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This study demonstrates the feasibility of establishing a natural compound

supply chain in a biorefinery. The process starts with the biological or chemical

hydrolysis of food and agricultural waste into simple and fermentative sugars,

followed by their fermentation into more complex molecules. The yeast

strain, Yarrowia lipolytica, was modified by introducing high membrane

affinity variants of the carotenoid cleavage dioxygenase enzyme, PhCCD1,

to increase the production of the aroma compound, β-ionone. The initial

hydrolysis process converted food waste or sugarcane bagasse into nutrient-

rich hydrolysates containing 78.4 g/L glucose and 8.3 g/L fructose, or 34.7 g/L

glucose and 20.1 g/L xylose, respectively. During the next step, engineered

Y. lipolytica strains were used to produce β-ionone from these feedstocks.

The yeast strain YLBI3120, carrying a modified PhCCD1 gene was able to

produce 4 g/L of β-ionone with a productivity of 13.9 mg/L/h from food

waste hydrolysate. This is the highest yield reported for the fermentation of

this compound to date. The integrated process described in this study could

be scaled up to achieve economical large-scale conversion of inedible food

and agricultural waste into valuable aroma compounds for a wide range of

potential applications.
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Introduction

While the climate change and the COVID-19 pandemic
are exacerbating the global supply chain disruption, a
significant amount of organic waste is being deposited
in landfills (Papargyropoulou et al., 2014; Goldthau and
Hughes, 2020; Falkendal et al., 2021; Lo et al., 2021). It
is estimated that one third of food intended for human
consumption, 1.3 billion tons annually, is lost or wasted
(Gustavsson et al., 2011; Kummu et al., 2012). In addition,
most waste generated by the food processing industry
contains lignocellulose, such as sugarcane bagasse, wheat
straw, and cornstalk (Ravindran and Jaiswal, 2016). These
waste products represent the most abundant renewable
carbon resource in the world (Saini et al., 2015; Cho et al.,
2020). Strategies integrating organic waste management and
biorefinery processes could facilitate nutrient recovery and
the production of chemicals, potentially stabilizing global
food-supply chains (Lin et al., 2013; Xiong et al., 2019; Leong
et al., 2021).

Plant-derived terpenoid flavor and fragrance compounds
are widely used in the aroma industry, with demand rapidly
increasing (Schempp et al., 2018; Chen et al., 2020). However,
low yields and high costs limit the viability of directly extracting
terpenoids from plants and other naturally occurring sources
(Liu and Nielsen, 2019). Converting natural raw materials
into aroma compounds utilizing microorganisms generally
recognized as safe (GRAS) represents a promising approach for
the production of aroma compounds from renewable biomass
(Berger and Zorn, 2007).

Genetically engineering microbial cells for the biosynthesis
of flavor and fragrance compounds is an emerging sustainable
alternative to traditional chemical synthesis or plant-based
extraction (Schempp et al., 2018; Chen et al., 2020). β-ionone
is an aroma compound that is widely used in the food
and cosmetic industries. It is also a key intermediate in the
production of vitamins A, E and K (Lalko et al., 2007; Gonzalez-
Verdejo et al., 2015; Paparella et al., 2021). The molecule is an
apocarotenoid that is derived from β-carotene, a C40 terpenoid
formed by carotenoid cleavage dioxygenases (CCDs) (Simkin
et al., 2004; Werner et al., 2019).

Microbial production of β-ionone was first demonstrated
in Saccharomyces cerevisiae following the introduction of
the β-carotene biosynthesis pathway from Xanthophyllomyces
dendrorhous and the raspberry RiCCD1 gene (Beekwilder et al.,
2014). Other microbes, such as Escherichia coli (Zhang et al.,
2018) and Yarrowia lipolytica (Czajka et al., 2018; Lu et al., 2020)
have been engineered to heterologously biosynthesize β-ionone.
In these systems, the highest reported β-ionone yields were
0.5 g/L in E. coli (Zhang et al., 2018), 0.4 g/L in S. cerevisiae
(Simkin et al., 2004; Werner et al., 2019), and 1.0 g/L in
Y. lipolytica (Lu et al., 2020).

Y. lipolytica is a GRAS yeast that, due to its endogenous
mevalonate pathway (MVA), high capacity to generate acetyl
coenzyme A, efficient lipid metabolism, and wide substrate
scope, is rapidly emerging as a promising tool for the production
of terpenoids (Ma et al., 2019; Li et al., 2021; Zhang et al.,
2021). Metabolic engineering strategies and synthetic biology
tools raise the possibility of redirecting microbial carbon
fluxes in Y. lipolytica to create efficient cellular pathways for
the production of natural compounds (Schwartz et al., 2016;
Liu et al., 2022). Using a modular approach, we previously
engineered the Y. lipolytica strain YLBI3118, which was able to
produce β-ionone at a titer of 1.0 g/L in a 3-L fermenter using
fed-batch fermentation. In those experiments, we also noted that
a significant proportion of β-carotene was not converted into
β-ionone (Lu et al., 2020).

