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of pro‑inflammatory signaling, anti‑angiogenesis, and homeostasis 
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Abstract
Glioblastoma multiforme (GBM) is the most invasive type of glial tumor with poor overall survival, despite advances 
in surgical resection, chemotherapy, and radiation. One of the main challenges in treating GBM is related to the 
tumor’s location, complex and heterogeneous biology, and high invasiveness. To meet the demand for oxygen and 
nutrients, growing tumors induce new blood vessels growth. Antibodies directed against vascular endothelial growth 
factor (VEGF), which promotes angiogenesis, have been developed to limit tumor growth. Bevacizumab (Avastin), 
an anti-VEGF monoclonal antibody, is the first approved angiogenesis inhibitor with therapeutic promise. How-
ever, it has limited efficacy, likely due to adaptive mutations in GBM, leading to overall survival compared to the 
standard of care in GBM patients. Molecular connections between angiogenesis, inflammation, oxidative stress 
pathways, and the development of gliomas have been recognized. Improvement in treatment outcomes for patients 
with GBM requires a multifaceted approach due to the converging dysregulation of signaling pathways. While most 
GBM clinical trials focus on “anti-angiogenic” modalities, stimulating inflammation resolution is a novel host-
centric therapeutic avenue. The selective therapeutic possibilities for targeting the tumor microenvironment, specifi-
cally angiogenic and inflammatory pathways expand. So, a combination of agents aiming to interfere with several 
mechanisms might be beneficial to improve outcomes. Our approach might also be combined with other therapies 
to enhance sustained effectiveness. Here, we discuss Suramab (anti-angiogenic), LAU-0901 (a platelet-activating 
factor receptor antagonist), Elovanoid (ELV; a novel lipid mediator), and their combination as potential alternatives 
to contain GBM growth and invasiveness.
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1  Introduction

Glioblastoma multiforme (GBM) is the most common 
and lethal intracranial malignancy, with a few advances 
in treatment over several decades. Standard-of-care 
therapy includes aggressive resection, radiation, and 
chemotherapy, but the median overall survival remains 
less than two years [1]. One of the challenges in the 
treatment of GBM is its aggressive growth characteris-
tics. Complete surgical resection of the tumor is impos-
sible because of infiltrative growth, multiple lesions, 
and microscopic spread. Thus, there is a strong need 
for new and effective GBM treatment. The molecular 
heterogeneity of GBM allows for adaptive mutations 
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and drug resistance; thus, a multi-target approach is 
necessary targeting cells in the microenvironment. 
Non-transformed cells in this microhabitat are less 
susceptible to these adaptations, making them an ideal 
target. The microenvironment of glioblastoma harbors 
multiple cell types, which are believed to make dis-
tinct contributions to tumor progression and invasion 
[2] (Fig. 1). These cells include but are not limited to 
microglia, astrocytes, macrophages, pericytes, fibro-
blasts, and vascular cells. Gliomas are highly vascular 

tumors, and the endothelial cells, pericytes, and astro-
cytes that form the neurovascular unit function support 
tumor progression. In addition, microglia cells promote 
glioma migration and tumor growth [2]. Astrocytes can 
be converted into a reactive phenotype by the glioma 
microenvironment and secrete many factors that influ-
ence tumor growth [3]. The elements, pathways, and 
interactions provide a new perspective on the cell biol-
ogy of brain tumors, which may ultimately generate a 
new treatment paradigm (Fig. 1).

Fig. 1   Diagram depicting characteristics of glioblastoma and poten-
tially novel therapeutics. Glioblastomas comprise multiple cell 
types: microglia, astrocytes, fibroblasts, and endothelial cells  facili-
tating  tumor progression. Cytokines released by glioma cells recruit 
immune cells into the tumor microenvironment, inducing pro-inflam-
matory signaling. Inflammatory signaling elicits pro-tumor activity 
allowing cells to evade immune cells contributing to tumor progres-
sion. Increased growth factor and platelet-activating factor (PAF) 
secretion from surrounding and glioma cells and their ability to evade 
growth factor suppressors contribute to the tumor’s proliferative and 
invasive nature. Vascular endothelial growth factor (VEGF) is a criti-
cal growth factor for blood vessel formation in glioblastoma. Inhibi-
tion of inflammatory signaling molecules IL-1β, IL-6, and TNFα by 

