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Objectives: Early detection of subacute potentially catastrophic ill-
nesses using available data is a clinical imperative, and scores that 
report risk of imminent events in real time abound. Patients deterio-
rate for a variety of reasons, and it is unlikely that a single predictor 
such as an abnormal National Early Warning Score will detect all of 
them equally well. The objective of this study was to test the idea that 
the diversity of reasons for clinical deterioration leading to ICU trans-
fer mandates multiple targeted predictive models.
Design: Individual chart review to determine the clinical reason for ICU 
transfer; determination of relative risks of individual vital signs, labora-
tory tests and cardiorespiratory monitoring measures for prediction of 
each clinical reason for ICU transfer; and logistic regression modeling 
for the outcome of ICU transfer for a specific clinical reason.
Setting: Cardiac medical-surgical ward; tertiary care academic 
hospital.
Patients: Eight-thousand one-hundred eleven adult patients, 457 of 
whom were transferred to an ICU for clinical deterioration.
Interventions: None.
Measurements and Main Results: We calculated the contributing 
relative risks of individual vital signs, laboratory tests and cardiore-
spiratory monitoring measures for prediction of each clinical reason 
for ICU transfer, and used logistic regression modeling to calculate 
receiver operating characteristic areas and relative risks for the out-
come of ICU transfer for a specific clinical reason. The reasons for 

clinical deterioration leading to ICU transfer were varied, as were their 
predictors. For example, the three most common reasons—respiratory 
instability, infection and suspected sepsis, and heart failure requir-
ing escalated therapy—had distinct signatures of illness. Statistical 
models trained to target-specific reasons for ICU transfer performed 
better than one model targeting combined events.
Conclusions: A single predictive model for clinical deterioration does 
not perform as well as having multiple models trained for the individual 
specific clinical events leading to ICU transfer.
Key Words: clinical computing; continuous predictive analytics 
monitoring; critical care; deterioration; intensive care unit transfer; 
predictive analytics

Patients who deteriorate on the hospital ward and are emer-
gently transferred to the ICU have poor outcomes (1–6). 
Early identification of subtly worsening patients might 

allow quicker treatment and improved outcome. To aid clini-
cians, early warning scores have been advanced that compare 
vital signs and laboratory tests to thresholds. The reception has 
been mixed (7, 8). Vital signs are often delayed, incorrect, or never 
measured (9, 10), and laboratory tests require blood draws and 
time. Nonetheless, these are the major (or only) inputs into popu-
lar track-and-trigger systems such as the National Early Warning 
Score (NEWS) and others (11–20). Thresholds for awarding risk 
points are based on clinical experience but suffer from lack of 
validation and the loss of information that forced dichotomiza-
tion inevitably brings (21–24). Only some are trained on clinical 
events. For example, electronic cardiac arrest risk triage is trained 
for early detection of hospital patients with cardiac arrest (14), and 
the Rothman Index is trained to detect patients who will die in the 
next 12 months (15).

It is a natural exercise of clinicians to synthesize disparate data 
elements into a clinical picture of the patient. After 1981 when 
Knaus et al (25) introduced the Acute Physiology and Chronic 
Health Evaluation score, more methods have been introduced that 
combine elements of clinical data to yield quantitative estimates of 
patients’ health status and risk. Although varied in inputs, targets, 
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patient populations, and mathematical tools, most are single scores 
meant for universal use (26). This is not altogether unreasonable. 
For example, we found that large abrupt spikes in risk estimation 
using a single model to identify patients at risk for ICU transfer 
had a positive predictive value 25% for imminent acute adverse 
event (27). But use of only a single model is a limited approach, as 
there are many paths of deterioration—accurate capture of all of 
these paths at the same time is challenging.

Importantly, most systems ignore the wealth of informa-
tion that is present in cardiorespiratory monitoring. Although 
many patients are continuously monitored, these data are bulky 
and require mathematical analysis. Nonetheless, they contribute 
equally to vital signs and laboratory tests in detection of patients 
at risk of clinical deterioration and ICU transfer from a cardiac 
medical and surgical ward (28). We note, furthermore, that risk 
estimation for neonatal sepsis using advanced mathematical anal-
ysis that considers only continuous cardiorespiratory monitoring 
saves lives (29).

