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Abstract

Plasma insulin oscillations are known to have physiological importance in the regulation of

blood glucose. In insulin-secreting β-cells of pancreatic islets, K(ATP) channels play a key

role in regulating glucose-dependent insulin secretion. In addition, they convey oscillations

in cellular metabolism to the membrane by sensing adenine nucleotides, and are thus instru-

mental in mediating pulsatile insulin secretion. Blocking K(ATP) channels pharmacologically

depolarizes the β-cell plasma membrane and terminates islet oscillations. Surprisingly,

when K(ATP) channels are genetically knocked out, oscillations in islet activity persist, and

relatively normal blood glucose levels are maintained. Compensation must therefore occur

to overcome the loss of K(ATP) channels in K(ATP) knockout mice. In a companion study,

we demonstrated a substantial increase in Kir2.1 protein occurs in β-cells lacking K(ATP)

because of SUR1 deletion. In this report, we demonstrate that β-cells of SUR1 null islets

have an upregulated inward rectifying K+ current that helps to compensate for the loss of K

(ATP) channels. This current is likely due to the increased expression of Kir2.1 channels.

We used mathematical modeling to determine whether an ionic current having the biophysi-

cal characteristics of Kir2.1 is capable of rescuing oscillations that are similar in period to

those of wild-type islets. By experimentally testing a key model prediction we suggest that

Kir2.1 current upregulation is a likely mechanism for rescuing the oscillations seen in islets

from mice deficient in K(ATP) channels.

Author summary

Pulsatile insulin secretion is important for the proper regulation of blood glucose, and dis-

ruption of this pulsatility is a hallmark of type II diabetes. An ion channel was discovered

more than three decades ago that conveys the metabolic state of insulin-secreting β-cells

to the plasma membrane because it is blocked by ATP and opened by ADP, and thereby

controls the activity of these electrically-excitable cells on a rapid time scale according to
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the prevailing blood glucose level. In addition to setting the appropriate level of insulin

secretion, K(ATP) channels play a key role in generating the oscillations in cellular activity

that underlie insulin pulsatility. It is therefore surprising that oscillations in activity persist

in islets in which the K(ATP) channels are genetically knocked out. In this combined

modeling and experimental study, we demonstrate that the role played by K(ATP) current

in wild-type β-cells can be taken over by an inward-rectifying K+ current which, we show

here, is upregulated in β-cells from SUR1 knockout mice. This result helps to resolve a

mystery in the field that has remained elusive for more than a decade, since the first stud-

ies showing oscillations in SUR1-/- islets.

Introduction

Insulin is secreted from pancreatic islet β-cells in response to elevated blood glucose. Islet

activity is oscillatory, with periods ranging from tens of seconds to several minutes, and this is

reflected in the reported periods of pulsatile insulin secretion [1–4]. Plasma insulin oscillations

play a physiological role in blood glucose regulation [5–8]. A recent study showed that the

action of insulin on the liver to lower plasma glucose is more profound when insulin is deliv-

ered to the liver in a pulsatile fashion [9], and earlier studies showed that plasma insulin oscil-

lations are disrupted in type II diabetics and their near relatives [10–12].

At stimulatory levels of glucose β-cells exhibit electrical bursting, and Ca2+ that enters the

cells during each burst evokes a pulse of insulin secretion [7,13,14]. Several mechanisms have

been proposed to explain this bursting electrical activity [15–18]. A recent mathematical

model that combines two of these mechanisms can reproduce bursting having a wide range of

periods, as seen in experimental studies [19]. One mechanism produces fast oscillations, while

the other produces slow oscillations and both can oscillate independently, prompting the

name Dual Oscillator Model (DOM). In the DOM, the fast component of bursting results

from the negative feedback of Ca2+ on the membrane potential via Ca2+-activated K+ channels

and, indirectly, via K(ATP) channel activation. The slow component, in contrast, is due to

oscillations in glycolysis that occur as the result of actions of the allosteric enzyme phospho-

fructokinase (PFK)[20,21]. The subsequent oscillatory ATP production acts through ATP-sen-

sitive K+ channels (K(ATP) channels) to produce oscillations in K(ATP) current, which turns

the bursts of electrical activity on and off [22,23].

K(ATP) channels play a crucial role coupling cell metabolism to membrane potential.

These channels are comprised of four inwardly rectifying K+ channel subunits (Kir6.2) and

four sulfonylurea receptor subunits (SUR1) arranged in an octomeric array (for review see

[24]). A mutation in the genes coding for either subunit prevents K(ATP) channels from being

trafficked normally to the plasma membrane or alters their sensitivity to adenine nucleotides,

leading to persistent hyperinsulinemic hypoglycemia of infancy (PHHI) in humans, a condi-

tion characterized by high insulin secretion that occurs even when blood glucose is low [25–

27]. High secretion results from the permanent depolarization of the β-cell membrane that is

due to the lack of normally hyperpolarizing K(ATP) current. Surprisingly, in SUR1 homozy-

gous knockout mice (SUR1-/- mice), lacking K(ATP) channels, islets typically still exhibit elec-

trical bursting (although the glucose sensitivity of bursting in these islets is largely abrogated),

and blood glucose levels are relatively normal unless the animals are metabolically stressed

[28,29]. Similarly, islets from Kir6.2 knockout mice exhibit slow Ca2+ oscillations, similar to

those observed in wild-type islets which are known to be due to bursting electrical activity

[30]. In these mice, compensation must therefore occur to overcome the loss of the large
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hyperpolarizing K(ATP) current. Indeed, when the K(ATP) channels of wild type islets are

acutely blocked by sulfonylurea drugs, β-cells spike continuously from a sustained depolarized

level [31–33]. We hypothesized that such compensation could be achieved through the upre-

gulation of another hyperpolarizing K+ channel that impersonates K(ATP) channels in sensing

cellular metabolism [34]. In a companion study (Vadrevu et al, manuscript in preparation), we

demonstrated that the upregulation of Kir2.1 channel protein in islets from SUR1-/- mice (KO

islets) could mediate this compensation. In the current report, we demonstrate that SUR1 KO

islets exhibit sustained Ca2+ oscillations at stimulatory levels of glucose, and that the amount of

inward rectifying K+ current is increased in these K(ATP) channel KO cells. Using mathemati-

cal modeling, we explored the functional role of this current on the electrical activity of islet β-

cells when K(ATP) channels are absent. In particular, we investigated whether this inward-rec-

tifying K+ current has the ability to rescue normal electrical bursting pattern in β-cells of

SUR1-/- mouse islets.

