the subject

immediately after the relevant pre-processing and analysis has been

completed within a single TR, that is, there is no time for an expert to

inspect the volume, to assess its quality, and to perform conditional

denoising steps, as opposed to offline fMRI quality control. However,

this challenge provides an opportunity for rtfMRI-NF to improve com-

putational/methods reproducibility, because a potential solution

would be to have automated data quality inspection and control per

volume. An example would be calculating framewise displacement

(FD; Jenkinson, Bannister, Brady, & Smith, 2002; Power et al., 2012)

per volume using real-time volume realignment (or head motion)

parameters and automatically classifying the volume as a motion out-

lier or not based on some predetermined FD threshold. These outliers,

in turn, could be added to a real-time motion outlier regressor in a

cumulative or incremental GLM, to achieve real-time scrubbing, the

results of which could be inspected and compared to offline counter-

parts after the rtfMRI experiment. Such functionality is currently avail-

able in rtQC (Heunis, Hellrung, et al., 2019).

3.2.5 | Differences in quality between real-time
and offline fMRI

Differences can occur in fMRI data that are reconstructed and trans-

ferred in real-time compared to offline exported data, including

changes to spatial, image orientation, image intensity and temporal

information. Whereas per-volume reconstruction and export timing

(and related latency and jitter) are not critical for conventional fMRI

analysis, they can cause substantial delays in real-time processing and

feedback presentation. However, specific details such as the tools and

software versions used for data export and the real-time latencies are

rarely reported, which complicates reproducibility of methods. Addi-

tionally, differences in voxel intensity scaling, image orientation and

image header information have been reported (Hellrung et al., 2017).

Such issues, if known about at all, are hardly reported by rtfMRI-NF

studies, even though it could lead to potential differences of interpre-

tation when analysing online versus offline data. Most rtfMRI-NF

studies process data offline in order to show the effects of

neurofeedback training over time, often looking at the t-statistic and

clustering of significantly activated voxels in a region of interest. If this

analysis is carried out on different datasets because of online-offline

quality control issues, conclusions could vary.

Several methods, applied during acquisition and data processing

phases as well as offline, have been reported to decrease the detri-

mental effects of known fMRI noise and artefacts on the quality and

SNR of the real-time BOLD signal. The next section investigates a set

of 128 rtfMRI-NF studies to determine the prevalence of a variety

of pre-processing steps in real-time fMRI pipelines, while the

section thereafter focuses on the methods that address, at least in

part, some of the above challenges.

4 | DENOISING IN REAL-TIME FMRI
NEUROFEEDBACK STUDIES

A recent critical systematic review by Thibault et al. (2018) assessed

99 rtfMRI-NF studies in order to evaluate the effectiveness of

reported experimental protocols to train subjects to self-regulate their

BOLD signal and to induce behavioural improvements. The list fea-

tured a prominent set of the most recent rtfMRI-NF studies spanning

a variety of patient groups and feedback signal types, and also

included all 12 studies used by Emmert et al. (2016) in one of the only

rtfMRI-NF meta-analyses conducted to investigate the mechanism of
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brain regulation resulting from neurofeedback. Apart from its main

findings, the review by Thibault et al. (2018) showed that 62 out of

99 studies did not report any account being taken of respiratory con-

founds, that 19 studies subtracted activity in a background region to

account for so-called global effects, and that nine studies regressed

out respiration-related noise signals in real-time. Respiration is known

to be a source of global BOLD fluctuations and its removal is seen as

a recommendable pre-processing step in conventional resting state

fMRI processing (Bright & Murphy, 2013).

To facilitate further meta-analyses and systematic reviews, studies

should not only ensure a high level of data quality (in terms of the real-

time BOLD and neurofeedback signals) but also have to consistently

and comprehensively report their use of acquisition and processing

methods. A further search of rtfMRI-NF literature (including methods

reviews) showed that rtfMRI-NF processing methodology has been

covered in some detail (e.g. Bagarinao, Nakai, & Tanaka, 2006; Caria,

Sitaram, & Birbaumer, 2012; Weiskopf et al., 2004), but that real-time

fMRI denoising methods have not received similar attention on a more

granular level. To quantify the extent to which rtfMRI-NF studies report

correcting for commonly known fMRI noise sources and artefacts, we

investigated whether 128 recent studies (available at http://bit.ly/

rtfmri-nf-zotero-library) reported the use of a standard list of real-time

pre-processing steps. We conducted a Web of Science search across All

Databases on April 9, 2019 using the same search terms and selection

criteria as provided by Thibault et al. (2018), and found another 29 stud-

ies in addition to the original 99. The list of pre-processing steps was

selected based on established practices in conventional task-based and

resting state fMRI (Poldrack, Mumford, & Nichols, 2011), as well as

through identifying steps specific to rtfMRI-NF during the process of

reviewing the 128 studies and further literature. The full text of each

article, including supplementary material, were searched and coded for

the following key terms: averag*, band, cutoff, difference, differential,

drift, filter, frequency, heart, high, linear, low, motion, movement, nuisance,

outlier, parameter, pass, physiol*, respir*, retroicor, scale, scrub, slice,

smooth, spike, trend. All study DOIs and coded pre-processing steps are

available as part of the accompanying Supplementary Material (JSON

file, Tab Delimited Text files and Notes). Data and code necessary to

reproduce Figures 6 and 7 are available on Github (https://github.com/

jsheunis/quality-and-denoising-in-rtfmri-nf), which also links to an

interactive environment allowing exploration and visualisation of the

study data.

Figure 6 shows the list of pre-processing and denoising steps and

the amount of studies that report employing these methods. Impor-

tantly, we classified studies as Did Not Report (DNR) if no mention of

the particular method was made in the article or supplementary mate-

rial, and if we could not confidently infer its use from studying the

particular article's content. A possible exception to this rule is volume

realignment, which could reasonably be expected to be used in almost

all recent rtfMRI-NF studies. Figure 6 shows that 24 out of 128 stud-

ies did not report applying volume realignment, and through investi-

gating toolbox use (for a full distribution see Figure 7e) it was found

that the majority of these used Turbo-BrainVoyager (TBV; Brain Inno-

vation, Maastricht, The Netherlands), which does allow including this

as a standard real-time pre-processing step. Similar discrepancies

could be expected in the classification of studies as DNR for any of

the other denoising steps, although such discrepancies are expected

to decline with the reported use of more non-standard or novel tech-

niques (e.g. real-time physiological noise regression). To account fur-

ther for possible discrepancies in the reporting of assumed default

processing steps, we recoded the dataset such that studies that used

mature and widely used software packages reflected default options

where particular steps were not reported. The motivation for this

step, the resulting figures, and accompanying limitations can be

viewed in the Supplementary Notes. These findings highlight the

importance of correctly reporting rtfMRI-NF denoising methods, so as

to promote methods reproducibility.

F IGURE 6 A list of real-time
pre-processing and denoising
steps used in 128 recent rtfMRI
neurofeedback studies. (All bars
are indicated as YES/red and
DNR/blue while the breakdown
for the bar ‘Differential ROI’ is
27 YES, 100 ‘DNR’ and 1 ‘No’,
Marins et al., 2015). DNR, did not
report
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Further results in Figure 6 show that volume realignment is the

only step reported to be used by over half of the studies, while less

than half report implementing linear drift removal and less than a third

report the use of spatial smoothing, temporal smoothing and outlier

removal. A special case of real-time denoising is correction for physio-

logical noise, where multiple approaches have been used (Figure 7e).