elovanoids (ELVs) and inhibition of growth factor and PAF activity 
by Suramab and LAU-0901 reduces tumor proliferation and migra-
tion. Suramab and ELV also reduce blood vessel formation through 
inhibition of VEGF. Representative bioluminescent images of the 
brain tumors after implantation of the luciferase modified U87MG 
cells from all experimental groups on day 30. The intensity of light 
emission corresponding to tumor burden is represented by a colori-
metric scale, where red indicates the highest radiance and blue/vio-
let shows the least. There was progressive and rapid tumor growth in 
the saline group. In contrast, mice treated with LAU-0901, Suramab, 
ELV, ELV + Suramab, and LAU-0901 + Suramab showed reduced 
tumor growth compared to vehicle-treated mice
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2 � Suramab (combination of Suramin 
plus Avastin) is a novel anti‑angiogenic 
combination for GBM treatment

Anti-angiogenic strategies for treating high-grade gliomas 
have a solid biologic rationale since these tumors produce 
large amounts of vascular endothelial growth factor (VEGF) 
and are highly vascular. Due to their high metabolic demands, 
growing solid tumors depends on vascularization to provide 
nutrients and oxygen and disposal of embolic waste products. 
Because VEGF is a critical growth factor required for new 
blood vessel formation, anti-VEGF agents were initially devel-
oped to block tumor growth by inhibiting blood vessel for-
mation [4]. However, bevacizumab (brand name Avastin), a 
humanized monoclonal antibody developed to neutralize 
human VEGF, failed to improve survival benefit as mono-
therapy but conferred a survival benefit only in combination 
with chemotherapy or immuno- therapy [4]. A potential expla-
nation for the success of combined treatments is that Avas-
tin “normalizes” the abnormal vasculature of tumors, resulting 
in improved delivery of concurrently administered anticancer 
drugs, as well as alleviation of hypoxia.

Suramab  is a new pharmaceutical combination of 
two anti-angiogenic compounds,  suramin,  and  Avastin, 
which showed a high synergistic effect when administered 
jointly [5]. Suramin is a 100-year-old drug used to treat Afri-
can sleeping sickness caused by Trypanosoma brucei rho-
desiense [6]. It is a multifunctional molecule with many poten-
tial applications, from parasitic and viral diseases to cancer, 
snakebite, and autism. It has demonstrated anticancer activ-
ity by inhibiting the binding of multiple growth factors and 
glutamatergic synaptic transmission [6]. It has an extremely 
long half-life, but repetitive dosing results in drug accumula-
tion [7]. Remarkably, a new pharmaceutical combination of 
suramin and Avastin, administrated at relatively low doses, 
has a tremendous anti-angiogenic effect, synergistic like, with 
greater intensity and longer duration than the effect produced 
by a mono-doses of Avastin or suramin [5]. It was demonstrated 
that Suramab strongly reduced tumor growth in colorectal car-
cinoma in mice and reduced neovascularization in a rabbit 
model of corneal angiogenesis [5]. Surprisingly, there are no 
studies to evaluate the efficacy of Suramab on GBM so far.

3 � LAU‑0901 is a selective 
PAF‑receptor antagonist and a potent 
inhibitor of inflammation and tumor 
growth

In contrast to anti-angiogenic strategies, stimulation of 
inflammation resolution is a novel host-focused alter-
native to complement current therapies.  The tumor 

microenvironment, primarily orchestrated by inflamma-
tory molecules, promotes such tumors’ proliferation, sur-
vival, and migration, and it seems logical to employ anti-
inflammatory drugs.