Kir2.1 channels conduct large inward currents at voltages below the K+ Nernst potential

(VK) and smaller outward currents at voltages above VK. This diode-like property, or inward

rectification, is caused by blockade of the channels by intracellular ions and polyamines when

the cell membrane is depolarized [35–37]. Kir2.1 channels also contain consensus sites for

phosphorylation by protein kinase A (PKA) and studies show that PKA potentiates Kir2.1 cur-

rent [38–40]. One study shows that a phosphatase inhibitor can prevent rundown of the Kir2.1

current that is activated by PKA, which indicates activation of the channels is regulated by

protein phosphorylation [41]. Since PKA activity is cAMP-dependent, changes in the cAMP

concentration in the β-cell can in principle regulate Kir2.1 channel activity. Recent studies

employing FRET-based sensors and TIRF microscopy showed that glucose induces cAMP

oscillations in mouse β-cells [42,43], which may be accounted for by oscillations in metabolism

[44]. It is therefore possible that, in KO cells, metabolic oscillations drive cAMP oscillations

which in turn drive oscillations in Kir2.1 current, and this replaces oscillations in K(ATP) cur-

rent as the mechanism for bursting electrical activity. We illustrate how this works with the

model, and make predictions that are subsequently confirmed experimentally and thereby

support the hypothesis that Kir2.1 channel upregulation is a feasible mechanism which can

rescue electrical bursting in SUR1-/- mouse islets lacking K(ATP) channels.

Materials and methods

Ethics statement

The animal protocol used was in accordance with the guidelines of the University of Michigan

Institutional Animal Care and Use Committee (IACUC).

Islet preparation

Pancreatic islets were isolated from 3–4 month old male Swiss-Webster mice as in [45]. Islets

were hand picked into fresh Kreb’s solution and then transferred to culture dishes containing

RPMI-1640 supplemented with 10% FBS, glutamine and penicillin-streptomycin. Islets were

cultured overnight at 37˚C in an incubator. Electrophysiological recordings were made from

islets cultured for 72 hours or less.

Electrophysiology

Patch electrodes were pulled (P-97, Sutter Instrument Co., Novato, CA) from borosilicate glass

capillaries (Warner Instrument Inc., Hamden, CT) and had resistances of 8–10 M-ohm when

filled with an internal buffer containing (in mM): 28.4 K2SO4, 63.7 KCl, 11.8 NaCl, 1 MgCl2,

K(ATP) channel knockout compensation in pancreatic islets
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20.8 HEPES and 0.5 EGTA at pH7.2. The electrodes were then backfilled with the same solu-

tion but containing amphotericin B at 0.3 mg/ml to allow membrane perforation. Islets were

transferred from culture dishes into a 0.5 ml recording chamber held at 32–34˚C. Islets were

visualized using an inverted epifluorescence microscope (Olympus IX50, Tokyo, Japan).

Pipette seals obtained were > 1 G-ohms. Recordings were made using an extracellular solution

containing (in mM): 135 NaCl, 2.5 CaCl2, 4.8 KCl, 1.2 MgCl2, 20 HEPES, and 11.1 glucose.

Voltage ramps

After the establishment of a perforated patch, cells were voltage-clamped to a holding potential

of -60 mV, and a 2-second voltage ramp from -120 to -50 mV was applied, as in [32]. Evoked

currents were digitized at 10 kHz after filtering at 2.9 kHz. The protocols were generated using

Patchmaster software (v2x32; HEKA Instruments).

Fura-2 imaging of cytosolic Ca2+ and pharmacological treatments

Pancreatic islets were cultured overnight in RPMI medium containing 5 mM glucose and on

the day of experiments were transferred to fresh media containing 2.5 μM Fura-PE2-AM for

30 min. Following incubation, islets were loaded into a glass-bottomed chamber mounted

onto the microscope stage. The chamber was perfused at 0.3 mL/min with 11 mM glucose

solution and the ambient temperature was maintained at 33˚C using inline solution and cham-

ber heaters (Warner Instruments). Excitation was provided by a TILL Polychrome V mono-

chromator (TILL Scientific, Germany) with light output set to 10% maximum. Excitation (x)

or emission (m) filters (ET type; Chroma Technology, Bellows Falls, VT) were used in combi-

nation with an FF444/521/608-Di01 dichroic (Semrock, Lake Forest, IL) as follows: Fura-2,

340/10x and 380/10x, 535/30m (R340x/380x – 535m); A single region of interest was used to

quantify the average response of each islet using MetaMorph software (Molecular Devices). In

one set of experiments, after three oscillations were recorded, the solution was switched to a

solution containing 11 mM glucose with thapsigargin (1 μM). In another set of experiments,

the solution was switched to one containing 11 mM glucose and 8-Bromoadenosine 3’,5’-cyclic

monophosphate (8-Br-cAMP) (50 μM).

Modeling

We used an 8-variable model consisting of ordinary differential equations, illustrated in Fig 1.

This Dual Oscillator Model (DOM) has electrical, Ca2+, and metabolic components [23,46].

We focus our description on elements of the model that are most important for this study, but

all equations and tables of parameter values are given in Supporting Information. (The com-

puter codes, using the CVODE solver implemented in XPPAUT, can be downloaded as free-

ware from www.math.fsu.edu/~bertram/software/islet.) In the DOM, the fast oscillatory

component is based on negative Ca2+ feedback onto the membrane potential through Ca2+-

sensitive K+ current (IK(Ca)). This mechanism can drive fast bursting. The second oscillatory

component is due to metabolic oscillations, which result from the activity of the allosteric

enzyme phosphofructokinase (PFK). In the process of glycolysis, PFK catalyzes the phosphory-

lation of fructose 6-phosphate (F6P) to fructose 1,6-bisphosphate (FBP). The activity of PFK is

increased by its product FBP, so that increased FBP increases the reaction rate and causes a

sharp rise in FBP. This eventually depletes the substrate of the reaction, F6P, and turns off flux

through PFK, resulting in a reduction in FBP. This allows the substrate, F6P, to recover and

the cycle to restart. Oscillatory FBP levels in turn cause oscillations in pyruvate, the end prod-

uct of glycolysis and the substrate for mitochondrial respiration. The oscillatory glycolytic

input results in oscillatory levels of the nucleotide concentrations (ATP, ADP and AMP). The

K(ATP) channel knockout compensation in pancreatic islets
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membrane potential is then affected through the action of ATP and ADP on K(ATP) channels,

which can drive slow bursting in the model.