Finally, all of these early detection systems present one score 
as an omniscient risk marker for all conditions and patients (26). 
Clinicians know, although, that there are many paths to clinical 
deterioration. For example, the most common forms of deteriora-
tion leading to ICU transfer are respiratory instability (27, 30–35), 
hemodynamic instability (30, 33, 34), sepsis (27, 36), bleeding  
(33, 36), neurologic decompensation (36), unplanned surgery 
(33), and acute renal failure or electrolyte abnormalities (36). The 
multiplicity of candidate culprit organ systems suggests that a sin-
gle model is not likely to catch all the patients who are worsening 
(33, 34).

Here, we tested three approaches to predictive analytics mon-
itoring. The first is untrained models that apply thresholds and 
cutoffs to vital signs, and we represent the class with NEWS. The 
second was to train a universal predictive model on all patients 
who went to the ICU using measured values of vital signs, labo-
ratory tests and continuous cardiorespiratory monitoring. This 
approach has advantages of learning from continuous cardiore-
spiratory monitoring and from the range of measured vital signs 
and laboratory test values, avoiding problems of dichotomization 
by thresholds. The third is a set of models trained on patients who 
had specific reasons for ICU transfer identified by clinician review, 
which has the additional advantage of learning signatures of spe-
cific target illnesses.

Approaches that might improve track-and-trigger systems 
include the use of libraries of predictive models that are tailored 
for specific reasons for clinical deterioration within the widely 
varied venues within the modern hospital, risk estimation along 
the continuum of measured values rather than threshold cross-
ings, and analysis of continuous data in addition to vital signs and 
laboratory tests. Here we test these ideas.

MATERIALS AND METHODS

Study Design
In early detection of hospital patients at risk of clinical deteriora-
tion and the need of escalation to ICU care, we wished to test the 
idea that a single predictive analytics model using thresholds of 

vital signs and laboratory tests could be improved upon by a set 
of target-specific models that used continuous risk estimates and 
cardiorespiratory monitoring.

We examined the empiric risk profiles of individual vital signs, 
laboratory tests and cardiorespiratory monitoring variables for 
seven clinical deterioration phenotypes. We made predictive sta-
tistical models based on logistic regression adjusted for repeated 
measures for each phenotype as well as their composite and exam-
ined their performance in detecting other deterioration pheno-
types. The University of Virginia Institutional Review Board 
approved the study.

Study Population
We studied 8,111 consecutive admissions from October 2013 to 
September 2015 on a 73-bed adult acute care cardiac and car-
diovascular surgery ward at the University of Virginia Hospital 
(34). We used an institutional electronic data warehouse to access 
electronic medical record (EMR). Six patients were added to the 
original cohort (n = 8,105) who did not have complete continuous 
cardiorespiratory monitoring data.

We reviewed the charts of the 457 patients who were trans-
ferred to the ICU because of clinical deterioration. Five clinical 
reviewers developed and implemented clinical definitions indi-
cating reasons for deterioration and reviewed records for the 48 
hours prior to and following ICU transfer. To evaluate inter-rater 
reliability, we calculated a weighted kappa coefficient on a nested 
50 events that were evaluated by all reviewers. The new clinical 
review was independent of our earlier work (34), which used a 
combined outcome of ICU transfer, urgent surgery, or unexpected 
death.

Clinical and Continuous Cardiorespiratory  
Monitoring Data
We analyzed vital signs and laboratory tests recorded in the EMR 
and the continuous seven-lead electrocardiogram (ECG) signal 
that is standard of practice. Vital signs and laboratory tests were 
sampled and held. We calculated cardiorespiratory dynamics at 
15-minute intervals over 30-minute windows.

Statistical Analyses
To estimate the relative risk of an event as a function of measured 
variables, we constructed predictiveness curves (40). In order to 
reduce bias due to repeated measures and missing data, we used a 
bootstrapping technique. We sampled one measurement within 12 
hours before each event and one measurement from all nonevent 
patients at a random time during their stay. The distributions of 
time since admission were not significantly different for these two 
groups (data not shown). We calculated the relative risk of an event 
at each decile of the sampled variable, then interpolated the risk to 
20 points evenly spaced in the range of the variable. We repeated 
this process of sampling, calculating relative risk, and interpolat-
ing 30 times. Finally, we averaged the 30 risk estimate curves to 
obtain a bootstrapped predictiveness curve at the 20 evenly spaced 
points, and we display the result as a heat map.