Recent studies in the literature pointed to potential solutions
to overcome the limited efficiency of the process. (1) The
improved membrane affinity of the Petunia hybrida CCD
enzyme (PhCCD1) was found to enhance the conversion
of β-carotene into β-ionone in S. cerevisiae (Werner et al.,
2019). (2) Reports supporting the use of Y. lipolytica for the
production of high value-added chemicals from food waste (Gao
C. et al., 2016; Li et al., 2022; Lopes et al., 2022). Based on
these observations, we introduced the modified PhCCD1 gene
into the YLBI3118 strain. As demonstrated here, the resulting
Y. lipolytica strains produced β-ionone at an improved yield
from food waste and sugarcane bagasse. This work describes
the integrated process of converting organic waste streams into
valuable commercial flavors and fragrances.

Materials and methods

Strains, media, and culture conditions

E. coli DH5α was used for cloning and plasmid construction.
It was cultured in lysogeny broth (10 g/L of tryptone, 5 g/L
of yeast extract and 10 g/L of sodium chloride) supplemented
with 50 mg/mL of ampicillin at 37◦C under constant shaking
of 250 rpm. Y. lipolytica strains were cultured in modified
yeast extract peptone dextrose (YPD) medium (YPDm; 10 g/L
of yeast extract, 20 g/L of tryptone and 20 g/L of glucose)
or organic waste hydrolysate. A synthetic dextrose medium
containing 6.7 g/L of yeast nitrogen base, 0.62 g/L of drop-
out supplement lacking leucine, 20 g/L of glucose, and 5 g/L
of ammonium sulfate was used for the selection of strains
carrying the introduced biochemical pathway. Yeast strains
were incubated with shaking (250 rpm) at 30◦C. For plate
cultivation, 2% agar was added to the culture medium. For
β-ionone fermentation, yeast strains were incubated in 250-
mL flasks containing 25 mL of YPDm medium and 10% (v/v)
dodecane with shaking (250 rpm) at 20◦C.
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Construction and verification of
engineered Y. lipolytica strains

Plasmids used in this study are listed in Table 1, while
primers used for the construction of these plasmids are
listed in Supplementary Table 1. The original clustered
regularly interspaced short palindromic repeats (CRISPR)-
Cas9-mediated genome editing plasmid, pCAS1yl, was a kind
gift from Prof. Sheng Yang (Gao S. et al., 2016). The 20-
nucleotide sequence at the 5′-end of the guide RNA was
modified for gene unit integration using the oligonucleotides
listed in Supplementary Table 1. The PhCCD1 expression
cassette was constructed as described previously (Lu et al., 2020).
Site directed mutagenesis or the amino-terminal addition of
membrane insertion peptide was performed by overlap-PCR.
The selection marker Leu2, amplified from pINA1269, was used
to monitor gene unit integration. The DNA fragments were
assembled by Gibson assembly (Gibson et al., 2009). The created
plasmids were linearized by NotI digestion. The transformation
of the linear plasmid DNA fragments into Y. lipolytica was
performed using the Frozen-EZ Yeast Transformation II Kit
(Zymo Research Corporation, Orange, CA, United States). The
transformation mix was spread onto a selection plate and
cultured at 30◦C for 4 days. Details on the plasmid construction
are given in the Supplementary File.

The previously constructed YLBI3118 strain (Lu et al.,
2020) was used as the parent strain in the current study. The
acyl-coenzyme A oxidase 4 (POX4) locus was selected as the
site for gene integration. One of three integration cassettes
[PhCCD1 (K164L), lck-PhCCD1, and lck-PhCCD1 (K164L)]
was integrated into the POX4 locus of the YLBI3118 strain
to generate the YLBI3120, YLBI3121, and YLBI3122 strains.
Yeast strains used in this study are listed in Table 2. Colonies
were PCR screened for their genotype using the KOD FX
DNA Polymerase (Toyobo, Osaka, Japan) and the primers listed
in the Supplementary Table 2. To verify the genetic stability
of the strains, three colonies of YLBI3120, YLBI3121, and

TABLE 1 Plasmids used in this work.

Plasmids Characteristics Source

pCAS1yl-POX4 POX4 guide RNA module and Cas9
expression cassette in pMCSCen1

This work

pUC19-POX4-HA Up/downstream of POX4 locus in
pUC19

This work

pUC19-POX4-Leu2 Leu2 gene expression cassette in
pUC19-POX4-HA

This work

pUC19-CCD1m PGPD2-CCD1 (K164L)-mig1t in
pUC19-POX4-Leu2

This work

pUC19-lck-CCD1 PGPD2-lck-CCD1-mig1t in
pUC19-POX4-Leu2

This work

pUC19-lck-CCD1m PGPD2-lck-CCD1 (K164L)-mig1t in
pUC19-POX4-Leu2

This work

TABLE 2 Y. lipolytica strains used in this work.