An often-used method is differential feedback (Weiskopf, Mathiak,

et al., 2004; see Section 5.2.8 for a full description), based on the

assumption that global effects caused by respiration will be cancelled

out when subtracting the averaged signal in a task-unrelated ROI from

the main ROI used for neurofeedback. This also assumes that global

respiration effects in both areas are identical. Still, two thirds of the

F IGURE 7 Bar graphs showing a breakdown of
methods used for specific pre-processing and/or
denoising steps in the 128 studies compiled in this work
(red). The last two bar graphs (blue) indicate a breakdown
of other features of the studies. (a) Spatial smoothing
(4,5,6,7,8,9,12MM = FWHM size of Gaussian smoothing
kernel). (b) Temporal smoothing through time point
averaging (2,3,4,5,6PT = number of time points used).
(c) Drift removal (EMA = exponential moving average

filter; IGLM = incremental general linear model; BAND,
HIGH = filter types). (d) Respiratory noise removal
(ROID = differential region of interest; RT = real-time;
OTHER = other methods including averaged
compartment signal regression, e.g. white matter and/or
ventricle signals). (e) Frequency filtering in addition to
drift removal (BAND, HIGH, LOW = filter types). (f)
Outlier removal (KALM = modified Kalman filter
implemented in OpenNFT). (g) rtfMRI-NF software
toolboxes (TBV = Turbo-BrainVoyager). (h) Magnet field
strengths. DNR, did not report; N, no; Y, yes, but no
further detail reported
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studies do not report any correction for physiological noise (either in

real-time or offline), while six studies use modelled physiological noise

regression or data driven methods to remove noise fluctuations possi-

bly caused by subject physiology (Thibault et al., 2018, reported nine

due to a mischaracterization of offline physiological noise regression

as real-time regression in some cases). Additionally, it was also found

that while several studies reported the use of optimised acquisition

sequences to reduce susceptibility-induced image distortion (e.g. the

spiral-in/out sequence by Glover & Law, 2001), only one study from

the 128 reported incorporating post-acquisition distortion correction

into their real-time algorithm (Marxen et al., 2016).

Finally, Thibault et al. noted a lack of both pre-registration of

rtfMRI-NF study designs and registered report type publications, as

well as a lack of adoption of general open science principles. Although

open source software solutions like AFNI's real-time plugin (Cox

et al., 1995), BART (Hellrung et al., 2015), FRIEND (Basilio

et al., 2015) and OpenNFT (Koush et al., 2017a) counter some of

these concerns, we find additionally that minimal evidence exists for

open data and methods sharing. Specifically, apart from a large

dataset on default-mode-network neurofeedback shared publicly by

McDonald et al. (2017), a useful single-subject dataset for testing

OpenNFT functionality and general methods development (Koush

et al., 2017c), and further useful supplementary data shared in some

cases (e.g. Zilverstand et al., 2017), we found no other publicly avail-

able rtfMRI-NF datasets related to the investigated studies.

5 | METHODS TO IMPROVE SIGNAL
QUALITY AND DENOISING IN REAL-TIME
FMRI NEUROFEEDBACK

This section addresses the third research question of this review:

which methods for denoising data and improving data quality and SNR

are available to the researcher studying rtfMRI-NF? We consider acqui-

sition methods and processing methods, focusing on the latter, and

investigate current rtfMRI-NF algorithms and their capabilities with

regards to the reported noise mitigation or denoising methods. Some

offline methods for neurofeedback signal quality checking, although

not strictly real-time, are also considered.

5.1 | Acquisition methods

As with conventional fMRI, it is recommended that researchers take

the necessary precautions to mitigate the introduction of any

unwanted noise sources into the data. This includes the possibility of

using physical interventions—e.g. individualised head restraints

(https://caseforge.co/), bite bars, foam pads or end-tidal forcing

systems—to counter head motion or respiratory rate variation arte-

facts, respectively, but also extends to tweaking pulse sequence

parameters or implementing alternative sequences to increase BOLD

sensitivity. Several pulse sequences, hardware changes and other

acquisition steps are highlighted below.

5.1.1 | EPI, acceleration and high field imaging

The gradient echo EPI sequence still remains the most widely used

technique for real-time fMRI, as it allows fast acquisition of volumes

covering the whole brain. The main disadvantages of the EPI

sequence are that it is sensitive to susceptibility effects and machine

instabilities, although all major vendors offer techniques that compen-

sate (partly) for these scanner effects.

The EPI sequence also allows for the acquisition of multiple ech-

oes. The basic advantage of multi-echo over standard single-echo EPI

is that it allows more data to fit an assumed mono-exponential decay

curve, which can yield voxel-wise estimations of S0 (initial signal inten-

sity, that is, magnetization) and T2* (transverse relaxation time, Posse

et al., 1998). Increased BOLD sensitivity results when these spatially

varying T2* values are combined so as to leverage optimal BOLD con-

trast at each voxel, as opposed to assuming a single T2* for all grey

matter voxels as per single-echo EPI processing. Posse et al. (1999)

incorporated this advantage into their ‘TurboPEPSI’ imaging technique

for spectroscopic imaging, and later adapted it into the FIRE software

toolbox for use in real-time fMRI (Posse et al., 2000), using linear echo

summation. Further improvements led to the development of a

method, using TurboPEPSI, for quantitative T2* mapping as well as

compensation of susceptibility related signal losses in multiple brain

regions at different echo times (Posse, Shen, Kiselev, & Kemna, 2003).

Later, Weiskopf, Klose, Birbaumer, and Mathiak (2005) implemented a

real-time multi-echo EPI acquisition sequence that corrected for

dynamic distortions along the phase-encoding direction without the

need for additional reference scans (as per standard static B0 field

correction techniques).

The EPI sequence can also be combined with various accelera-

tions techniques. The introduction of parallel imaging techniques, for

example, SENSE and GRAPPA, has contributed significantly to

improved spatial resolution in fMRI, and has become standard in

recent imaging applications. Also, advancements in acquisition speed

using multi-band or 3D EPI techniques can improve temporal resolu-

tion as well as real-time SNR characteristics, for example, as demon-

strated by the multi-slab echo volumar imaging techniques of Posse

et al. (2012) implemented in real-time. It should be noted, however,

that the possible improvement in temporal resolution resulting from

multi-band sequences must be balanced with the possible increase in

image reconstruction time required if implemented on default scanner

hardware.

Lastly, imaging at higher field strengths can improve SNR and

BOLD sensitivity (Triantafyllou et al., 2005), both of which is benefi-

cial to real-time fMRI neurofeedback. High field imaging at 7 T could

be particularly useful to overcome the lower SNR provided by 1.5 and

3 T imaging in sub-cortical regions, as demonstrated by Sladky

et al. (2013) for the amygdala, and by Hahn et al. (2013) for the insula.

However, an important consideration for neurofeedback at 7 T is that

physiological noise increases with field strength and may dominate

the BOLD signal of interest (Krüger & Glover, 2001), necessitating an

appropriate denoising procedure. If accurately accounted for, how-

ever, the increased BOLD sensitivity at 7 T could improve the quality
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of the neurofeedback signal, which would allow closer examination of

the hypothesised coupling between learning effects and the

neurofeedback signal. rtfMRI-NF at 7 T has been implemented

(e.g. Andersson et al., 2011; Hollmann et al., 2008) and compared to

rtfMRI-NF at 3 T (Gröne et al., 2015). The latter study found slightly

greater increases in post-neurofeedback ROI activation in the 3 T sub-

ject group compared to the 7 T group. The difference was ascribed to

a decrease in tSNR in the 7 T group compared to the 3 T group, due

to several contributing factors including shimming conditions, B1-field

inhomogeneities, phase-encoding polarity and physiological noise.

5.1.2 | Alternative sequences and shimming

Alternative sequences or shimming practices have also been used to

minimise the real-time image distortion or dropout artefacts related to

local susceptibility gradients or other causes. A sequence developed

by Glover and Law (2001) follows a spiral in/out readout trajectory of

k-space that reduces signal dropout and increases BOLD contrast.