Equations for the dynamics of cAMP were recently added to an earlier version of the DOM

[44] and it was shown that this version was capable of producing cAMP oscillations in model

β-cells. We employed these equations, where the cAMP concentration is determined by the

difference between its production by adenylyl cyclase (VAC) and degradation by phosphodies-

terases (VPDE):

dcAMP
dt

¼ VAC � VPDE ð1Þ

where,

VAC ¼ �vAC aAC þ bAC
c3

c3 þ K3
ACca

� �

bamp

K2
amp

AMP2
c þ K2

amp

 !

ð2Þ

VPDE ¼ �vPDE aPDE þ bPDE
c3

c3 þ K3
PDEca

� �
cAMP

cAMP þ KPDEcamp
ð3Þ

where c is the cytosolic free Ca2+ concentration, which stimulates both AC and PDE. Cytosolic

AMP (AMPc) inhibits AC and thus the production of cAMP [47–49]. We modified the VAC

equation from the original model to incorporate a higher-order dependence on AMP. In the

model, slow cAMP oscillations are the result of AMP oscillations and the accompanying Ca2+

oscillations, which are both the product of glycolytic oscillations. The details of the cAMP

dynamics are given in [44].

Fig 1. The key components of the model. Green arrows are for stimulatory and red circles are for inhibitory pathways. In the wild-type cells,

bursting is paced by metabolic oscillations acting on K(ATP) channels. In the KO cells, genetic disruption of K(ATP) channels leads to increased

Kir2.1 current, which now drives bursting.

https://doi.org/10.1371/journal.pcbi.1005686.g001
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In the DOM, the rate of change of the membrane potential of a wild type β-cell is given by a

conductance-based Hodgkin-Huxley type equation:

dV
dt
¼ � IK þ ICa þ IKðCaÞ þ IKðATPÞ

� �
=Cm ð4Þ

where, Cm is the membrane capacitance, IK is the delayed rectifier K+ current, ICa is a voltage-

sensitive Ca2+ current, IK(Ca) is a Ca2+-sensitive K+ current and IK(ATP) is an ATP-sensitive K+

current. The rate of change of the free cytosolic Ca2+ concentration is:

dc
dt
¼ fcytð � aICa � kpmcac

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{
Jmem

þ kleakðcer � cÞ � kSERCAc
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

JER

Þ ð5Þ

where terms labeled by Jmem and JER represent the Ca2+ flux across the plasma membrane and

net flux out of the endoplasmic reticulum (ER), respectively. Here, fcyt is the fraction of free to

total cytosolic Ca2+, α converts current to flux, kpmca is the Ca2+ pumping rate across the

plasma membrane, kleak is the rate of the Ca2+ leak from the ER and kSERCA is the Ca2+ pump-

ing rate into the ER. The ER Ca2+ concentration (cer) is also dynamic and given by:

dcer

dt
¼ � ferVcte kleakðcer � cÞ � kSERCAcð Þ ð6Þ

where fer is the ratio of the free Ca2+ in the ER and Vcte is the ratio of the volume of the cytosol

to the volume of the ER compartment. The equation for the Ca2+-sensitive K+ current (IK(Ca))

is,

IKðCaÞ ¼ gKðCaÞoðV � VKÞ ð7Þ

where, gK(Ca) is the maximal conductance of the current, and ω is the following Ca2+-depen-

dent activation function,

o ¼
c2

c2 þ K2
c

ð8Þ

where Kc is the affinity constant.

In the KO-cells lacking K(ATP) channels there is no IK(ATP) present. In the model KO-cells,

K(ATP) current is replaced by the following Kir2.1-mediated inward-rectifying K+ current:

IKir ¼ gKirk1c1ðV � VKÞ: ð9Þ

Here gKir is the maximal Kir2.1 channel conductance, k1 is the voltage-dependent block of

the channel by polyamines which is the cause of the inward rectification, and c1 is the cAMP-

dependent activation of the channels. We use a Boltzmann function to describe k1:

k1 ¼
1

1þ exp V � Vkir
skir

� � ð10Þ

where VKir is the half activation potential and sKir is the slope factor that determines the sensi-

tivity to the voltage. The resulting voltage-dependent k1 curve is shown in Fig 2A and is

parameterized according to [50]. Kir2.1 current has both cAMP dependent and independent

components [38], which are incorporated into the activation function c1 as follows:

c1 ¼ acamp þ bcamp
cAMP4

cAMP4 þ K4
camp

ð11Þ

K(ATP) channel knockout compensation in pancreatic islets
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where αcamp is the cAMP independent component, and the cAMP dependency of the current

is described by the second term. The c1 function is illustrated in Fig 2B.

Results

An inward-rectifying K+ current is upregulated in SUR1-/- pancreatic β-

cells

Ca2+ and membrane potential oscillations in SUR1-/- islets lacking functional K(ATP) chan-

nels were reported previously [28,51]. Our fura-2 Ca2+ measurements verified that slow cyto-

solic Ca2+ oscillations persisted in both wild-type (Fig 3A) and KO-islets (Fig 3B) perfused

with 11 mM glucose. These data show that our SUR1-/- islets recapitulate the Ca2+ oscillations

observed in [28,51].

We recently identified an increase in Kir2.1 channel protein in islets isolated from SUR1-/-

mice (Vadrevu et al, manuscript in preparation). To verify the electrophysiological functionality

of these channels in the β-cell membrane of KO islets, we measured current-voltage relations of

wild-type and KO cells using the perforated patch clamp technique in peripheral islet β-cells.