Strains Characteristics Source

YLBI3118 A β-ionone-producing strain
engineered from the Po1f strain

Lu et al., 2020

YLBI3119 YLBI3118 POX4::Leu2 expressed
cassette

Lu et al., 2020

YLBI3120 YLBI3118, POX4::Leu2-PGPD2-CCD1
(K164L)-mig1t

This work

YLBI3121 YLBI3118,
POX4::Leu2-PGPD2-lck-CCD1-mig1t

This work

YLBI3122 YLBI3118,
POX4::Leu2-PGPD2-lck-CCD1

(K164L)-mig1t

This work

YLBI3122 were cultivated in YPDm medium for 12-days and
re-screened using the same PCR conditions used for plasmid
construction with the primers listed in Supplementary Table 2.
The PCR products were sequenced at Sangon Biotech Co., Ltd.
(Shanghai, China).

Biological or chemical hydrolysis of
organic waste

Bakery waste, 1–2 days out of date, was collected from a
Starbucks§ outlet in Shatin in Hong Kong. This bakery waste,
comprised of bread (70–80%), pastries, and cakes (20–30%) was
processed as described previously (Yang et al., 2015). Briefly,
the waste was immediately homogenized using a domestic
kitchen blender for 5 min, and the resulting homogenate was
subjected to fungal enzymatic hydrolysis in a 2.5-L bioreactor
(BioFlo/CelliGen 115, New Brunswick Scientific, Edison, NJ,
United States). The blended bakery waste with a solid-to-
liquid ratio of 42% (w/v) was combined with 1 L of water in
the bioreactor. To initiate hydrolysis, this mixture was treated
with two dishes of fungal mash (Aspergillus awamori and
A. oryzae) obtained from solid state fermentation. The resulting
mixture was stirred at 300 rpm at 55◦C for 12 h. The resulting
hydrolysate broth was centrifuged at 11,500 g for 30 min,
after which the supernatant was subjected to successive vacuum
filtration steps through a Whatman No. 1 filter paper and
sterilized using a 0.22-µm membrane. The resulting solution
was analyzed to determine its sugar and free amino nitrogen
concentrations and stored at−20◦C before use.

The enzymatic hydrolysis of sugarcane bagasse was
performed as described previously (Wang et al., 2020). Briefly,
sugarcane bagasse (particle size≥ 0.42 mm) from Lianfeng Deep
Processing of Agricultural Products (Jiangsu, China) was treated
with 2% (w/v) sodium hydroxide to give a 10% solid–liquid ratio
(w/v) mixture, and incubated at 80◦C for 2 h. This mixture was
immediately subjected to enzymatic hydrolysis by the addition
of 20 FPU cellulase/g cellulose and 2.5 µL Tween 80/mL slurry.
This mixture was stirred at 150 rpm at 50◦C for 120 h. Particle
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free enzymatic hydrolysate was collected by centrifugation at
13,000 g for 30 min before fermentation.

β-ionone production from organic
waste hydrolysates

The fermentation in YPDm medium was performed as
described (Lu et al., 2020). The fermentation of organic
waste hydrolysate was performed in 250-mL flasks. The media
contained either a onefold-diluted (0.5×) or undiluted (1×)
organic waste hydrolysate supplemented with 5 g/L of yeast
extract dissolved in 20 mM of phosphate buffer (pH 7.0). The
Y. lipolytica seed culture was incubated in YPDm medium with
shaking at 250 rpm at 30◦C for 16 h. The resulting seed culture
was inoculated at an initial 600-nm optical density (OD600)
of ∼0.2 into 25 mL of hydrolysate medium containing 10%
(v/v) dodecane. These cultures were incubated with shaking
at 250 rpm at 20◦C for 12 days. Samples were taken for
OD600 measurement, high-performance liquid chromatography
(HPLC), and gas chromatography (GC) analyses. Experiments
were conducted in triplicates.

Biomass and sugar quantification

A 1-mL culture aliquot was harvested by centrifuging
(5,000 g for 10 min), washed in water once, and dried at 60◦C
for 48 h. The resulting dry material was weighed to obtain the
dry cell weight (DCW). The glucose, fructose, xylose, arabinose,
and cellobiose content of the cells were analyzed by HPLC on
an Agilent 1260 Infinity series system (Agilent Technologies,
Santa Clara, CA, United States) equipped with an Aminex
HPX-87P column (300 mm × 7.8 mm, Bio-Rad, Hercules, CA,
United States) and a refractive index detector (Lai et al., 2014).
Analytes were eluted with 1 mM of sulfuric acid at a flow rate
of 0.6 mL/min, with the column temperature set to 60◦C and
the detector temperature set to 35◦C. All samples were passed
through a 0.22-µm filter before HPLC analysis.