Spiral-in has the advantage that it allows for higher temporal resolu-

tion, while spiral-out allows for short echo times which could also be

an advantage in multi-echo denoising applications (e.g. when

regressing the short echo signal out of the acquired data to remove

proximal S0 effects; Bright & Murphy, 2013). Spiral in/out acquisition

has been implemented by a number of rtfMRI-NF studies (Greer, Tru-

jillo, Glover, & Knutson, 2014; Hamilton et al., 2016; Hamilton, Glover,

Hsu, Johnson, & Gotlib, 2010). Real-time shimming to account for

geometric distortion has also been implemented. Here, Ward,

Riederer, and Jack (2002) implemented a sequence to detect and cor-

rect for linear shim changes in real-time, while van Gelderen, de

Zwart, Starewicz, Hinks, and Duyn (2007) used a reference B0 scan

and chest motion data to apply respiration-compensating B0 shims in

real-time.

5.1.3 | Prospective motion correction and motion
feedback

In addition to various MRI acquisition methods, prospective motion

correction is another step that could increase SNR of the rtfMRI

BOLD signal during the acquisition phase. Image-based motion detec-

tion (Thesen et al., 2000), field cameras (Dietrich et al., 2016) or exter-

nal optical tracking methods (Zaitsev et al., 2006) have been used to

estimate rigid body transformations and subsequently update pulse

sequence parameters in real-time, such that the imaging volume

essentially ‘follows’ the subject's movement (Maclaren, Herbst,

Speck, & Zaitsev, 2012). Another method to curtail subject head

motion is to feed back the head motion parameters (HMPs), derived

from real-time head motion correction algorithms, to the subject. This

in itself is a form of biofeedback training, and has been shown to

reduce subject motion during scanning. In the case of Yang

et al. (2005), HMPs resulting from real-time motion correction of

functional image volumes were presented to subjects in the form of a

composite ‘head motion index’, similar to framewise displacement.

Greene et al. (2018) used FD as the feedback measure in their imple-

mentation using FIRMM software. Importantly, the implications of

feeding back several measures to the subject and displaying them

together with task instructions have to be properly understood and

weighed before deciding on its use.

5.1.4 | Adaptive paradigms

Adaptive paradigms provide interventions at a variety of stages in the

acquisition and processing pipeline and allow selective data acquisi-

tion or presentation based on subject-specific measures and a

predefined set of criteria. For example, Wilms et al. (2010) developed

a system where real-time eye-tracking data could be used to generate

gaze-contingent stimuli during fMRI experiments, while Hellrung

et al. (2015) created an integrated, open-source framework for adap-

tive paradigm design, which also allows the dynamically updated

design (based on a gaze direction-contingent assessment in their pilot

experiment) to be transferred to the real-time GLM for adaptive

processing. Such interventions could improve data quality and SNR by

earmarking the volumes during which the subject adhered to selected

quality control criteria.

5.1.5 | Peripheral data collection

Lastly, the collection of peripheral subject data (e.g. heart rate, respira-

tion rate, motion/eye tracking) for denoising purposes is strongly rec-

ommended. While it may not always be possible to correct for

physiological noise or motion in real-time using these measures (given

technical constraints or other reasons, see below) they should at least

be used offline to calculate and comment on correlations with BOLD

fluctuations, task design or other subject-related or experimental

confounders.

5.2 | Processing methods

As previously mentioned, real-time denoising methods tend to follow

the course of standard offline fMRI pre-processing, although reports

on the use of individual steps vary. Section 4 provided a list of real-

time pre-processing or denoising steps employed by recent rtfMRI-NF

studies, with Figures 6 and 7 indicating their relative usage. These

methods are presented below together with other techniques identi-

fied through further literature search.

To aid the reader's understanding and guide future use of these

methods, Table 1 summarises the most often reported real-time

processing methods. In addition, Table 1 provides context for analo-

gous methods in conventional fMRI analysis, how the real-time

methods differ from their offline counterparts, and recommendations

for deciding on implementation. Table 1 focuses processing methods

since there would mostly be no differences between acquisition
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TABLE 1 A summary of real-time fMRI neurofeedback processing methods

Conventional method Real-time method Differences/notes Real-time recommendation

0. Example processing step

Standard method(s) used in

conventional offline fMRI

processing

Methods most often used or

reported in real-time fMRI and

neurofeedback signal processing

Main distinctions between offline

and online/real-time methods,

with additional notes

Recommendations on the use of the

reported real-time methods,

whether to implement them or not

and additional relevant

information

1. Slice timing correction

Various interpolation methods Various interpolation methods No algorithmic differences, as both

are done on a per-volume basis

Generally recommended for TR

≥2 s

2. 3D volume realignment

6 degree of freedom rigid body

transformation of whole brain

data

6 degree of freedom rigid body

transformation of whole brain

data

• No algorithmic differences, as

both are done on a per-volume

basis

• Template EPI for

real-time = previously collected

EPI volume

• Template EPI for offline = first

volume of time-series or

mean EPI

Always recommended

3. Spatial smoothing

3D Gaussian smoothing kernel

with a specified FWHM,

applied to whole or masked

brain data

(3.1) 3D Gaussian smoothing

kernel with a specified FWHM,

applied to whole or masked

brain data

No algorithmic differences, as both

are done on a per-volume basis

• Typically recommended to

increase SNR for all except

MVPA-based neurofeedback

methods or when using small

ROIs (e.g. amygdala)

• Recommended kernel size

depends on acquisition

parameters amongst multiple

other factors

(3.2) Averaging voxel values within

a pre-specified ROI

Kernel-based smoothing versus

basic averaging

Typically recommended to allow

calculation of a 1D

neurofeedback signal from 3D

data

4. Drift removal and frequency filtering

• Various algorithms for

(mostly) high-pass filtering,

for example, a cosine basis

set as GLM regressors (SPM)

or a Gaussian-weighted

running line smoother (FSL).

Typically applied to whole or

masked brain data.

• Low-pass, band-pass or other

types of filtering typically

applied as part of GLM.

(4.1) Incremental GLM (iGLM) with

filtering regressors, for example,

a cosine basis set and/or a linear

trend regressor

• GLM applied to full offline data

versus real-time iGLM

• Whole brain offline drift

removal (filtering) versus drift

removal from 1D

neurofeedback signal in

real-time

• Drift removal is always

recommended

• Piloting suggested to determine

the method best suited for

the data

• Kopel et al. (2019) recommend

a sliding window iGLM

algorithm with standard cosine

basis set

• PSC calculation is always with

reference to a baseline. Thus,

inherent drift removal through

baseline subtraction is

recommended; if not a global

mean, then least ROI-based; if

not cumulative, then at least

based on the preceding baseline

(non-regulation) block.

(4.2) Exponential moving average

(EMA) filter

• No algorithmic differences if

applied as digital filter that

takes only history into account

• Whole brain offline drift

removal (filtering) versus

filtering of 1D neurofeedback

signal in real-time

(4.3) Inherent baseline drift

removal through subtraction of

cumulative global mean from

ROI signal during PSC

calculation

Mostly limited to real-time

application because of PSC

calculation for neurofeedback.