Described almost 50 years ago, the phospholipid media-
tor platelet-activating factor (PAF) has been implicated in 
many pathologic processes. PAF is a potent mediator of 
inflammation involved in inflammatory diseases such as ath-
erosclerosis, cardiovascular diseases, and cancer [8]. PAF 
induces  robust systemic pro-inflammatory, pro-prolifer-
ative, and delayed immune-suppressive responses via the 
activation of PAF receptor (PAF-R) which is implicated in 
various pathological conditions rationalizing its explora-
tion in cancer development as many malignant cells express 
PAF-R [8]. Recent studies demonstrated the implication of 
PAF in cancer growth and metastasis [8]. Circulating or 
cancer cells synthesizes PAF and its presence in the tumor 
microenvironment. Inducible pathways that result in the 
development of  tumor angiogenesis and metastasis may 
involve  PAF binding on its receptor.  Increased expres-
sion of tumoral PAF-R has been associated with invasive-
ness, increased tumor stages, tumor status, and poor prog-
nosis in  lung and esophageal squamous cell carcinoma 
[8]. Notably, patients who experienced decreased overall 
survival were found to have tumors expressing high lev-
els of PAF-R compared to those with low tumor PAF-R 
expression [9]. The potential for inhibition of tumor growth 
and increased efficacy of other agents when targeting PAF-R 
has been proposed [8]. Reduction of tumor burden improved 
murine host survival, and the augmented efficacy of ther-
apeutic agents has been observed using pharmacologic 
PAF-R antagonists [9]. Multiple structurally different but 
specific PAF-R antagonists have been shown to exert prom-
ising effects against experimental tumors [9]; however, these 
agents have yet to be explored in clinical settings. Thus, PAF 
may represent a rational therapeutic target in GBM. As a 
novel PAF-R antagonist, LAU-0901 has been previously 
shown to be neuroprotective in inflammation and ischemic 
stroke models [10]. LAU-0901 (2,4,6-trimethyl-1, 4-dihy-
dro-pyridine-3, 5-dicarboxylic acid) is a selective PAF-R 
antagonist and a potent inhibitor of inflammation response 
and apoptosis [10]. It has also been shown to exhibit neu-
roprotective bioactivity when applied to a model of focal 
cerebral ischemia in rats and mice [11].

4 � Elovanoids are a novel class 
of lipid mediators that regulate 
homeostasis

Tumor growth is angiogenesis-dependent, and enhanced inflam-
mation is a risk factor for many cancers. Inflammation is regu-
lated by endogenous specialized pro-resolving lipid-autacoid 
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mediators (SPMs). This includes resolvins, lipoxins, and pro-
tectins, which inhibit angiogenesis and mediate endogenous 
resolution by stimulating macrophage phagocytosis of cel-
lular debris,  resulting in reduced localized inflammatory 
cytokines [12, 13]. Unlike the majority of anti-inflammatory 
agents, SPMs are non-immunosuppressive and non-toxic. It 
was demonstrated that pro-resolving lipid mediators and anti-
angiogenic therapy exhibit synergistic anti-tumor activity 
via resolvin receptor activation [14]. Notably, resolvins (RvD4 
or RvD5) inhibited tumor growth at doses 10,000 times 
lower than anti-inflammatory agents such as aspirin and 
NSAIDs [14]. We recently discovered ELV, the novel class 
of endogenous pro-homeostatic lipid mediators that protect 
against excitotoxicity [15]. They are stereoselective mediators 
made on-demand and derived from very long-chain polyunsatu-
rated fatty acids and have been shown to have a potent ability 
to inactivate pro-apoptotic and pro-inflammatory signaling in 
experimental stroke and neurodegenerative diseases [15].

In addition to anti-angiogenic and anti-inflammatory 
pathways, free fatty acid oxidation has been closely linked to 
GBM. Enhanced fatty acid oxidation provides glioblastoma 
cells metabolic plasticity to accommodate its dynamic nutri-
ent microenvironment [16]. Thus, dynamic metabolic repro-
gramming plays a vital role during glioma genesis, which 
allows for the adaptation, survival, and proliferation of these 
cells in the diverse microenvironment implicit in this tumor. 
Thus, inhibition of fatty acid oxidation may provide an indi-
rect approach to reduce tumor growth.

The development of effective GBM therapy presents 
challenges, one of which is the molecular heterogeneity and 
genetic instability of these tumors. To overcome this com-
plexity, a multipronged approach that targets key signaling 
pathways, specifically angiogenesis, inflammation, and oxi-
dative stress pathways, will open new therapeutic avenues.
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