β-ionone quantification

β-ionone in the aqueous medium and cell pellets was
extracted using dodecane as previously described (Czajka et al.,
2018; Lu et al., 2020) and quantified by GC. Briefly, the
supernatant (organic phase) was diluted appropriately and
passed through a 0.22-µm pore-size membrane, and a 1-
µL sample of the resulting filtrate was injected into a GC
system (HP 7890A, Agilent Technologies) equipped with a DB-
FFAP capillary column [60 m × 0.25 mm (internal diameter),
0.25-µm film thickness; J&W Scientific, Agilent Technologies,
United States] coupled to a flame ionization detector. The

column was first maintained at 80◦C for 1 min; heated at
10◦C/min to 120◦C, and maintained at this temperature for
1 min; and finally heated at 10◦C/min to 240◦C. A standard
curve was constructed for 1–100 mg/L β-ionone. Isolongifolene
(Sigma-Aldrich, United States) was used as an internal standard.

β-carotene quantification

β-carotene was quantified using a method described
previously (Lu et al., 2020). Briefly, a 0.1-mL aliquot of cultured
cells was harvested by centrifugation for 5 min at 13,000 g,
re-suspended in 0.7-mL dimethyl sulfoxide, and incubated at
55◦C for 10 min in a water bath. The resulting mixture was
mixed with 0.7 mL of acetone, incubated at 45◦C for 15 min,
and centrifuged at 13,000 g for 5 min. The supernatant was
passed through a 0.22-µm pore-size membrane and analyzed
by HPLC on an Agilent 1260 Infinity Series system (Agilent
Technologies, United States) equipped with an SB-C18 column
(5 µm, 4.6× 150 mm2, Agilent Technologies) and an ultraviolet
light detector (wavelength 450 nm). The column was eluted
with a mobile phase consisting of methanol, acetonitrile, and
dichloromethane (42:42:16) at a flow rate of 1.0 mL/min, at a
column temperature of 30◦C.

Results

Improving β-ionone biosynthesis by
the introduction of a PhCCD1 variant
into YLBI3118

To increase β-ionone yield from Y. lipolytica, we first
modified the YLBI3118 strain to enhance β-carotene cleavage.
To achieve this, we introduced three different variants of
the PhCCD1 gene with high membrane affinity: PhCCD1
(K164L), lck-PhCCD1 and lck-PhCCD1 (K164L). PhCCD1
(K164L) contained a single amino acid residue substitution,
a leucine-for-lysine substitution at position 164. The lck-
PhCCD1 variant had a decapeptide derived from the N-terminal
region of rat lymphocyte protein tyrosine kinase (lck) fused
to its N-terminal. Both of these variants of PhCCD1 were
described previously (Werner et al., 2019). An additional
chimeric lck-PhCCD1 (K164L) was created by combining the
single amino acid substituted K164L variant of the enzyme
with the lck peptide tag. All constructs were placed under the
control of the glycerol-3-phosphate dehydrogenase promoter
(PGPD2), a strong constitutive promoter. Subsequently, each
PhCCD1 expression cassette was assembled with a native 3-
isopropylmalate dehydrogenase gene (Leu2) expression cassette,
and the resulting constructs were inserted into the POX4
locus of the YLBI3118 strain using the CRISPR/Cas9 tool
(Gao S. et al., 2016). Three yeast strains were generated
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in these experiments: the YLBI3120 strain incorporated the
PhCCD1 (K164L) construct, the YLBI3121 strain incorporated
lck-PhCCD1 fusion protein, and the YLBI3122 strain carried the
lck-PhCCD1 (K164L) construct (Figure 1A).

To investigate their ability to synthesize β-ionone, the
YLBI3120, YLBI3121, and YLBI3122 strains were cultured in
flasks containing YPDm medium with 10% (v/v) dodecane
at 20◦C for 12 days. We tested three transformants for each
strain and observed a similar β-ionone production (coefficient of
variation < 15%), data not shown. The best performing colonies
were selected for further studies.

As shown in Figure 1B, the β-ionone concentration
in the YLBI3120, YLBI3121, and YLBI3122 cultures were
422 ± 13 mg/L, 354 ± 16 mg/L, and 220 ± 12 mg/L,
respectively. These figures equated to a 133, 112, and 69% of
β-ionone production of the parent strain (YLBI3118). Thus,
the introduction of both the PhCCD1 (K164L) or lck-PhCCD1
constructs resulted in an improved β-ionone yield.