To relate the predictors to the outcomes, we used multivariable 
logistic regression analysis adjusted for repeated measures. The 
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output of the resulting regression expressions is the probability of 
ICU transfer in the next 12 hours. To test for the significance of 
differences between the outputs of predictive models, we calcu-
lated the area under the receiver operating characteristic (ROC) 
curves for NEWS, a model trained to target all the ICU transfers, 
and seven additional models, one for each reason for ICU transfer. 
The ROC curves report on discrimination between data belonging 
to patients with and without ICU transfer in the next 12 hours. 

For each reason for transfer, therefore, we calculated three ROC 
areas. For the group of seven specific reasons for ICU transfer, we 
tested the difference between NEWS and the outputs of the general 
model, and between the outputs of the general model and the out-
puts of the seven specifically targeted models using the paired t test.

In model development, we adhered to the Transparent Reporting 
of multivariable prediction model for Individual Prognosis Or 
Diagnosis statement recommendations (41).

Figure 1. Heat maps that relate the relative risk (color bar; 1 means the risk is average for the ward) to the reason for ICU transfer (rows) and measured 
value of a predictor (abscissa) for a representative laboratory value (A, serum Na in meq/dL), vital sign (B, mean arterial pressure [MAP] in mm Hg), and 
cardiorespiratory measure from time series analysis of continuous cardiorespiratory monitoring (C, breaths per minute derived from the electrocardiogram 
[EKG]). The gray-scale bars show the density of the measurements. The figure may be interpreted as follows. The change in color from deep red to blue from 
left to right in the fourth row of (A) signifies that low serum Na concentration was associated with a high risk for ICU transfer for escalation of heart failure (HF) 
therapy. CAD = coronary artery disease, RCT = randomized control trial.

Figure 2. Heat maps that relate the relative risk of the reason for ICU transfer to the measured values of predictor laboratory values. BUN = blood urea nitrogen, 
CAD = coronary artery disease, Cr = creatinine, Hbg = hemoglobin, HF = heart failure,  Plt = platelet.
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RESULTS

Study Population
The main admitting services were cardiology (49%) and cardiac sur-
gery (19%); the remainder were equally from other medical or sur-
gical services. The median age was 59 (interquartile range, 55–75). 
The mortality rate was 0.4% and 17% for patients who did not or did 
require ICU transfer.

Appendix Figure 1 (Supplemental Digital Content 1, http://
links.lww.com/CCX/A172) is an UpSet plot (42) of the numbers 
of patients and their reasons for ICU transfer. The most common 
reason for transfer was respiratory instability alone, followed by 
respiratory instability and suspected sepsis. The kappa statistic 
ranged from 0.616 to 1.0 indicating moderate to excellent agree-
ment among the reviewers.

Relative Risks for ICU Admission
Figure 1 shows the relationship of risk (color) to reason for admis-
sion to ICU (row) and measured variable (column). Each of the 
three subparts shows a set of predictiveness curves as heat maps 
for kinds of measurements—a laboratory test (Na) in Figure 1A, 
a vital sign (mean arterial pressure [MAP]) in Figure 1B, and a 
measure from continuous cardiorespiratory monitoring (breath-
ing rate derived from the ECG (28) in Figure 1C. The gray-scale 
bars at the top show the densities of the measurements.

The major finding of this subset of the overall results is that 
serum Na and the MAP, when low, signify impending ICU trans-
fer for escalation of heart failure (HF) therapy, but they do not 
portend ICU transfer for any of the other reasons. Figure 1C shows 
that a rise in the continuously measured respiratory rate identifies 
patients with respiratory instability or infection to such a degree 
that ICU transfer takes place. These maps indicate the heterogene-
ity of patient characteristics but are not quantitative tests. For that 
purpose, we used logistic regression models.

The top rows of the colored matrices show the risk profiles 
of a predictive model trained on all of the events combined. The 
smaller ranges of color demonstrate that the predictive utility of 
Na for HF, MAP for HF, and breaths from ECG for respiratory 
instability or infection are blunted. Thus, by combining outcomes, 
the ability of a multivariable statistical model to detect any indi-
vidual clinical cause for ICU transfer is diminished.