See related: global signal

regression in 6 below

5. Temporal filtering or averaging

Typically, this is an implicit result

of filtering as described above

(5.1) Moving window time-point

averaging of 1D neurofeedback

signal

• Standard offline filtering versus

online 1D signal time-point

• Piloting suggested to determine

if time-point averaging is

suitable
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TABLE 1 (Continued)

Conventional method Real-time method Differences/notes Real-time recommendation

averaging (comparable to EMA

filter)

• Three-point window size is

most common in studies that

reported implementing this

method

An AR(1) filter is typically, and

explicitly, applied to address

autocorrelation in fMRI

time-series data

(5.2) AR(1) filtering in real-time has

been reported but seldom

implemented

No algorithmic differences if

applied as digital filter per

time-point that takes only

history into account

• Piloting suggested to determine

if AR(1) filtering is useful in

addition to and/or influenced

by other standard temporal

smoothing and filtering steps

6. Nuisance regression (excluding physiological noise removal)

Various 1D data traces are often

included as nuisance

regressors in offline GLM,

including:

• Head movement

parameters (HMPs)

• Volterra expansion of HMPs

• Tissue compartment signal

averages (CSF, WM, GM)

• Global signal

Typically applied to whole or

masked brain data

Incremental GLM (iGLM) with

minimal filtering regressors, for

example:

• Head movement

parameters (HMPs)

• Tissue compartment signal

averages (CSF, WM, GM,

global)

• GLM applied to full offline data

versus real-time iGLM

• Whole brain offline nuisance

regression, versus nuisance

regression from 1D

neurofeedback signal in

real-time

• Piloting suggested to determine

which nuisance regressors are

best suited for the data

• Over specification of design

matrix (i.e. too many regressors)

is not recommended, as iGLM

parameter estimates will be

noisy and will take considerable

time to stabilise (see Misaki

et al., 2015)

• Global signal regression is

controversial in offline and

real-time fMRI analysis and

should be piloted and well

justified

7. Outlier or spike removal

‘Scrubbing’ low quality EPI

volumes (removing, replacing,

averaging) based on a variety

of quality metrics, for example:

• Framewise displacement

• DVARS

• SD

• Z-score

• Other

Could be incorporated as an

additional scan-nulling

regressor in offline GLM

(7.1) Possibility to do real-time

scan-nulling as part of iGLM, for

example, through real-time

outlier detection based on a

predefined framewise

displacement threshold

• GLM applied to full offline data

versus real-time iGLM

• Whole brain offline nuisance

regression, versus nuisance

regression from 1D

neurofeedback signal in

real-time

• Detection thresholds set based

on statistical properties of full

dataset or group data, versus

requirement for predefined

threshold for real-time

detection

• Piloting suggested to determine

if outlier removal is useful, and

whether other existing filtering

methods (e.g. iGLM regressors,

EMA, temporal smoothing)

could suffice

• Careful thought should be given

to predefined detection

threshold if real-time outlier

detection and scan-nulling is

considered

• Kalman filter parameters should

be piloted, and defaults should

not be accepted as best for

the data
(7.2) Kalman filter that detects and

rejects outliers based on

irregular statistical properties

(Koush et al., 2012)

• Standard high/low/band-pass

filtering is typically used offline

on whole brain data

• Adaptive Kalman filter

introduced for real-time and

implemented on 1D

neurofeedback signal

8. Physiological noise removal

Physiological noise is typically

modelled using concurrent

recordings of respiration and

heart rate, for example,

RETROICOR, RVT, HRV.

These are then used as

nuisance regressors in the

offline GLM applied to whole

brain data

(8.1) Incremental GLM (iGLM) with

additional filtering regressors, for

example:

• RETROICOR set

• Tissue compartment signal

averages (CSF, WM, GM,

global)

• GLM applied to full offline data

versus real-time iGLM

• Whole brain offline nuisance

regression, versus nuisance

regression from 1D

neurofeedback signal in

real-time

• Piloting suggested to determine

which nuisance regressors are

best suited for the data

• Over specification of design

matrix (i.e. too many regressors)

is not recommended, as iGLM

parameter estimates will be

noisy and will take considerable

time to stabilise (see Misaki

et al., 2015)

(Continues)
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TABLE 1 (Continued)

Conventional method Real-time method Differences/notes Real-time recommendation

• Given the additional technical

challenge of processing

physiology traces in real-time,

RETROICOR nuisance

regression is not recommended

unless pilot data or new

evidence suggest otherwise

(8.2) Differential ROI to

(potentially) correct for global

effects caused by respiration

• An analogous step to real-time

differential ROI does not exist

for standard offline analysis

• Differential ROI calculations are

based on 1D ROI-averaged

signals

• Piloting suggested to determine

whether this is suited for

the data

• Care should be taken to ensure

that task-relevant information is

not subtracted from the

• More evidence is to be

gathered before this could be

considered a recommended

real-time processing step,

or not

(8.3) High frequency filtering or

adaptive Kalman filtering

• Standard high/low/band-pass

filtering is typically used offline

on whole brain data

• Adaptive Kalman filter

introduced for real-time and

implemented on 1D

neurofeedback signal

Kalman filter parameters should be

piloted, and defaults should not

be accepted as best for the data

9. Signal scaling

Global, proportional, and/or

grand mean scaling steps are

often applied to whole brain

time-series data (e.g. prior to

first level analysis in SPM and

FSL), which typically allows

the validity of analyses

between runs and subjects

Signal scaling is most often done

on the ROI-averaged 1D

neurofeedback signal, taking

historical time-series values into

account. Scaling methods

include:

• Temporal smoothing, as

described above in 5

• Using a dynamically updated

range based on prior

time-series data

Whole brain intensity scaling to

allow comparisons across runs/

subjects versus scaling the 1D

neurofeedback signal to prevent

abrupt changes to the display

seen by the subject

• Real-time signal scaling for

visual quality of the

neurofeedback signal is

recommended

• The specific scaling method

should be determined through

piloting

10. Model free denoising methods

Principal and/or independent

component analysis is often

applied to whole brain

time-series data in order to

extract statistically

independent spatial

components. These

components can be classified

as noise sources and

subsequently regressed from

the whole brain time-series

data. Examples include:

• MELODIC ICA

• ICA-AROMA

• aCompCorr

Model free methods are generally

not reported in real-time fMRI

analysis, although examples exist

(Esposito et al., 2003)

ICA is generally time-consuming

and requires (without some form

of regularisation) full datasets in

order to generate useful noise

components. This is a technical

challenge for real-time

implementation

ICA-based methods for real-time

denoising are generally not

recommended unless new

algorithms are developed with

accompanying evidence that

suggests otherwise

11. Offline quality checking

This offline step serves to report

features of the data that can

be (often visually) inspected

and compared to thresholds in

order to assess the overall

For real-time fMRI, offline quality

checking steps are not

standardised and hardly

reported. A minority of studies

investigate possible correlations

There would essentially be no

difference between standard

tools and metrics for offline

quality control of full datasets

and post hoc real-time datasets,

Offline data quality checking and

reporting is always

recommended, especially with

regards to sources of variance

that could not sufficiently be
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methods implemented to improve data quality for real-time versus

conventional fMRI. It should be noted, however, that some artefacts

like electromagnetic spikes or shimming errors could be of greater

importance for real-time analysis compared to conventional fMRI

analysis, since they could possibly be compensated for offline. This

possibility does not exist for neurofeedback applications, hence extra

care should be taken at the acquisition stage to try and avoid such

artefacts. Table 1 also lists possible approaches to this challenge using

real-time processing methods.

5.2.1 | Distortion correction

Geometric distortion effects, if addressed, are mostly accounted for

using specialised acquisition methods as presented in the previous

section, although correction through real-time processing is possible.

An example is the point spread function (PSF) mapping approach

developed by Zaitsev, Hennig, and Speck (2004) that is used in combi-

nation with parallel imaging techniques to allow fast and fully auto-

mated distortion correction of EPI. Note that this was implemented

on scanner infrastructure and not as part of an external real-time fMRI

software toolbox, and that it requires a reference PSF map scan. This

method was used in a rtfMRI-NF study at 3 T with multi-echo EPI by

Marxen et al. (2016). Another example is the dynamic, multi-echo dis-

tortion correction sequence implemented by Weiskopf et al. (2005),

also implemented on scanner infrastructure.