In addition, the YLBI3120, YLBI3121 and YLBI3122
cultures contained 330 ± 64 mg/L, 390 ± 16 mg/L, and
219 ± 11 mg/L of β-carotene, respectively (Figure 1C).
The accumulation of β-carotene clearly correlated with the
level of β-ionone production. This may have been the result
of the exogenously introduced PhCCD1 (K164L) and lck-
PhCCD1 increasing the cleavage of β-carotene and an altered
carbon flux toward β-carotene synthesis (Daletos et al., 2020).
It has also been reported that the introduction of non-
oxidative glycolysis pathway and an increased efficiency of the
endogenous mevalonate pathway can increase the supply of
cytosolic acetyl-CoA and GGPP, driving carbon flow toward
carotenoid synthesis (Lu et al., 2020). Compared to the
YLBI3118 strain, the YLBI3120 and YLBI3121 strains produced
less β-carotene during the first 3 days of incubation, but
β-carotene concentration increased significantly after the 6th
day (Figure 1C).

To verify the genetic stability of strains YLBI3120, YLBI3121
and YLBI3122, we picked three colonies of each strain following
12-day cultivation on YPDm solid medium and tested these
for the presence of the inserted genetic construct using colony-
PCR. All the engineered strains contained the inserted DNA
sequences, indicating the stability of the created yeast strains
(Supplementary Figure 1).

The DCW for the YLBI3120, YLBI3121 and YLBI3122 strain
cultures were 36.2 ± 1.5 g/L, 36.2 ± 0.9 g/L and 29.4 ± 0.4 g/L,
respectively, corresponding to 146, 152, and 118% of the DCW
of the parent YLBI3118 strain (Figure 1D). This was probably
because the Leu gene was present in the YLBI3120, YLBI3121
and YLBI3122 strains but absent from the YLBI3118 strain
(Lu et al., 2020).

To explore the validity of this assumption, we also tested
the Leu complemented strain YLBI3119 that was constructed
in previous experiments (Lu et al., 2020). Under identical
culture conditions, the YLBI3119 strain produced higher DCW

(33.5 ± 1.8 g/L), while β-ionone (321.8 ± 22.4 g/L) and
β-carotene (244.66± 35.3 g/L) concentrations were comparable
to those seen with the YLBI3118 strain (Supplementary
Figure 2). As both the YLBI3120 and YLBI3121 strains
showed improved β-ionone production, they were selected for
further studies.

High yield β-ionone production from
organic waste

Next, we tested the YLBI3120 and YLBI3121 strains for
the production of β-ionone from starch-rich food waste
and lignocellulose waste, such as sugarcane bagasse. First,
these waste materials were hydrolyzed (see section “Biological
or chemical hydrolysis of organic waste”) into food waste
hydrolysate (FWH) and sugarcane bagasse hydrolysate (SBH)
to provide fermentation feedstock (Figure 2A). FWH was
produced by the fungal mash hydrolysis method (Yang et al.,
2015) and contained 78.4± 5.2 g/L of glucose and 8.3± 0.6 g/L
of fructose. SBH was produced by an alkali-pretreatment and
enzymatic hydrolysis (Wang et al., 2020) and contained 34.7 g/L
of glucose, 20.1 g/L of xylose, and low concentrations of
arabinose and cellobiose (<?2 g/L). These nutrient-rich streams
were used directly without any further detoxification, serving as
low-cost feedstocks in the production of β-ionone.

Previous studies observed a notable cell-growth inhibition
when such feed hyrdolysates were used. The presence of
contaminating toxins or the high concentrations of feed
compounds were proposed as an explanation for this inhibition
(Wang et al., 2020; Wei et al., 2021). Thus, we used both
the original hydrolysates (1 × FWH and 1 × SBH) or their
diluted forms (0.5 × FWH and 0.5 × SBH) as sole carbon
sources for β-ionone production. As shown in Figure 2B, FWH
did not appear to inhibit the growth of the YLBI3120 and
YLBI3121 strains, whereas SBH inhibited the growth of both
Y. lipolytica strains tested.

Hydrolysate-mediated inhibition of cell growth and
compound production is a typical challenge in the recycling
of lignocellulosic waste (Li et al., 2018; Ong et al., 2019;
Konzock et al., 2021). Compared to the biomass of YLBI3120
and YLBI3121 strains cultured in YDPm medium (i.e., 35.6–
38.8 g/L), the biomass obtained after culturing these strains
in 0.5 × SBH medium was slightly lower (i.e., 31.2–35.8 g/L).
This suggested that Y. lipolytica was relatively tolerant to
growth inhibitors in lignocellulosic hydrolysate and could be
a promising microbe for generating value-added compounds
from organic waste. Similarly, non-detoxified xylose-rich
agave bagasse hydrolysate (Niehus et al., 2018) or miscanthus
hydrolysate (Yook et al., 2020) have recently been used as
feedstock for the efficient production of lipids by Y. lipolytica.