Figures 2–4 show the complete catalog of relationship of risks 
to clinical causes for ICU transfer and measured variable. The 

finding is that the phenotypes of reasons for ICU transfer differ 
from each other. Consider bleeding (bottom row) as an example—
it is uniquely marked by hypokalemia, hypocalcemia, thrombo-
cytopenia and, of course, anemia. As a result, we would expect 
a predictive model trained to detect bleeding would not perform 
well in detecting other reasons for ICU transfer, nor would we 
expect models trained on other reasons for ICU transfer to do well 
at detecting bleeding.

Statistical Models
We limited the number of predictor variables to one per 10 events. 
Vital signs figured in all eight of the trained models; laboratory 
tests and continuous cardiorespiratory monitoring measures 
each figured in six models. The continuous cardiorespiratory 
monitoring measure most commonly included was ECG-derived 
respiratory rate (four models). The CAD model had the most con-
tinuous cardiorespiratory monitoring measures, two of its three 
(detrended fluctuation analysis and coefficient of sample entropy) 
components.

The abilities of models to detect on- and off-target causes for 
ICU transfer are demonstrated in Figure 5, a matrix of ROC areas 
that result when the model targeting the event in the rows is used 
for early diagnosis of the event listed in the columns. The diagonal 
from bottom left to top right shows the ROC areas of the models as 
trained for the target events; off-diagonal values give the values for 
detecting off-target events. For example, the model to detect bleed-
ing has a ROC area of 0.78 (the value in the cell at the lower left of 
the matrix), but that model has no ROC area of greater than 0.6 
in detecting other reasons for ICU transfer (bottom row), and the 
ROC areas of models trained for other events (left-hand column) 
exceed 0.6 in only case, the model trained on all events combined.

Additionally, Figure 5 shows variation of ROC areas from 0.66 
to 0.84 along the diagonal, meaning some events are easier to 
detect than others. For example, models to detect ICU transfer 
due to infection or neurologic events have ROC area greater than 
0.8, while that for myocardial ischemia was less than 0.7. Although 
reasonably common on this cardiac and cardiac surgery ward, we 
note that unstable coronary syndromes are not particularly good 
candidates for early detection. Arguably, there is no consistent 
prodrome for the instability of a coronary plaque.

We can directly compare the general model trained on all 
events to the models targeting specific reasons for ICU transfer by 
comparing the values in the second row (ROC area of the model 

Figure 3. Heat maps that relate the relative risk of the reason for ICU transfer to the nurse-entered values of predictor vital signs. HF = heart failure, MAP = mean 
arterial pressure, Spo2 = oxygen saturation.
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targeting all events combined) to the values in the diagonal from 
lower left to upper right (ROC areas of the individual models). 
The combined event model performs about as well as the individ-
ually trained model infection (0.83 vs 0.83) and respiratory insta-
bility (0.80 vs 0.76). These are the most common reasons for ICU 

transfer (Appendix Fig. 1, Supplemental Digital Content 1, http://
links.lww.com/CCX/A172), accounting for the finding.

The results of using the NEWS score to detect the individual 
or combined events is shown in the top row. The highest ROC 
area for NEWS was for infection, 0.73. Use of this single score for 
the entire population of combined events yielded ROC area 0.67. 
Of models trained for individual classes of ICU transfer, whose 
ROC areas appear in the diagonal, only that for unstable coronary 
symptoms was lower (0.66).

The mean NEWS ROC area was 0.63, significantly lower than 
the mean ROC area of 0.72 of the general model trained on com-
bined events (p < 0.01, paired t test), which was lower than the mean 
ROC area of 0.78 of the specifically targeted models (p < 0.05).

DISCUSSION
We studied statistical models for early detection of subacute poten-
tially catastrophic illnesses leading to ICU transfer from a cardiac 
and cardiac surgery ward. This is a high-profile clinical event—
the mortality rose by more than 40-fold in those who deteriorated 
(34). We targeted specific reasons for clinical deterioration, used 
predictors that were continuous rather than thresholded, and 
included mathematical analyses of continuous cardiorespiratory 
monitoring data. Our major findings are that phenotypes vary 
among the myriad of clinical conditions that lead to ICU transfer, 
and that statistical models trained specifically performed better 

Figure 5. Receiver operating characteristic (ROC) curve areas for models 
trained for the events listed in rows, and tested for events arranged as 
columns. The top row is the performance of the National Early Warning Score 
(NEWS); the next to top row and the final column represent results of a 
model trained on all the ICU transfer events combined. The gray scale reflects 
the value of the ROC area. AUC = area under the curve, CAD = coronary 
artery disease, HF = heart failure.