Fig 3C shows current recordings elicited by voltage ramp commands from -120 mV to -50 mV

(see Materials and Methods) applied to wild-type islets (black) and K(ATP) KO islets (red).

In wild-type islets, the current-voltage relation is largely linear beyond about -110 mV (Fig

3C, black) (n = 6 islets from 4 mice), while in the KO cells the evoked current was more non-

linear, exhibiting inward rectification (Fig 3C, red). The strong inward rectification is likely

due to current from the upregulated Kir2.1 inward-rectifying K+ channels that we report in a

companion study (Vadrevu et al, manuscript in preparation), supporting a functional role for

the upregulated Kir2.1 channel protein.

The model demonstrates that Kir2.1 channel upregulation can rescue

bursting in SUR-/- islets

Fig 4 illustrates slow bursting produced by the model for the case of wild-type cells. The oscilla-

tions in the free Ca2+ concentration observed here (Fig 4A) result from the bursting electrical

Fig 2. The Kir2.1 channel conductance depends on voltage and the cAMP concentration. (A) Voltage-dependent blockade of the Kir2.1

current. (B) cAMP-dependent activation of the Kir2.1 current.

https://doi.org/10.1371/journal.pcbi.1005686.g002

K(ATP) channel knockout compensation in pancreatic islets
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activity described earlier. The burst timing in this case is controlled by the slow glycolytic oscil-

lations, which are reflected by the FBP time course as shown (Fig 4E). FBP oscillations in turn

cause oscillations in downstream metabolic components, including cytosolic AMP and ATP

(Fig 4C and 4D). The conductance of K(ATP) channels (gK(ATP)) is dependent on ADP and

ATP levels, and oscillations in the concentrations of these nucleotides cause K(ATP) conduc-

tance (Fig 4B) and concomitantly K(ATP) current to oscillate and drive slow busting. The slow

cAMP oscillations are modulated by Ca2+ and AMP, but in the model of the wild-type β-cells

cAMP has no impact on the cell’s electrical activity.

If the key K(ATP) channels are removed, the model cell spikes continuously, as is seen

experimentally when a K(ATP) channel blocker like tolbutamide is applied to a wild-type islet

[31–33]. The upregulated Kir2.1 conductance shown in Fig 3C would be expected to also pro-

vide hyperpolarizing current, but can it rescue the bursting oscillations that are normally

driven by K(ATP) current? To answer this, we replaced K(ATP) current in the model with

Kir2.1 current to simulate the case for KO cells. The properties of this model current are dis-

cussed in Materials and Methods and are shown in Fig 2. A key feature of the Kir2.1 channels

is their activation by cAMP [38–40].

In Fig 5 we show that if Kir2.1 is sufficiently up-regulated, it can rescue slow bursting in

model cells lacking K(ATP). In the model of the KO condition, slow glycolytic oscillations

now drive slow AMPc oscillations (Fig 5C) that cause the cAMP concentration to oscillate (Fig

Fig 3. Fura-2 Ca2+ measurements from wild-type (A) and SUR1-/- islets (B) at 11 mM glucose. The change in

Ca2+ is expressed as the Fura-2 340/380 ratio. (C) Comparison of I-V curves from wild-type (black) and

SUR1-/- (red) β-cells. The wild-type recording is representative of n = 6 islets isolated from 4 mice. The

SUR1-/- recording is representative of n = 8 islets isolated from 5 mice. The SUR1-/- islets exhibited significant

inward rectification at more negative potentials compared to cells from wild-type islets.

https://doi.org/10.1371/journal.pcbi.1005686.g003
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5A, red). cAMP in turn activates the Kir2.1 channels and results in oscillations in the Kir2.1

conductance (Fig 5B). This causes the membrane potential to switch between the active and

silent phases, which drives bursting and Ca2+ oscillations as in the wild-type case (Fig 5A,

black). The shape of the burst is largely determined by the details of the V and cAMP depen-

dence of the Kir2.1 channels, which in our model is calibrated by data from a human isoform

of the channel expressed in human embryonic kidney cells. Differences of channel properties

between mouse and human would change the shape of the burst, but not the burst mechanism

(unless channel differences were drastic). A robust property of the burst mechanism is that the

cAMP concentration peaks during the silent phase in the KO model cells, unlike the wild-type

model cells where cAMP peaks at the beginning of the active phase. This peak in cAMP is

reflected in the Kir2.1 conductance. Fig 5B shows the moving average of this conductance,

where averaging is done over a window of 6 s to filter out fast V-dependent changes. Like

Fig 4. Bursting in wild-type model cells. Slow glycolytic oscillations drive bursting through actions on the K(ATP) current. (A) cAMP declines at the

start of each Ca2+ plateau. (B) K(ATP) channel conductance. (C-D) Adenine nucleotide concentrations in the cytosol. (E) Slow glycolytic oscillations

are reflected in the FBP time course.

https://doi.org/10.1371/journal.pcbi.1005686.g004

K(ATP) channel knockout compensation in pancreatic islets
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cAMP, the Kir2.1 conductance peaks during the silent phase, and the subsequent decline in

this conductance starts the next burst. Although the ATP concentration also oscillates (Fig

5D), it does not affect the membrane potential in this case since there are no K(ATP) channels

to sense changes in nucleotides.

In the wild-type model cells, cAMP had no effect on membrane potential or any other com-

ponents of the model. However, in the model we made of the KO cells, cAMP, acting through

Kir2.1 channels, is now the key to slow bursting. To further understand how this occurs, a

slow burst is shown in more detail in Fig 6. In this figure, voltage is averaged over the duration

of each spike to illustrate mean voltage (Fig 6A, red). This allows us to focus on the slower

burst waveform. The figure begins with the system in the silent phase, where Kir2.1 conduc-

tance is high (Fig 6D) due to elevated cAMP concentration (Fig 6B, red) and a relatively

Fig 5. Bursting in the model KO cells, where K(ATP) current is replaced with Kir2.1 current. Glycolytic oscillations drive bursting through a

cAMP-dependent pathway. (A) Ca2+ and cAMP concentrations oscillate in anti-phase. (B) Conductance of the Kir2.1 current, time averaged over a

window of 6 s to remove fast variations and highlight the cAMP-dependent slow dynamics. (C) AMPc oscillations contribute to the production of cAMP

oscillations. (D) ATPc oscillates due to oscillations in glycolysis. (E) FBP is the product of the PFK enzyme that is responsible for glycolytic oscillations.