Both the YLBI3120 and YLBI3121 strains exhibited an
impressive capacity for β-ionone production from FWH and
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FIGURE 1

Metabolic engineering of Y. lipolytica for the highly efficient production of β-ionone. (A) The schematic diagram of the β-ionone biosynthesis
pathway in engineered Y. lipolytica. (B) β-ionone, (C) β-carotene, and (D) biomass production (dry cell weight, DCW) at various time-points.
Fermentation was conducted in 25 mL of YPDm medium containing 10% (v/v) dodecane. Cultures were incubated with shaking at 250 rpm at
20◦C for 12 days. Each experiment was performed in triplicates. Abbreviations used in panel (A): PK, phosphoketolase; PTA,
phosphotransacetylase; ERG10, acetoacetyl-CoA thiolase; ERG13, hydroxymethylglutaryl-CoA synthase; tHMGR, truncated
hydroxymethylglutaryl-CoA reductase; ERG8, phosphomevalonate kinase; ERG12, mevalonate kinase; ERG19, mevalonate diphosphate
decarboxylase; IDI, isopentenyl diphosphate isomerase; ERG20, geranyl/farnesyl diphosphate synthase; GGS1, GGPP synthase; carB, phytoene
dehydrogenase; carRP, phytoene synthase/lycopene cyclase; CCD1, carotenoid cleavage dioxygenase.

SBH, resulting in significantly higher yields than those achieved
in YPDm medium (Figure 2C). The β-ionone concentration
after fermenting 0.5 × FWH and 1 × FWH by the YLBI3120
strain was 3.85 ± 0.42 g/L and 4.00 ± 0.35 g/L, respectively,
while fermenting 0.5 × SBH or 1 × SBH with this strain
resulted in 2.86 ± 0.04 g/L and 1.51 ± 0.06 g/L β-ionone
yield. The β-ionone concentrations obtained after fermenting
0.5 × FWH and 1 × FWH using the YLBI3121 strain
were 2.25 ± 0.26 g/L and 1.86 ± 0.24 g/L, respectively,
while fermenting 0.5 × SBH and 1 × SBH were resulted in
1.93± 0.11 g/L and 1.05± 0.07 g/L β-ionone yield (Figure 2C).
Thus, fermentation of 1 × FWH yielded 1.16–1.35 times more
β-ionone than fermenting 1× SBH. Moreover, the fermentation
of 0.5× FWH yielded 1.76–2.65 times more desired end product
compared to fermenting 0.5 × SBH. In addition, fermenting
0.5 × FWH or 1 × FWH with the YLBI3120 strain resulted
in the production of 444 ± 59 mg/L or 834 ± 40 mg/L of
β-carotene. The corresponding values during the fermentation
of 0.5 × and 1 × SBH were 551 ± 39 mg/L and 480 ± 30 mg/L,
respectively. Fermenting 0.5 × and 1 × FWH using the
YLBI3121 strain accumulated 722± 20 mg/L or 864± 19 mg/L
β-carotene, while 0.5 × and 1 × SBH feedstock resulted in the

production of 632± 20 mg/L and 537± 37 mg/L of β-carotene,
respectively (Figure 2D).

Sugar consumption was also monitored during the
fermentation (Supplementary Figure 3). Glucose and fructose
were depleted during the fermentation of FWH feedstock,
while glucose, xylose, and arabinose were all depleted when
SBH was fermented. Glucose appeared to be the preferred
carbon source. It was depleted after 6 days of fermentation
from the 1 × FWH, and after 3 days when fermenting the
other three feedstocks (Supplementary Figure 3). These results
supported previous observations that glucose caused mild
carbon catabolite repression (CCR) on xylose and arabinose
in Y. lipolytica (Spagnuolo et al., 2018; Ryu and Trinh, 2021).
The previously observed inability of the organism to utilize
cellobiose was also seen in our experiments (Guo et al., 2015).

These results demonstrated that FWH was a better feedstock
than SBH and that YLBI3120 was the optimal strain for the
purposes of β-ionone production. Although the DCW and
β-ionone production while fermenting SBH were lower, they
still far exceeded those seen in YPDm medium (i.e., 1.05–
2.86 g/L vs. 0.35–0.42 g/L). This is consistent with the fact that
the fermentation of nutrient-rich hydrolysates containing mixed
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FIGURE 2

High-yield production of β-ionone from food waste and sugarcane bagasse utilizing an integrated process. (A) The integrated process involved
two steps. First, the food waste or sugarcane bagasse was converted into simple sugar hydrolysates via biological or chemical hydrolysis. These
hydrolysates were then fermented with engineered yeast cells to produce β-ionone. Plot shows (B) the dry cell weight (DCW), (C) the β-ionone
concentration, and (D) the β-carotene concentration. FWH, food waste hydrolysate; SBH, sugarcane bagasse hydrolysate. Fermentation was
conducted with 25 mL of hydrolysate medium containing 10% (v/v) dodecane, and the cultures were incubated with shaking at 250 rpm at 20◦C
for 12 days. Experiments were performed in triplicate.

sugars results in higher yields than fermenting media where
glucose is the sole carbon source (Li et al., 2018; Cho et al., 2020).