5.2.2 | Slice timing correction

Slice timing correction interpolates the data of different 2D slices

acquired at slightly different time points along the hemodynamic

response, such that the resulting 3D image represents brain activity

sampled at the same time point (Sladky et al., 2011). It has been

suggested that event-related analysis in fMRI is relatively robust to

possible slice timing problems in sequences with a TR ≤2 s (Poldrack

et al., 2011). With dynamic causal modelling (DCM), whose initial for-

mulations assumed a single time point sampling of all 2D slices in an

fMRI volume, Kiebel, Klöppel, Weiskopf, and Friston (2007) showed

with simulations that exclusion of slice timing correction leads to

larger deviations from the true connectivity parameters. They showed

further that this problem is easily overcome by including information

about temporal sampling in the dynamic causal model (explicitly as an

extra model level). While Koush et al. (2017) do not include slice-

timing correction in their pipeline, they specifically mention selecting

a short repetition time (1,100 ms) to limit the effects of slice-timing

differences in their implementation of DCM-based neurofeedback.

Although some rtfMRI-NF toolboxes allow real-time slice timing

correction through plugin or additionally developed functionality

(e.g. OpenNFT, Turbo-BrainVoyager), few rtfMRI-NF studies report

its use (Harmelech, Friedman, & Malach, 2015; Harmelech, Preminger,

Wertman, & Malach, 2013), which might be explained by reporting

discrepancies or by the generally short TR used in typical

neurofeedback studies. To our knowledge, no studies have been con-

ducted to determine its usefulness in rtfMRI-NF.

5.2.3 | 3D volume realignment

As one of the major noise sources in fMRI, head motion received

much attention during initial algorithm development in real-time fMRI.

Cox and Jesmanowicz (1999) developed a fast method for 3D image

registration in real-time that was incorporated into AFNI's real-time

fMRI module (Cox et al., 1995), while Mathiak and Posse (2001)

TABLE 1 (Continued)

Conventional method Real-time method Differences/notes Real-time recommendation

quality of spatial and

time-series aspects of whole

brain datasets. Useful tools

and metrics include:

• MRIQC

• QAP

• Framewise displacement

• DVARS

• Timeseries plots

between physiology or motion

traces and the neurofeedback

regulation paradigm

as long as it is done on data as

exported from the scanner in a

standard way, since real-time

exported data might contain

differences

corrected for in real-time but

could still skew the

neurofeedback learning

outcomes. Examples include:

• Reporting correlations between

head movement parameters

and the neurofeedback

regulation paradigm

• Reporting correlations between

physiology traces (and derived

RETROICOR regressors) and

the neurofeedback regulation

paradigm

• Implementing physiological

noise correction in post hoc

analyses

Abbreviations: AR, autoregressive; CSF, cerebrospinal fluid; DVARS, differential variance root mean squared; EMA, exponential moving average filter; EPI,

echo-planar imaging; FWHM, full width half max size of Gaussian smoothing kernel; FSL, software library; GLM, general linear model; GM, grey matter;

HMP, head movement parameter; HRV, heart rate variability; ICA, independent component analysis; iGLM, incremental general linear model; MVPA, multi-

variate pattern analysis; PCA, principal component analysis; RETROICOR, retrospective image-based correction; ROI, region of interest; RT, real-time; RVT,

respiratory volume per time; SNR, signal-to-noise ratio; SPM, software library; TR, repetition time; WM, white matter; Y, yes.
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developed the EMOTIONAL FIRE algorithm to perform 3D rigid body

realignment as part of the FIRE rtfMRI package (Gembris et al., 2000).

Most other rtfMRI-NF toolboxes or custom software implementations

allow some form of 3D volume realignment, for example, OpenNFT

(Koush et al., 2017a) which uses a faster version of SPM12's

spm_realign routine (SPM, www.fil.ion.ucl.ac.uk/spm), or FRIEND

(Basilio et al., 2015) that incorporates FSL's MCFLIRT algorithm (FSL,

https://fsl.fmrib.ox.ac.uk/fsl).

Regression of the six HMP time courses (and their framewise

derivatives and/or squares derived by Volterra expansion) is a typical

step used in conventional fMRI pre-processing to correct for residual

motion effects (Friston et al., 1996). This can be implemented in the

incremental or cumulative GLMs typically used in real-time fMRI, and

some studies have reported its use (Hamilton et al., 2016; Harmelech

et al., 2013, 2015; Kim, Yoo, Tegethoff, Meinlschmidt, & Lee, 2015;

Yamashita, Hayasaka, Kawato, & Imamizu, 2017).

5.2.4 | Spatial smoothing

Spatial smoothing of fMRI volumes with a Gaussian kernel is typically

recommended to increase the SNR for detection of signals with a spa-

tial extent larger than a few voxels (Poldrack et al., 2011). Given that

the neurofeedback signal is typically derived (per volume) from aver-

aging the signal intensity over multiple voxels within an ROI, a basic

form of spatial smoothing is inherently applied. It could be argued that

this negates the need for an extra spatial smoothing step in the real-

time fMRI processing pipeline, but further research is necessary to

determine this argument's validity. Numerous rtfMRI-NF studies

report spatially smoothing their fMRI data before calculating the

neurofeedback signal, while in some cases it might be explicitly

excluded, for example, neurofeedback based on MPVA of voxels

within an ROI, or for small regions of interest like the amygdala

imaged at high field strengths (Sladky et al., 2018).

5.2.5 | Linear detrending/drift removal

Correcting for signal drift is a relatively standard step in real-time

fMRI and could form part of the real-time GLM procedure, where a

linear term and/or basis set of low frequency drift terms are included

as regressors, acting as a high-pass filter. An inherent correction for

baseline drift is also executed in some percentage signal change

neurofeedback paradigms during feedback signal calculation, due to

the cumulative global mean being subtracted from the averaged ROI

BOLD signal (e.g. deCharms et al., 2005; Garrison et al., 2013). Most

major rtfMRI-NF toolboxes allow some form of low-frequency drift

correction. In a recent study, Kopel et al. (2019) compared the perfor-

mance of commonly used online detrending algorithms with regards

to their ability to eliminate drift components and artefacts without

distorting the signal of interest. They found performance to be similar

for exponential moving average (EMA), incremental general linear

model (iGLM) and sliding window iGLM (iGLMwindow), although the

latter option was proposed for future studies.

5.2.6 | Temporal filtering or averaging

Further filtering of real-time fMRI data is possible, for example, with

the exponential moving average filter employed by Koush et al. (2012)

to remove both high frequency noise and low frequency drift from

the BOLD signal, or by including regressors relating to a specific fre-

quency pass-band in the real-time GLM. Averaging of timepoints

before calculating the neurofeedback signal, using a moving window

approach, is another step implemented in several rtfMRI-NF studies

(e.g. Young et al., 2014).

5.2.7 | Outlier or spike removal

Removal or replacement of outlier volumes or data based on some

quality criteria (whether defined visually or according to data calcula-

tions) is a method employed in conventional fMRI analysis to improve

SNR (Power et al., 2014). Similar steps have been taken in real-time

fMRI, for example, in the BioImage Suite and custom Matlab imple-

mentation of Garrison et al. (2013), where a volume is classified as an

outlier and replaced by the previous volume if mean activation in the

ROI differed by more than 10% from the previous measurement.

Koush et al. (2012) implemented an adapted Kalman filter, by applying

nonlinear modifications, that define outliers by their irregular statisti-

cal properties in order to achieve spike detection and high frequency

filtering. This algorithm has been incorporated into the open-source

OpenNFT toolbox as part of its standard real-time processing pipeline

(Koush et al., 2017a). Additionally, the Kalman filter requires only the

current datapoint and previous state information, as opposed to all

previous data points (or a subset thereof), and therefore does not add

much latency to the real-time pipeline. Lastly, outlier rejection based

on a standardised voxel intensity threshold has also been reported by

McCaig, Dixon, Keramatian, Liu, and Christoff (2011), in which they

exclude voxels with a standardised intensity of z < −2.0 from the real-

time ROI analysis in order to reduce noise associated with out-of-

brain voxels and signal dropout.