For this simulation, the glucokinase reaction rate was increased from 0.09 μM/ms to 0.14 μM/ms and kFBP was increased from 0.8 to 0.95.

https://doi.org/10.1371/journal.pcbi.1005686.g005
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hyperpolarized voltage (Fig 6A, red). As glycolytic activity declines near the end of the silent

phase AMPc slowly increases (Fig 6B, black). This, in turn, reduces the cAMP concentration by

inhibiting adenylyl cyclase, thereby reducing Kir2.1 channel activation (Fig 6C, red). The

resulting decline in Kir2.1 conductance initiates an active phase of electrical activity, further

reducing Kir2.1 conductance due to voltage-dependent channel blockade as the cell depolar-

izes (Fig 6C, black). Cytosolic Ca2+ now increases due to Ca2+ influx through voltage-depen-

dent Ca2+ channels and this activates Ca2+-ATPase pumps through ATP hydrolysis, further

increasing the AMPc. This causes cAMP to decline rapidly. By the middle of the active phase

AMP reaches its peak and then starts to decline. This decline, despite the continued rise in c, is

due to the upstroke of the glycolytic oscillator, which facilitates the production of ATP at the

expense of ADP and AMP. Decreased AMPc disinhibits adenylyl cyclase and cAMP again

starts to increase. The cytosolic Ca2+ concentration starts to decrease only after cAMP is ele-

vated enough to significantly activate Kir2.1 current (Fig 6C, red), eventually terminating the

active phase.

Fig 6. In the model KO cells, bursting is driven by the Kir2.1 current, which is regulated by voltage and the cAMP concentration. (A) Mean V

and c during a burst. Voltage is averaged over each spike. (B) The cAMP and cytosolic AMP concentrations. (C) Dynamics of the Kir2.1 channel

activation (c1) and inactivation (k1). (D) Kir2.1 conductance during a burst.

https://doi.org/10.1371/journal.pcbi.1005686.g006
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Oscillations are terminated by 8-Br-cAMP

The KO model relies on the action of cAMP oscillations on Kir2.1 channels to drive electrical

bursting and Ca2+ oscillations in the SUR1-/- islets. If cAMP is tonically elevated, then the sub-

sequent tonic activation of Kir2.1 should hyperpolarize the islet, terminating electrical bursting

and Ca2+ oscillations, and bringing the intracellular Ca2+ concentration to a low level. We per-

formed this manipulation by adding 8-Bromoadenosine 3’,5’-cyclic monophosphate (8-Br-

cAMP) to wild-type and SUR1-/- islets. This is a membrane permeant brominated derivative of

cAMP that is resistant to degradation by cAMP phosphodiesterase, and is thus long lasting.

Application of 8-Br-cAMP (50 μM) to wild-type islets (N = 10) had little or no effect on

Ca2+ oscillations, as shown in three representative islets (Fig 7A). In contrast, the same concen-

tration applied to SUR1-/- islets terminated Ca2+ oscillations in all islets tested (N = 9), reduc-

ing the intracellular Ca2+ level to what is expected from a hyperpolarized islet (Fig 7B). This is

consistent with the hypothesis that cAMP activates Kir2.1 channels, and that oscillations in

cAMP drive oscillations in Ca2+ in SUR1-/- islets, but not wild-type islets.

Fast/slow analysis of the Kir2.1 model

To better understand the dynamics of the bursting mechanism, and to help facilitate the design

of new experiments, we performed a fast/slow analysis of the Kir2.1 model. Fast/slow analysis

separates system variables into component fast and slow subsystems based on their respective

time scales [52]. The slow variables are almost constant on the time scale of changes in the fast

variables. Therefore, these variables can be treated as slowly-varying parameters of the fast sub-

system. In our model, the fast variables are voltage (V), the activation variable for voltage-

gated K+ current (n) and cytosolic Ca2+ (c). The variables that change on much slower time

scales are fructose 6-phosphate (F6P), fructose 1,6-bisphosphate (FBP), ATPc, AMPc, cAMP
and the Ca2+ concentration of the ER (cer). For comparison, Fig 8A shows a fast variable (c)

shown together with a slow variable AMPc. At the start of a burst active phase c immediately

Fig 7. Fura-2 Ca2+ measurements of islets in 11 mM glucose and, as indicated, 50 μM of the membrane permeable 8-Br-cAMP. (A) Ca2+

oscillations in wild-type islets persist with little or no change upon application of 8-Br-cAMP. Representative of 10 islets. (B) Ca2+ oscillations in SUR1-/-

islets are terminated by 8-Br-cAMP, and Ca2+ is at a low level. Representative of 9 islets.

https://doi.org/10.1371/journal.pcbi.1005686.g007
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jumps to a plateau and exhibits small oscillations due to the voltage spikes, and jumps down at

the end of the active phase. In contrast, AMPc exhibits a slow rise and fall, with a peak near the

middle of the active phase. We start the fast/slow analysis by setting cer to its mean value, since

it is not a part of the primary oscillatory mechanism. The slow variables other than cer interact

according to the following scheme:

F6P! FBP! ATP ! AMP! cAMP

where only cAMP directly affects the fast subsystem, through the cAMP-dependent activation

variable of IKir (c1). We first generate a bifurcation diagram of the fast subsystem with c1 as

the bifurcation parameter (Fig 8B), since the curve is simpler than that obtained using cAMP

itself as the bifurcation parameter. For small values of c1 the system is at a depolarized steady

state, since the Kir2.1 current is largely turned off. These stable steady states make up the initial

segment of the upper branch of the z-shaped curve (solid line), which we refer to as the z-

curve. As c1 is increased two branches of periodic solutions, one stable (bold solid curve) and

one unstable (bold dashed curve), emerge at a saddle node of periodics (SNP) bifurcation. The

branch of unstable limit cycles is created at a subcritical Hopf Bifurcation (HB), at which point

the branch of stable steady states becomes unstable (dashed curve). The branch of unstable

steady states turns at a saddle-node bifurcation (SN1), forming the middle branch of the z-

curve. This branch turns at another saddle-node bifurcation (SN2) and forms the stable lower

branch of the z-curve. The stable branch of periodic solutions reflects tonic spiking, and the

minimum and maximum voltage values during a spike are shown as two separate curves. This