Discussion

Here we report a two-step integrated process for the
production of β-ionone from food waste and sugarcane bagasse.
This approach achieved a β-ionone yield of 4 g/L, which was
significantly higher than previously reported results (Czajka
et al., 2018; Zhang et al., 2018; Lu et al., 2020). Furthermore,
the rate β-ionone production (13.9 mg/L/h) was also higher
than what was achieved in previous studies, e.g., 10 mg/L/h
using E. coli (Zhang et al., 2018), 2.5 mg/L/h using S. cerevisiae
(Werner et al., 2019) and 2.7 mg/L/h using Y. lipolytica
(Czajka et al., 2018). We also believe that the production of
β-ionone could be further improved by upscaling and further
optimizing the fermentation process. The work presented here
demonstrated the potential of Y. lipolytica as a platform for
the high-yield production of terpenoids. Furthermore, this
approach could be adapted to manufacture other valuable
terpenoids derived from the MVA pathway, such as paclitaxel
(Parayil Kumaran et al., 2010) and astaxanthin (Ma et al., 2021).

Recently, several groups developed various host cells,
advanced strategies, and tools for the microbial production
of terpenoids (Carsanba et al., 2021; Zhang et al., 2021;
Rinaldi et al., 2022). However, as shown in Table 3, only
a few studies explored the biorefining of various forms of
organic waste to produce terpenoid flavor and fragrance
compounds (Table 3; Yao et al., 2020; Zhuang et al., 2020;
Styles et al., 2021; Szotkowski et al., 2021; Wei et al.,
2021). Moreover, the yields achieved in most of these
studies was rather low, usually below 1 g/L. For example,
327 mg/L of ergosterol was obtained from the combination
of spent coffee ground hydrolysate combined with coffee
oil (Szotkowski et al., 2021), 88.6 mg/L of astaxanthin
was generated from sugarcane bagasse hydrolysate (Zhuang
et al., 2020), 36.1 mg/L of α-pinene (Wei et al., 2021), and
20.6 mg/limonene (Yao et al., 2020) were obtained from corn
stover hydrolysate.

The highly efficient production of β-ionone reported
here relies on genetically engineered Y. lipolytica strains
overexpressing a variant form of the PhCCD1 gene. The
finding that the PhCCD1 (K164L)-containing strain (YLBI3120)
produced more β-ionone than the YLBI3121 strain expressing
an lck-tagged form of the enzyme, lck-PhCCD1, was at
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TABLE 3 Overview of terpenoid flavor and fragrance compounds production from low-cost feedstocks by microbial cells.

Microorganism Substrate Hydrolysis process Fermentation
scale

Product Titer
(mg/L)

Productivity
(mg/L/h)

Reference

Sporidiobolus
pararoseus
CCY19-9-6

Spent coffee ground
hydrolysate

combined with
coffee oil

1) acid pretreatment,
2) enzymatic hydrolysis

3.0-L fermenter Ergosterol 327 4.8 Szotkowski et al.
(2021)

Phaffia rhodozyma
mutant Y1

Sugarcane bagasse
hydrolysate

1) alkali pretreatment,
2) detoxification, 3)

enzymatic hydrolysis

250-mL shake flask Astaxanthin 88.6 0.92 Zhuang et al. (2020)

Parageobacillus
thermoglucosidasius
MQS6

Waste bread NA 250-shake flask τ-muurolol 14 0.29 Styles et al. (2021)

Y. lipolytica YT-31 Lignocellulosic
hydrolysate

1) acid pretreatment,
2) detoxification,

3) enzymatic hydrolysis

250-mL shake flask α-pinene 36.1 0.50 Yao et al. (2020)

Y. lipolytica YBX08 Corn stover
hydrolysate

1) dry acid pretreatment,
2) detoxification,

3) enzymatic hydrolysis

250 mL shake flask Limonene 20.6 0.29 Wei et al. (2021)

Y. lipolytica
YLBI3120

Food waste
hydrolysate

1) fungal hydrolysis 250-mL shake flask β-ionone 3,998 13.88 This study

Y. lipolytica
YLBI3120

Sugarcane bagasse
hydrolysate

1) alkali pretreatment,
2) enzymatic hydrolysis

250-mL shake flask β-ionone 2,855 9.91 This study

NA, Not applicable.