5.2.8 | Accounting for global effects through
differential feedback

Feedback on the difference signal between ROIs has been motivated

as a way to cancel out global effects like global intensity changes cau-

sed by respiration-induced artefacts (deCharms et al., 2004; Weiskopf

et al., 2004; Weiskopf, Mathiak, et al., 2004). In addition to the main

ROI selected for neurofeedback, a reference or background ROI is

typically defined as a task-unrelated axial slice or 3D ROI, in which

the average signal is calculated and subtracted from the main ROI.
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Alternatively, defining the reference ROI as another task-related

region allows subjects to attempt more specific bidirectional control

of brain activity due to general regulation effects being cancelled out,

for example, using both the supplementary motor area and the para-

hippocampal place area as ROIs for PSCNef (Weiskopf, Scharnowski,

et al., 2004). These points have motivated several studies to opt for

differential feedback over standard (non-differential) feedback,

although a limitation would be that global effects may in fact vary

substantially across the brain and that differential feedback might

actually decrease SNR if activation related information is contained

within the reference ROI (Marins et al., 2015). To our knowledge, no

experiments have been conducted and published that investigate the

relationship between differential feedback and SNR of the feedback

signal, thus further research would benefit this area.

5.2.9 | Physiological noise correction (respiration
and heart rate)

Denoising physiological confounds has been approached in a variety

of ways in rtfMRI-NF, even though most studies do not report any

correction for physiological noise. In those that do, differential feed-

back is most often used as a potential correction method for global

effects caused by respiration (although accompanied by above-

mentioned caveats). Filtering can also remove some physiology-

induced variance, with the modified Kalman filter by Koush et al. (2012,

2017a) being a special case where high-frequency spikes resulting

from changes in head position or breathing can be filtered out with no

prior assumption about the specific noise model. Another option to

remove physiology-related variance is to regress the spatial-averaged

time course of compartments like white matter or the ventricles from

the signal of interest, that is, a real-time version of tissue-based nui-

sance regression as conventionally used in offline analyses. Spetter

et al. (2017) calculated partial correlation of areas of interest with

white matter and used these results to regress out any unwanted fluc-

tuations before the neurofeedback signal was calculated, and Yama-

shita et al. (2017) included averaged signals from white matter, grey

matter and CSF as nuisance signals in their real-time regression

analysis.

Model-based approaches follow the work done by Glover

et al. (2000), Birn et al. (2006) and Chang, Cunningham, and

Glover (2009) on retrospective image correction (RETROICOR), respi-

ratory volume per time (RVT) and heart rate variability (HRV), respec-

tively, where concurrent recordings of the subject's breathing and

heart rate are used to create nuisance regressors used in subsequent

real-time linear modelling. With physiological signal monitoring built

into AFNI's real-time plugin (Bodurka et al., 2009), Misaki et al. (2015)

implemented the first real-time RETROICOR and RVT physiological

regression as an extension, using a GPU to denoise over 100 k voxels

(i.e. whole brain data) in under 300 ms per volume. Hamilton

et al. (2016) reported including two physiological noise regressors in

their real-time regression analysis implemented in custom C/C++ and

Matlab, with no further detail provided.

Time synchronisation of peripheral recordings and fMRI data is a

legitimate challenge to model-based correction of breathing and heart

rate variability artefacts in real-time, unless the challenge is avoided

altogether by using advanced processing power and full recalculation

of all available data for every iteration, as was done by Misaki

et al. (2015). Some global time-stamping solutions have been

implemented to allow synchronisation of concurrent physiology and

fMRI recordings (Hellrung et al., 2015; Smyser et al., 2001;

Voyvodic, 2011). This typically requires a custom-programmed soft-

ware package dedicated to managing time-synchronisation of multiple

concurrent inputs and outputs, for example, the CIGAL software

(Voyvodic, 1999) which could run modules in parallel for the main

stimulus event, a button-press hardware input, an analog data input

for physiological recordings, the scanner trigger, eye-tracker record-

ings of eye position and pupil diameter and more.

Lastly, we found no examples of studies investigating and com-

paring the efficacy of different real-time physiological noise removal

strategies or their effect on the neurofeedback signal in rtfMRI-NF,

although regarding offline correction, it has been suggested that

motion or physiological fluctuations do not drive neurofeedback

learning effects (Hellrung et al., 2018).

5.2.10 | Other real-time processing methods

Global signal regression, although a controversial denoising step in off-

line fMRI processing (Murphy & Fox, 2017), can be used in real-time

to remove global fluctuations common to large areas of the brain and

hypothesised to be of non-neuronal origin. This would typically

involve including the cumulative global mean signal in the real-time

GLM and regressing that out of the averaged ROI BOLD signal of

interest, similar to CSF and white matter compartment regression.

Independent component analysis (ICA) has been a very effective

tool in finding nuisance networks in resting state fMRI, which can be

regressed out of the fMRI time series for effective denoising. Esposito

et al. (2003) were the first to implement a real-time ICA algorithm

using a sliding-window approach on a limited amount of axial brain

slices, as a plugin to Turbo-BrainVoyager. Although this was used to

generate quasi-stationary activation maps and accompanying time

courses, this demonstration sufficed to highlight the possibility of gen-

erating the spatiotemporal characteristics of nuisance signals for real-

time denoising. This functionality, however, has not extended towards

wider exploration or adoption.

Voxel efficiency scaling was proposed and implemented by Hinds

et al. (2011) in their software toolbox Murfi as a way to avoid the

undesired noise weighting resulting from standard direct averaging

of all voxels within the neurofeedback region of interest. Rather, a

z-score weighted average of the ROI voxels were used for

neurofeedback signal calculation, which they found to result in

increased SNR of the neurofeedback signal compared to a post hoc

calculation method as well as the standard direct averaging method.

Lastly, multi-echo EPI processing methods in real-time have also

shown promise in increasing the SNR of the real-time BOLD signal,
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specifically in areas of the brain where the local T2* is not close to the

standard EPI echo time of ~30 ms selected for optimal BOLD contrast

at 3 T. The multi-echo acquisition methods reviewed earlier are typi-

cally accompanied by echo summation schemes that allow real-time

increases in BOLD sensitivity. Posse et al. (2003) implemented a

fixed, linear, TE-weighted summation of echo signals, a processing

scheme later also used by Marxen et al. (2016) in their

neurofeedback study of the amygdala. After multi-echo image acqui-

sition and real-time distortion correction of all echo images,

Weiskopf et al. (2005) used a BOLD sensitivity curve for weighted

combination. Several other combination schemes are possible

(e.g. Poser, Versluis, Hoogduin, & Norris, 2006), and in related work

we have investigated the comparative performance of various real-

time combination schemes in terms of tSNR distributions (Heunis,

Lamerichs, Song, Zinger, & Aldenkamp, 2019). Further work is neces-

sary to determine their comparative efficacy in terms of extended

quality metrics important to rtfMRI-NF.

5.2.11 | Further quality control of the feedback
signal

Some methods do not consist of efforts to denoise the real-time

BOLD signal of specific nuisance fluctuations, but rather to improve

the quality of data acquisition or feedback presentation in real-time.

Offline methods are also used as post hoc data quality checks.

Temporally averaging and scaling the feedback signal are often

used to prevent abrupt changes to the signal presented to the subject

in real-time. For example, Garrison et al. (2013) used a sliding win-

dow of five volumes for temporal smoothing of the mean ROI activa-

tion intended for neurofeedback. OpenNFT (Koush et al., 2017a)

uses a dynamic range, defined by the average of the 5% highest and

lowest acquired activity time points, to scale the dynamic feedback

signal.