Fig 8. Glycolytic oscillations drive bursting in the model KO cell. (A) c (black) oscillates reflecting bursting electrical activity, while AMPc oscillates

(blue) reflecting glycolytic oscillations. (B) Bifurcation diagram of the fast subsystem, with c1 as bifurcation parameter. HB = Hopf bifurcation,

SN = saddle-node bifurcation, SNIC = saddle-node on invariant circle bifurcation. Solid and dashed curves represent stable and unstable steady states,

respectively, while bold solid and bold dashed curves represent stable and unstable limit cycles, respectively. (C) The burst trajectory projected onto the

c1-V plane. (D) Fast/slow analysis of bursting, with the burst trajectory (red) and c1 curve superimposed onto the fast-subsystem bifurcation diagram.

The c1 curve is shown for AMPc at its minimum (dashed magenta) and maximum (dashed green) during a burst.

https://doi.org/10.1371/journal.pcbi.1005686.g008
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branch terminates at the left knee of the z-curve at a saddle-node on invariant circle (SNIC)

bifurcation.

The burst trajectory is shown projected into the c1-V plane in Fig 8C. The left portion of

the trajectory reflects the active phase of the burst when the model cell is spiking. When the

cell enters the silent phase c1 first increases and then decreases to start a new active phase.

This is the right portion of the trajectory. The burst trajectory is superimposed onto the z-

curve in Fig 8D, along the c1 curve (Eq 11). This curve depends on the cAMP concentration,

which has the following steady state function:

cAMPss ¼
kPDEcampVAC

vPDE aPDE þ bPDE
Ciss

3

Ciss
3þK3

PDEca

� �
� VAC

ð12Þ

where VAC is the rate of adenylyl cyclase production and is inhibited by AMPc (Eq 2). AMPc

changes slowly during a burst (Fig 8A, blue) due to the activity of the glycolytic oscillator. The

steady-state cytosolic Ca2+ concentration in Eq 12 (ciss) is given by:

ciss ¼
aICa þ kleakcer

kpmcaþkleak þ kSERCA
ð13Þ

where ICa is a function of V and cer is clamped at its mean value. This gives the voltage depen-

dence to the c1 curve.

During the burst, the glycolytic oscillator moves the c1 curve back and forth. In Fig 8D the

curve is plotted for values of AMPc at its minimum and its maximum during a burst. During a

burst AMPc moves between these minimum and maximum values and shifts the c1 curve

back and forth. For small values of AMPc, the c1 curve is shifted to the right (magenta dashed

curve), intersecting the z-curve on the bottom stationary branch. At this point the system is in

its hyperpolarized silent phase. As AMPc slowly increases the c1 curve shifts to the left and the

phase point follows it. When the curve passes the knee, the phase point is attracted to the peri-

odic spiking branch, starting the active phase. The phase point follows the periodic branch to

the left until AMPc reaches its maximum (green dashed curve). From here AMPc declines and

shifts the c1 curve rightward, bringing the phase point with it. The c1 curve eventually reaches

SN2 again and intersects the stable stationary branch initiating a silent phase. It keeps moving

rightward as AMPc continues to decline, bringing the phase point with it. Eventually AMPc

begins to rise, restarting the cycle. This is parabolic bursting since the spike frequency during a

burst follows a parabolic time course, low at the beginning and the end as the phase point

passes near the infinite-period SNIC bifurcation [53]. As the fast subsystem bifurcation dia-

gram lacks a bistable region, the glycolytic oscillations are necessary for the production of

bursting in the Kir2.1 model.

An alternate bursting mechanism

To address whether the upregulation of other types of K+ channels might yield effects similar

to those of Kir2.1, we examined the effects of replacing K(ATP) current with an alternative

hyperpolarizing constant-conductance or “leak” K+ current, instead of Kir2.1 current, and

increased the K(Ca) channel conductance (Fig 9). With these modifications, bursting could be

produced in the absence of K(ATP) due to Ca2+ feedback onto K(Ca) channels (Fig 9A). In

this model, ER Ca2+, which played little or no role in bursting produced using the Kir2.1

model, became absolutely essential in driving the burst.

Glycolytic oscillations are now irrelevant since they do not change the membrane potential

or contribute to burst generation in any way. The fast subsystem consists of three variables in
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this case, V, n, and c, and a slow variable cer, which we consider as a slowly-varying parameter

of the fast subsystem. The fast-subsystem bifurcation diagram is shown in Fig 9B. Unlike with

the Kir2.1 model (Fig 8), there is a bistable interval in the z-curve, where stable steady states

coexist with stable periodic solutions (between the saddle-node bifurcation SN2 and the

homoclinic bifurcation HC). The burst trajectory is projected into the cer-V plane in Fig 9C,

and superimposed on the fast-subsystem bifurcation diagram in Fig 9D. Also superimposed is

the cer nullcline, the curve where the cer derivative is 0. Bursting is produced as the trajectory

moves to the left along the bottom stationary branch of the z-curve during the silent phase and

to the right along the periodic branch during the active phase, utilizing the fast-subsystem bist-

ability. This is standard square-wave or type 1 bursting that has been described previously for

other models of bursting in β-cells and in neurons [52,54].

Experimental test distinguishes the two models

We have thus far described two possible ways in which the upregulation of hyperpolarizing K+

channels can rescue bursting in SUR1-/- β-cells. As one clear difference between the two alter-

native mechanisms is their dependence on ER Ca2+ concentration, we explored the conse-

quences of manipulating the ER Ca2+ concentration as a way of determining which model is

more likely the correct one. This can be done experimentally by blocking the Ca2+ pumps on

the ER membrane (the SERCA pumps) using the agent thapsigargin [55].