variance with previous reports in a different yeast species.
In S. cerevisiae the overexpression of both of these variants
of the enzyme resulted in almost identical β-ionone yields
(Werner et al., 2019). The myristoylation of the lck-tagged
enzyme modulates its affinity to cell membranes, which in
turn influences the activity of PhCCD1. In yeast, protein
myristoylation is performed by a myristoyl transferase. While
this enzyme is well characterized in S. cerevisiae (Duronio
et al., 1989) its existence and biochemical characteristics
remain to be examined in Y. lipolytica. Although we have
identified a putative myristoyl transferase in the UniProt
database using a basic local alignment search tool [Universal
Protein resource (UniProt) No. Q6C7G2], this candidate
gene only shows 48.72% identity to the myristoyl transferase
(UniProt No. P14743) of S. cerevisiae (data not shown). Thus,
it is tempting to speculate that the myristoylation of the
lck peptide tag may be insufficient in Y. lipolytica. This,
in turn, could reduce the activity of lck-PhCCD1 fusion
protein, affecting the ability of YLBI3121 strain to biosynthesize
β-ionone. We expected the chimeric variant of the enzyme
containing both the K164L substitution and the lck tag,
lck-PhCCD1 (K164L) to show a higher affinity toward cell
membrane insertion. Consequently, we hypothesized that the
YBLI3122 strain carrying this modified chimeric enzyme would
produce better yields than cells overexpressed with either the
PhCCD1 (K164L) or lck-PhCCD1. However, in practice, despite
the demonstrable overexpression of the inserted lck-PhCCD1
(K164L) gene β-ionone yields produced by the YLBI3122 strain
were disappointing. This may be attributable to the fact that
the active site of the lck-PhCCD1 (K164L) in this fusion

protein faces the lipid bilayer, resulting in low CCD activity
(Werner et al., 2019).

The cleavage of a β-carotene by CCD1 requires two
oxygen molecules to produce two β-ionone molecules. The
presence of considerable amounts of β-carotene seen in our
experiments suggests that despite oxygen supply in flasks
during fermentation may be insufficient, limiting the activity
of PhCCD1 (Khadka et al., 2019; Liu et al., 2021). This
explanation raises the possibility that both the YLBI3120
and YLBI3121 strains have the potential to produce even
higher concentrations of β-ionone under optimal fermentation
conditions. Alternatively, β-ionone production could be further
improved by additional alterations to the CCD1 enzyme or
metabolic engineering aiming to fine-tune the expression of
central metabolic, isoprenogenic, and carotenogenic genes.

Although Y. lipolytica has endogenous genes for pentose
catabolism (Ryu et al., 2016; Ryu and Trinh, 2018) this
yeast cannot use xylose as a sole carbon source (Ledesma-
Amaro et al., 2016; Niehus et al., 2018; Ong et al., 2019;
Prabhu et al., 2020). Conversely, a synergistic effect of
mixed-sugar utilization was reported in Y. lipolytica (Ryu
et al., 2016; Ryu and Trinh, 2021), where xylose could be
utilized in the presence of a glucose-xylose mixed sugar
feedstock. This observation suggests that the expression of
genes involved in xylose catabolism may be activated in the
presence of other sugars, including glucose (Tsigie et al.,
2011; Ryu et al., 2016; Ong et al., 2019). Recently, both
endogenous and heterologous xylose utilization pathways have
been introduced into Y. lipolytica. The resulting strains promise
improved utilization of xylose in the production of chemical
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compounds and fuel (Wei et al., 2020a,b; Sun et al., 2021).
Additional metabolic engineering approaches (Ledesma-Amaro
et al., 2016; Rodriguez et al., 2016; Wu et al., 2019), strain mating
(Li and Alper, 2020), lab adaptive evolution (Zhou et al., 2020)
and the use of artificial chromosomes have all been used to
enhance xylose utilization. Although it appears that Y. lipolytica
utilizes arabinose in a similar way to xylose, only a few studies
have investigated arabinose fermentation by this yeast (Tsigie
et al., 2011; Ryu and Trinh, 2018, 2021; Spagnuolo et al., 2018).
Other groups used either CRISPR tools (Schwartz et al., 2018)
or artificial chromosomes (Guo et al., 2020) to introduce the
ability of cellobiose degradation and utilization into Y. lipolytica
cells. These developments raise the possibility of combining
the ability to utilize xylose and/or arabinose, and the ability to
degrade cellobiose in a single engineered Y. lipolytica stain. Such
complex modifications of the organism could further enhance
the ability of this microbe to produce β-ionone, or other high
value compounds, from organic waste.

Conclusion

Developing an efficient a fermentation process that
facilitates the large-scale biosynthesis of flavor and fragrance
molecules at several gram per liter concentrations remains
challenging. In this study we demonstrated the ability of
an engineered Y. lipolytica, a GRAS yeast, to produce a
commercially valuable aroma compound, β-ionone, from food
waste and sugarcane bagasse. Although several aspects of this
integrated process remain to be fully optimized, we were able
to generate β-ionone at 4 g/L concentration. This is the highest
yield achieved to date using the fermentation of organic waste.

This work clearly demonstrates the feasibility of establishing
an engineered Y. lipolytica-based natural compound supply
chain in a biorefinery using inedible food and agricultural
waste as feedstock. Our results also reveal that Y. lipolytica is
a promising host for the biorefining of lignocellulosic waste.
Further studies should focus on optimizing culture conditions
and the stepwise scale-up of this integrated process from
benchtop fermentation to pilot plant scale programs.
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