Figure 4. Heat maps that relate the relative risk of the reason for ICU transfer to measured values of predictors derived from cardiorespiratory monitoring.  
CAD = coronary artery disease, COSEn = coefficient of sample entropy (37, 38), DFA = detrended fluctuation analysis (39), EKG = electrocardiogram, HF = heart 
failure, HRxEDR = cross-correlation of heart rate and breathing rate derived from electrocardiogram, LDd = local density score (34), RR = respiratory rate.

http://links.lww.com/CCX/A172
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than a model trained on all events combined, which in turn per-
formed better than the untrained NEWS score.

We have used multivariable logistic regression models to test 
hypotheses about the difference in characteristics of endotypes 
of patients that deteriorated and required escalation to ICU care. 
The major hypothesis is that models trained on one endotype of 
patient do not necessarily perform well in detecting other kinds 
of patients. This directly tests the prevailing practice of using a 
single predictive model throughout the hospital. It is important 
to note that we here use the statistical models only for hypothesis 
testing and not for their clinical impact. We have not tested these 
models in a clinical setting, and a reasonable question is how to 
implement so many. We favor the idea of calculating all the model 
results for all the patients all the time and presenting the clinician 
with a summary statistic.

The need to look for multiple modes of critical illness was 
recently supported by the finding of four sepsis phenotypes of 
responses and outcomes (43). We found different sepsis signa-
tures in the medical as opposed to the surgical ICU (33). Thus, no 
single predictive model for sepsis seems adequate. Likewise, there 
are distinct respiratory deterioration phenotypes within chronic 
obstructive pulmonary disease and acute respiratory distress syn-
drome (44, 45). This heterogeneity of manifestations of illness, a 
point that resonates with bedside clinicians, argues against models 
that use the same thresholds for all situations. (An exception is 
sepsis in premature infants, where heart rate characteristics index 
monitoring identifies an abnormal phenotype that is common to 
many acute neonatal illnesses [46], and in a large RCT, was found 
to save lives [47].)

We emphasize the importance of continuous cardiorespiratory 
monitoring in early detection of subacute potentially catastrophic 
illnesses. We found distinct physiologic signatures for sepsis, hem-
orrhage leading to large unplanned transfusion and respiratory 
failure leading to urgent unplanned intubation. Display of risk 
estimates using two of the resulting statistical models based solely 
on cardiorespiratory monitoring (33) was associated with a 50% 
reduction in the rate of septic shock (48). Furthermore, cardiore-
spiratory monitoring data add to vital signs and laboratory tests 
in the population reported here (34). We propose that no scheme 
that omits cardiorespiratory monitoring data will perform as well 
as those that include it.

A strength of this study is the individual review of charts to 
identify reasons for ICU transfer. Clinicians recognize that illness 
presentations are complex, nuanced, and not well-documented 
(49). Statistical models trained for one kind of deterioration had 
poor performance in detecting other kinds. As examples, bleed-
ing—a common form of deterioration on our mixed medical-
surgical cardiac ward—was well-detected by a model trained 
specifically for it, but no other model had reasonable performance; 
hemoglobin was, logically, a powerful prediction of ICU transfer 
for bleeding but not at all useful when myocardial ischemia was 
the problem; coefficient of sample entropy, a detector of atrial 
fibrillation, was useful only for identifying patients transferred to 
the ICU for arrhythmia but nothing else.

Here, we show large differences in signatures of illness and per-
formance of statistical models in early identification of patients at 

risk of ICU transfer. The approach of Redfern et al (10) is exem-
plary of most efforts in clinical surveillance for early detection 
of subacute potentially catastrophic illnesses. We propose more 
precise methods: clinician review of events so that predictive 
models are more focused, addition of continuous cardiorespira-
tory monitoring when it is available to fill in the timeline between 
nurse visits and blood draws, and the use of predictive models that 
individually target the diagnoses that lead to ICU transfer in our 
patients.

Our results argue against a one-size-fits-all approach, no mat-
ter how Big the Data nor how Deep the Learning. In this era of 
increasingly precise and personalized medicine, we propose “preci-
sion predictive analytics monitoring” as a more focused and clini-
cally informed approach to early detection of subacute potentially 
catastrophic illnesses in the hospitalized patient.
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