In the model, the parameter kSERCA is the Ca2+ pumping rate into the ER from the cytosol.

To mimic the effect of thapsigargin we reduced kSERCA by a factor of 4. In the ER bursting

model, this greatly lowered cer (Fig 10A, blue trace) and converted slow bursting into fast two-

Fig 9. The model KO cell can produce bursting with upregulation of a constant-conductance (leak) K+ current and a K(Ca) conductance:

gleak = 32.5 pS, gK(Ca) = 90 pS. (A) Negative feedback of c (black) on the membrane potential and slow cer (blue) oscillations drive bursting. (B) The fast-

subsystem bifurcation diagram exhibits an interval of bistability between the saddle-node bifurcation SN2 and the homoclinic bifurcation HC. (C) A

projection of the burst trajectory. (D) Fast/slow analysis, with the burst trajectory (red) and the cer nullcline (magenta) superimposed on the fast-

subsystem bifurcation diagram. The trajectory moves leftward during the silent phase and rightward during the active phase.

https://doi.org/10.1371/journal.pcbi.1005686.g009
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spike bursting (Fig 10A, black trace). In terms of the fast/slow analysis (Fig 9B), the reduction

in kSERCA shifts the z-curve and cer nullcline far to the left. In addition, the periodic tonic spik-

ing branch is destabilized through a period doubling bifurcation, and the resulting period dou-

bled branch itself loses stability at a period doubling bifurcation. In fact, there is a period

doubling cascade (green curve), leading ultimately to a branch of fast two-spike bursting (blue

curve). The trajectory (red curve) moves to this latter curve at the new equilibrium value of cer.
Thus, the slow bursting is replaced by very fast 2-spike bursting.

In the Kir2.1 model, in contrast, bursting persisted even when SERCA pumps were inhib-

ited (Fig 10C, black). This is because bursting in this case is driven by the activity of the glyco-

lytic oscillator. Blocking SERCA pumps lowers mean cer, which affects the cytosolic Ca2+ level,

but this only modulates the slow bursting pattern rather than abolishing it. Indeed, the fast/

slow analysis illustrates that the burst mechanism is very similar in this case to what it was

before the reduction in kSERCA (Fig 10D). The main difference is that the period of bursting is

now increased, since the c1 curve moves further to the right during the silent phase (Fig 10D,

dashed magenta curve).

These simulations make a testable prediction that can eliminate one or the other of the

compensation models. We subsequently tested the predictions in the lab, by treating oscillating

SUR1-/- islets with thapsigargin (TG). Fig 11 shows the model prediction obtained with the

Kir2.1 model on the top row and the results of the experiments on the bottom three rows

(three SUR-/- islets and three wild-type islets are shown). TG application did not terminate

slow Ca2+ oscillations in any of the SUR1-/- islets shown (Fig 11B), as predicted by the Kir2.1

model (Fig 11A). In fact, Ca2+ oscillations persisted in all 10 of the KO islets tested, with only a

small change in the properties of the oscillations. Before TG treatment the oscillation period

was 7.3 ± 1.2 min and the duty cycle (duration of elevated Ca2+ divided by the period) was

0.4 ± 0.08. After TG application there was a slight increase in period to 7.6 ± 1.1 min and the

Fig 10. Distinct model predictions of the effects of partial inhibition of SERCA pumps with thapsigargin distinguishes the two models. (A) In the

model where bursting is driven by oscillations in the ER calcium concentration simulation of TG application reduces the cer (red) and terminates slow c

oscillations (black). (B) In this model, the z-curve and cer nullcline are shifted far to the left and the periodic spiking branch is destabilized. The new stable

periodic branch exhibits fast two-spike bursting at the value of cer at which the trajectory settles. (C) In the model in which bursting is driven by oscillations

in the Kir2.1 current, bursting continues after TG application (black) because the AMPc oscillations (red) persist. (D) In this model, TG increases the

amplitude of the AMPc oscillations, which shifts the c1 curve further to the right and increases the period of oscillations, but the burst mechanism is

unaltered.

https://doi.org/10.1371/journal.pcbi.1005686.g010
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duty cycle increased to 0.6 ± 0.06. The slow Ca2+ decline that occurs at the end of each active

phase prior to TG application, characteristic of Ca2+ leaking out of the ER and into the cytosol,

was eliminated by the application of TG, as expected [56,57]. The persistence of oscillations

when TG is applied is in clear contrast with the wild-type model (the model that has K(ATP)

current) and wild-type islets, where in most of the wild-type islets tested TG converted slow

oscillations (with period 10.6 ± 0.9 min and duty cycle 0.5 ± 0.06) to continuous spiking or fast

bursting with an elevated cytosolic Ca2+ level (in 13 of 14 islets tested) (Fig 11C and 11D). A

similar effect of TG on slow Ca2+ oscillations was previously observed in islets [58]. Since the

response to TG confirms the prediction of the Kir2.1 model, but not the ER bursting model,

we conclude that the Kir2.1 model is a more likely candidate to account for the compensation

that occurs in SUR1-/- islets. That is, the data support the hypothesis that bursting observed in

KO islets is due to compensatory upregulation of Kir2.1 channels.

Discussion

The primary aim of this modeling study was to help understand how islet β-cells can compen-

sate for the genetic knockout of K(ATP) channels in SUR1-/- mice. One focus was on Kir2.1

channels, which we found to be upregulated in the SUR1-/- mice (Vadrevu et al, manuscript in

preparation). We showed that upregulation of these channels can maintain bursting, even

though the K(ATP) channels that normally couple metabolic oscillations to plasma membrane

K+ channel activity are missing. This requires that the Kir channels have a dependence on

cAMP, as has been reported previously for Kir2.1 channels [38–41]. It has also been reported

that cAMP exhibits slow oscillations in insulin-secreting MIN6 cells [43] and in islet β-cells

[42,43], a behavior which could reflect oscillations in the nucleotide AMP [44]. Indeed, we

were not able to observe bursting in simulations of K(ATP) KO islets if AMP regulation of