Lastly, several quality control methods have been proposed to

determine whether respiration or heart rate fluctuations may have

had any significant effect on the neurofeedback signal calculation that

could bias the data. These should be separated from real-time den-

oising algorithms which aim to remove the noise/artefact before the

feedback signal is calculated and displayed to the subject. For exam-

ple, Sorger et al. (2018) collect real-time cardiac and respiratory traces

and analyse them after the neurofeedback session to investigate pos-

sible correlations with the task design or other BOLD fluctuations.

Physiological traces can also be incorporated into offline physiological

denoising (e.g. RETROICOR) when assessing the BOLD signal for

neurofeedback-induced changes over time (e.g. Sulzer et al., 2013). In

a 7 T study investigating the influences of motion, heart rate, heart

rate variability, and respiratory volume on amygdala self-regulation

learning effects, Hellrung, Borchardt, et al. (2018) found that neither

physiological fluctuations nor motion artefacts were driving factors

in learning success. Even so, they did find notable differences in physi-

ological measures between rest and regulation conditions within

participants, and recommended the clear reporting of these measures

alongside offline physiological noise correction.

6 | REPORTING PRACTICES REVISITED

Apart from summarising the processing methods used in 128 recent

rtfMRI-NF studies, Figures 6 and 7 in Section 4 highlighted the

likelihood that many of the studies' implemented methods remain

unreported.

This challenge is not limited to the field of real-time fMRI

neurofeedback and has indeed been described more generally for

MRI, including efforts to address it. Nichols et al. (2017) aimed at

understanding and improving good practice and reporting standards

by creating the COBIDAS guidelines for conducting and reporting all

aspects of MRI-based neuroimaging studies. Related approaches

exist in fMRI neurofeedback research, for example, in the form of

the TIDieR checklist (Randell, McNamara, Subramanian, Hood, &

Linden, 2018) for describing studies in standard terms of ‘diagnostic

groups, dose/duration, targeted areas/signals, and psychological strate-

gies and learning models’. The CRED-nf checklist (Ros et al., 2019) is

another laudable example that proposes a standardised checklist that

outlines best practices for experimental design and reporting of

neurofeedback studies.

Using our improved understanding of real-time fMRI

neurofeedback processing methods from Section 5, as well as build-

ing on the above-mentioned work to improve reporting practices, we

have created a COBIDAS-inspired template to aid researchers in

reporting the methods used when calculating their feedback signals.

This template checklist should act as a guideline, and we acknowl-

edge that this is not an exhaustive list but one that could mature over

time with community input. It was compiled in the vein of the

COBIDAS best practice effort and would best be interpreted as an

addition to the COBIDAS reporting guidelines for real-time fMRI.

This template is displayed in Table 2, and an online version is avail-

able at https://osf.io/kjwhf/.

7 | DISCUSSION, RECOMMENDATIONS
AND FUTURE PERSPECTIVE

In this work, our goal was to shed light on the status of data quality

challenges, denoising practices and methods reporting in the field of

real-time fMRI neurofeedback. Prior studies in conventional fMRI

have shown the implications of not sufficiently removing noise signals

or not accounting for confounding effects (e.g. Gitelman et al., 2003;

Power et al., 2012; Rangaprakash et al., 2018; Van Dijk et al., 2012).

We aimed to investigate this in the domain of real-time fMRI

neurofeedback and present our findings such that researchers can be

thoroughly informed about the quality of their neurofeedback signal

of interest. The aim is to assist researchers in designing rtfMRI-NF

studies that avoid (as far as possible) sham learning and, subsequently,
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TABLE 2 A COBIDAS-inspired template for the reporting of processing and quality control steps in real-time fMRI neurofeedback

Category Reporting suggestions

General (items apply to all categories) • Report the space in which each real-time processing is performed (i.e. native volume, native

surface, MNI volume, template surface, native structural, other)

• Report whether real-time processing steps are executed on the whole brain, within a region of

interest (ROI), or on the calculated neurofeedback signal

• Report the order in which real-time pre-processing steps were implemented

• Provide reasoning if steps were not implemented

• For custom implementations, specify details

Software (items apply to all categories where

software use is reported)

• Software used for real-time processing (e.g. Turbo BrainVoyager, AFNI, SPM + Matlab, OpenNFT,

BART, FRIEND, BioImage Suite, Other, Custom)

• Software used for offline processing (with clear distinction from real-time processing)

• Indicate when default settings for the implemented software were used

• For each software used, be sure to include version number, revision number, URL and Research

Resource Identifier

• For custom software/scripts, provide dependencies and link to code if possible

Slice time correction • YES/NO

• Name of software/method

• Whether performed after or before motion correction

• Reference slice

• Interpolation type and order (e.g. third order spline or sinc)

Motion correction • YES/NO

• Name of software/method

• Use of non-rigid registration, and if so the type of transformation

• Use of real-time motion susceptibility correction (fieldmap based unwarping), as well as the

particular software/method

• Reference scan (e.g. a template volume from the pre-real-time scans or the first volume of the

real-time session)

• Image similarity metric (e.g. normalised correlation, mutual information etc.)

• Interpolation type (e.g. spline, sinc), and whether image transformations are combined to allow a

single interpolation

• Use of any slice-to-volume registration methods, or integrated with slice time correction

• Explanation of software and hardware used in the case of prospective motion correction

Function–structure (inter-subjective)

co-registration

• YES/NO

• Name of software/method

• Type of transformation (rigid, non-linear); if non-linear, type of transformation

• Cost function (e.g. correlation ratio, mutual information, boundary-based registration etc.)

• Interpolation method (e.g. spline, linear)

• Distinguish between coregistration applied pre-real-time (e.g. to support real-time operations like

tissue masking) and coregistration done in real-time

(Gradient) distortion correction • YES/NO

• Specify if implemented as part of real-time acquisition sequence on (as opposed to as a real-time

processing step)

Spatial smoothing • YES/NO

• Name of software/method

• Size and type of smoothing kernel

• Filtering approach, for example, fixed kernel or iterative smoothing until fixed FWHM

Nuisance regression • YES/NO

• Specify software and GLM algorithm type (e.g. cumulative, windowed, incremental) with

applicable parameters (e.g. window length)

• If head motion parameters are included, report the expansion basis and order (e.g. first temporal

derivatives; Volterra kernel expansion)

• If tissue signals are included, report the tissue type (e.g. whole brain, grey matter, white matter,

ventricles), the tissue definition (e.g. a priori seed, automatic segmentation, spatial regression) and

signal definition (e.g. mean of voxels, first singular vector etc.)