Fig 11. Fura-2 Ca2+ measurements of SUR1-/- and wild-type islets compared with model simulations. In the experiments, the change in Ca2+ is

expressed as the fura-2 340/380 fluorescence ratio. (A) In the Kir2.1 model, the parameter kSERCA is reduced by a factor of 4 to mimic application of the

SERCA pump blocker thapsigargin (TG). (B) Fura-2 Ca2+ measurements from 3 representative SUR1-/- islets. Islets were maintained in 11 mM glucose,

and the irreversible SERCA pump blocker TG was applied as indicated. Slow Ca2+ oscillations persisted after TG application in all 10 KO islets tested, as

predicted by the model. (C) In the wild-type model, parameter kSERCA was reduced by a factor of 4 to simulate TG application. D) Fura-2 Ca2+

measurements from 3 representative wild-type islets maintained in 11 mM glucose. TG was applied as indicated. Slow Ca2+ oscillations were replaced by

sustained elevation in Ca2+ reflecting continuous spiking or fast bursting in 13 of 14 wild-type islets tested, as predicted.

https://doi.org/10.1371/journal.pcbi.1005686.g011
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cAMP was omitted. We did, however, show an alternative mechanism that could produce

bursting in the KO islets in a manner that is independent of Kir2.1 current. The two models

made very different predictions for the effects of blocking Ca2+ pumps in the ER membrane,

and subsequent experiments with the SERCA pump blocker thapsigargin supported the Kir2.1

model over the alternate model. Of course, we do not suggest that these are the only two mod-

els that might be capable of mediating bursting in the absence of K(ATP). For example, there

are data showing that Mg:ATP can stimulate Kir channels, providing another means by which

metabolic oscillations could cause bursting electrical activity [38]. We do show, however, that

the two models examined herein are both feasible, and that they are experimentally

discernable.

A key hypothesis that we make in the Kir2.1 model is that cAMP regulates Kir2.1 current in

SUR1-/- islets, likely through PKA as described in [38–41], rather than direct metabolic regula-

tion of the channels. A consequence of this hypothesis is that manipulations that increase the

cAMP level should hyperpolarize the islet and terminate Ca2+ oscillations. Indeed, we found

this to be the case. Application of 8-Br-cAMP had no apparent effect on Ca2+ oscillations in

wild-type islets (Fig 7A), but terminated oscillations and brought Ca2+ to a resting level in

SUR1-/- islets. This is what we predict, since we expect little or no expression of Kir2.1 channels

in wild-type islets, but significant expression in SUR1-/- islets (Fig 3). The data of Fig 7 do not

preclude the possibility that cAMP activates another type of K+ channel in SUR1-/- islets, but

other data show that the upregulated current is an inward-rectifying K+ current (Fig 3). If this

upregulated Kir current were regulated directly by metabolism rather than cAMP, it is hard to

explain why increasing the cAMP level with membrane permeable 8-Br-cAMP would termi-

nate Ca2+ oscillations and bring Ca2+ to a resting level.

Another hypothesis that we make is that cAMP oscillates in SUR1-/- islets. This has not yet

been demonstrated, as it has been in wild-type islets [42,43]. However, we have previously

reported that slow NAD(P)H oscillations persist in the SUR1-/- islets (Merrins et al, 2010),

indicating the existence of metabolic oscillations which could drive cAMP oscillations as in

our model. In glucose-stimulated wild-type islets the glycolytic product fructose 1,6-bispho-

sphate exhibits oscillations coincident with electrical bursting and Ca2+ oscillations [59], and

there are slow oscillations in oxygen consumption [60] and NAD(P)H [61,62]. At present, we

do not yet know if the metabolic oscillations in fact result in cyclic AMP oscillations in SUR1-/-

islets.

The upregulation of Kir2.1 channels we propose might result from the expected increase

in β-cell electrical activity that occurs when K(ATP) channel formation is disrupted by the

genetic deletion of SUR1, although when this occurs developmentally is not clear. It is well

established that dramatic changes in electrical activity can regulate the expression of ion chan-

nels in excitable cells [63–65]. This may result from the increased intracellular Ca2+ concentra-

tion that accompanies increased electrical activity, which can enhance gene expression [66,67].

This feedback process would guard against the production of excessive Ca2+ levels in the cell,

which can in turn induce apoptosis [68].

One prediction of the Kir2.1 model is that the Ca2+ and cAMP oscillations should be 180˚

out of phase with one another in the KO cells (Fig 5A). This differs considerably from the

wild-type case, where cAMP has a saw-tooth pattern and declines during the burst active

phase and then rises during the silent phase (Fig 4A). While cAMP levels have been measured

simultaneously with Ca2+ in MIN6 cells and the time course is in general agreement with the

model [43], such measurements have not yet been made in SUR1-/- islets. A study performed

in MIN6 β-cells in which Ca2+ oscillations were induced with the aid of the K+ channel blocker

tetraethylammonium (TEA) showed oscillations in protein kinase A activity that was generally

in phase with cAMP oscillations, indicating that the kinase kinetics were sufficiently fast to
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resolve the roughly 6-min oscillations in the cAMP concentration [69]. Our model would pre-

dict this, for both wild-type and SUR1-/- islets. The PKA oscillations could affect islet β-cells in

ways other than or in addition to phosphorylation of Kir channels, such as phosphorylation of

L-type Ca2+ channels as has been demonstrated in the TC3 β-cell line [70].

Glycolytic oscillations are well established in yeast [71], but until recently there was no

direct evidence that they occur in islet β-cells. However, recent studies using a FRET sensor for

the glycolytic enzyme pyruvate kinase provide direct evidence for the existence of glycolytic

oscillations in islets [72,59]. These metabolic oscillations are readily transmitted to the mem-

brane potential through the cyclic activity of K(ATP) channels [46](Fig 4), and we have now

illustrated how these can drive bursting even in the absence of K(ATP) channels by utilizing

the cAMP dependence of upregulated Kir2.1 channels. It is not obvious how Kir2.1 channel

expression increases to an appropriate level so that bursting is produced when K(ATP) chan-

nels are missing, but it is plausible that channel compensation is achieved through the actions

of Ca2+ on Ca2+-dependent activators or inhibitors of transcription factors. A further modeling

study for the dynamic regulation of Kir2.1 channel expression is currently under way.
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