• Report any other included regressors and how they are calculated

Detrending/drift removal • YES/NO

• Name of software/method (e.g. nuisance regression using a real-time GLM with linear and/or

cosine basis set regressors; exponential moving average filter; custom filter)

• If nuisance regression is used, specify the order of regressors and/or cutoff frequency

(Continues)
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TABLE 2 (Continued)

Category Reporting suggestions

• If nuisance regression is used, specify GLM type (cumulative, windowed, incremental) with

applicable parameters (e.g. window length)

Physiological noise removal • YES/NO

• Name of software/method

• If differential regions of interest are used (e.g. to cancel global effects of respiration) specify ROI

definition and how the difference is calculated per time step

• If respiratory and heart rate information are included in real-time nuisance regression with a GLM,

report the modelling choices (e.g. RETROICOR; cardiac and/or respiratory response functions;

partial correlation to compartment signals) and number of computed regressors

• If RETROICOR-based nuisance regression is used, specify the software/method for computing

the regressors and specify how subject physiology traces are accessed in real-time

• Distinguish clearly between real-time physiological noise correction and offline correction and

quality checking

High frequency filtering • YES/NO

• Name of software/method (e.g. modified low-pass Kalman filter as implemented in OpenNFT to

remove high frequency spikes related to subject physiology)

Volume censoring (a.k.a ‘scrubbing’ or
‘despiking’)

• YES/NO

• Name of software/method

• Criteria for censoring (e.g. real-time framewise displacement threshold, DVARS threshold,

percentage BOLD change threshold, or standardised voxel intensity threshold)

• Use of censoring (e.g. temporal censoring regressor in real-time GLM) or interpolation; if

interpolation, method used (e.g. spline, spectral estimation)

Serial correlations • YES/NO

• Name of software/method (e.g. a first-order autoregressive model AR(1) as implemented in

OpenNFT)

Temporal averaging • YES/NO

• Name of software/method (e.g. a 5-point moving windowed average applied to the

neurofeedback signal)

Intensity normalisation/scaling • YES/NO

• Name of software/method

• Scaling factor description (e.g. z-score normalisation per voxel using the past n volumes;

whole-brain intensity scaling to a mean image intensity of constant k; voxel efficiency scaling to

avoid undesired noise weighting in direct averaging of all voxels within the neurofeedback ROI;

scaling of the neurofeedback signal to prevent sudden changes in visual feedback display)

• Where applicable, provide equations for the scaling of each time step of the volume/ROI/signal

Real-time data quality control • YES/NO

• Name of method (e.g. head motion parameter or physiology trace feedback to subject; real-time

display of quality control measures like tSNR to researcher; adaptive acquisition and processing

paradigms)

• Name of software (e.g. AFNI, FIRMM, rtQC, BART, other, custom)

• Where applicable, provide equations and code for calculating the displayed or monitored

parameters

Offline data quality control • YES/NO

• Name of method/software to check similarity between real-time and offline exported versions of

the neurofeedback session data

• Name of method/software to calculate general image quality metrics on neurofeedback

session data

• Report if offline physiological noise correction was applied in the assessment of subject-specific

neurofeedback training effects

• Report if motion parameters or other physiological signals were used post hoc to test as

confounds for differences between neurofeedback training groups, or to test for similarities with

the task or other fluctuations

Abbreviations: AR, autoregressive; CSF, cerebrospinal fluid; DVARS, differential variance root mean squared; EMA, exponential moving average filter; EPI,

echo-planar imaging; FWHM, full width half max size of Gaussian smoothing kernel; FSL, software library; GLM, general linear model; GM, grey matter;

HMP, head movement parameter; HRV, heart rate variability; ICA, independent component analysis; iGLM, incremental general linear model; MVPA, multi-

variate pattern analysis; PCA, principal component analysis; RETROICOR, retrospective image-based correction; ROI, region of interest; RT, real-time; RVT,

respiratory volume per time; SNR, signal-to-noise ratio; SPM, software library; TR, repetition time; WM, white matter; Y, yes.
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incorrect inferences, and improves (as much as possible) the methods

reproducibility of their work through transparent reporting.

7.1 | Existing denoising methods: Acquisition and
processing

Literature showed that methods development during the past two

decades has delivered multiple acquisition and processing methods to

the researcher conducting an rtfMRI-NF study, implemented in the

form of custom sequences and tools including Turbo-BrainVoyager,

AFNI, OpenNFT, FRIEND and BART. For acquisition real-time shim-

ming, spiral-in/out and multi-echo EPI (including multi-band)

approaches show promise in reducing susceptibility induced geomet-

ric distortion and increasing BOLD sensitivity, and are recommended

for future implementation.

From a processing perspective, real-time denoising pipelines

showed high similarity to offline counterparts, although some trade-

offs are made because of the time limitation and the iterative nature

of real-time processing. The effects of inclusion or exclusion of spe-

cific denoising steps in the real-time pipeline on the quality of the

neurofeedback signal were found to be unexplored except for a single

study (Kopel et al., 2019). Table 1 summarised the available real-time

processing methods and made conservative recommendations based

on the available evidence, mostly commenting that methods should

be piloted to determine their validity for each specific study. At a min-

imum, 3D volume realignment, drift removal, and signal scaling could

be applied, while time-point smoothing, frequency filtering, and simple

nuisance regression using an iGLM could be considered, provided that

these methods are first piloted and their effects understood.

Researchers are advised against implementing a real-time iGLM with

too many nuisance regressors to avoid overfitting, regressor collinear-

ity and noisy parameter estimates.

It remains difficult to make further empirically supported recom-

mendations for specific denoising pipelines, apart from such general

recommendations that are mostly based on evidence from conven-

tional fMRI. This highlights the need for new methodological studies

to quantify denoising step effects and compare pipelines. Collection

of peripheral physiological data (e.g. heart rate, respiration rate, eye

movements) is always recommended when possible, either to be used

for real-time denoising or otherwise to rule out as confounds during

offline analysis.

7.2 | Quality control in real-time fMRI
neurofeedback

Quality control and best practices in rtfMRI-NF is markedly

unexplored and unreported compared to conventional fMRI, where

initiatives like MRIQC (Esteban et al., 2017), QAP (Processed Con-

nectomes Project, 2014), COBIDAS (Nichols et al., 2017) support

improved quality control and methods reproducibility. Although some

studies report the use of best practices and data quality metrics to

assess their neurofeedback signal (Koush et al., 2012; Stoeckel

et al., 2014; Sorger et al., 2018; Zilverstand et al., 2017), it is

unreported in the majority of the literature. Furthermore, other poten-

tial data quality issues like differences between offline and real-time

acquired data, or geometric distortion unaccounted for during acquisi-

tion or real-time processing, could further skew the data, yet they

remain unreported. It is our perspective that a concerted effort is nec-

essary to establish a practical set of rtfMRI-NF quality metrics and

methods that allow their calculation, visualisation, comparison and

reporting. This could expand on the work proposed by Stoeckel

et al. (2014) and Thibault et al. (2018).

7.3 | Methods reporting and best practice
adoption

Figure 6 showed that less than a third of the studies reported

implementing slice timing correction, spatial smoothing, regression of

HMPs, temporal averaging or filtering, outlier or spike removal, using

a differential ROI to account for global effects, and further physiologi-

cal noise correction. While this in itself is not necessarily indicative of

insufficient data quality (recall the general absence of empirical evi-

dence for methods recommendations), this low percentage of studies

could still raise concern about the general quality of the real-time

fMRI neurofeedback signal. Furthermore, it does indicate a problem

with how methods are typically reported, which is an effective hin-

drance to methods reproducibility.

Ultimately, we should aim for future studies to have the required

methodological rigour that allows delineation of the various mecha-

nisms that could drive neurofeedback effects. This creates the impera-

tive that we report accurately and transparently on acquisition,

processing and any other steps taken to remove noise fluctuations

from and improve the quality of real-time fMRI and the

neurofeedback signal. As a starting point, studies could include a

checklist reporting the implementation of the real-time processing

steps listed in this work, as summarised in Table 2 above. An online

version of this COBIDAS-inspired checklist is available at: https://osf.

io/kjwhf/.

7.4 | Future perspective

Moving towards a scenario where the hypothesised usefulness of

rtfMRI-NF in a clinical environment can be investigated and demon-

strated transparently will require studies with reproducible methods

and results. In light of this, we echo the recommendations made by

Thibault et al. (2018) regarding reproducible science. Where possible,

rtfMRI-NF studies with a clear hypothesis should be pre-registered or

follow a registered report submission process. Additionally, the con-

tinued use and development of open source software solutions based

on widely used neuroimage processing tools, like OpenNFT (SPM),

FRIEND (FSL) or AFNI's real-time plugin, are recommended together

with data sharing on platforms like OpenNeuro (https://openneuro.
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org/). In this way, both published data and methods can be queried by

multiple researchers, paving the way for reproducible methods, results

and inferences.
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