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Purpose: This study aimed to explore the key molecular pathways involved in Duchenne 
muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) and thereby identify hub 
genes to be potentially used as novel biomarkers using a bioinformatics approach.
Methods: Raw GSE109178 data were collected from the Gene Expression Omnibus (GEO) 
database. Weighted gene co-expression network analysis (WGCNA) was conducted on the top 
50% of altered genes. The key modules associated with the clinical features of DMD and BMD 
were identified. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analyses were performed using the DAVID website. A protein- 
protein interaction (PPI) network was constructed using the STRING website. MCODE, together 
with the Cytohubba plug-ins of Cytoscape, screened out the potential hub genes, which were 
subsequently verified via receiver operating characteristic (ROC) curves in other datasets.
Results: Among the 11 modules obtained, the black module was predominantly associated 
with pathology and DMD, whereas the light-green module was primarily related to age and 
BMD. Functional enrichment assessments indicated that the genes in the black module were 
primarily clustered in “immune response” and “phagosome,” whereas the ones in the light- 
green module were chiefly enriched in “protein polyubiquitination”. Eleven essential genes 
were eventually identified, including VCAM1, TYROBP, CD44, ITGB2, CSF1R, LCP2, 
C3AR1, CCL2, and ITGAM for DMD, along with UBA5 and UBR2 for BMD.
Conclusion: Overall, our findings may be useful for investigating the mechanisms under-
lying DMD and BMD. In addition, the hub genes discovered might serve as novel molecular 
markers correlated with dystrophinopathies.
Keywords: Duchenne muscular dystrophy, Becker muscular dystrophy, WGCNA, 
biomarker, pathway

Introduction
Muscular dystrophies (MDs) are a group of genetic neuromuscular disorders caused 
by gene mutations. To date, more than 40 genes have been recognized to participate 
in the phenotypic variations of MDs, suggesting a complicated pathogenesis. 
Allelic mutations in several genes can affect onset either before or after the 
acquisition of walking, thereby discriminating congenital muscular dystrophies 
from limb girdle muscular dystrophies (LGMD). The distribution of the impaired 
encoding protein also contributes to a variety of MD subtypes.1

The most common forms of MD, Duchenne Muscular Dystrophy (DMD) and 
Becker muscular dystrophy (BMD), are both X-linked disorders characterized by 
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progressive muscle weakness.2 They are caused by muta-
tions in dystrophin, which encodes the dystrophin protein, an 
important component of the plasma membrane cytoskeleton. 
The absence of functional dystrophin leads to a severe form 
of DMD, in which patients lose the ability to walk in child-
hood and subsequently die from respiratory insufficiency or 
cardiomyopathy in early adulthood. Other organs, such as 
the brain, are compromised over the course of the disease 
causing delayed cognitive development in some patients.3–5 

BMD is milder than DMD due to only partial dystrophin 
deficiency, but also displays diverse symptoms, including 
gradual ambulatory disability.6 Unfortunately, although sev-
eral treatment strategies have been applied to slow the 
progression and improve the quality of life of patients with 
DMD/BMD, curative methods for some MDs have not yet 
been developed. Gene-based therapies are usually consid-
ered promising, but are limited by poor targeting and low 
efficiency issues.7 Therefore, a comprehensive understand-
ing of the molecular pathways and hub genes involved is of 
utmost importance to discover new therapeutic targets, 
explore the underlying mechanism, and to identify biomar-
kers for prognostic evaluation.

Rapid advancements in high-throughput sequencing 
technology have reduced the cost of gene expression profil-
ing, providing a favorable tool with high sensitivity and 
accuracy for large-scale genomic screening. This technique 
has been increasingly utilized in a number of studies to 
identify differentially expressed genes in disease occur-
rences, including DMD.8,9 However, compared to prior 
research focusing on single gene-gene relationship, research 
focusing on systematic expression patterns is still limited, 
leaving a huge knowledge gap on the highly correlated 
genes responsible for the specific clinical features of interest. 
Weighted gene co-expression network analysis (WGCNA) 
is a powerful bioinformatics application for describing the 
connections among various genes by constructing a co– 
expression network. It offers straightforward interpretations 
of gene modules associated with clinical traits for further 

exploration of biological functions and regulatory 
mechanisms.10 WGCNA has been successfully employed 
to investigate the key pathways and identify hub genes as 
novel biomarkers in many human disorders, ranging from 
cancers to neurological diseases.11–14

In the present study, the expression profile of 
patients with MD was acquired to create co-expression 
modules using the WGCNA algorithm. The crucial 
modules that were significantly linked to clinical mani-
festations were highlighted. Functional assessments 
were carried out to gain more insight into the develop-
ment of DMD or BMD at the molecular level. Protein- 
protein interaction (PPI) network analysis revealed 
essential genes as candidates of interest. We aimed to 
uncover the generic organization principles of functional 
cellular networks, and understand the mechanisms for 
identification of new biomarkers for DMD and BMD.

Materials and Methods
Raw Data Collection
Three gene expression profile datasets (GSE109178, 
GSE6011, and GSE13608) were obtained from the Gene 
Expression Omnibus (GEO) database (https://www.ncbi. 
nlm.nih.gov/gds/). GSE109178 platform is “GPL570, 
[HG-U133_Plus_2] Affymetrix Human Genome U133 
Plus 2.0 Array”, which was used as the training dataset. 
This dataset contained muscle biopsies from patients with 
DMD (n = 17), BMD (n = 11), LGMD2I (LGMD type 2I) 
(n = 7), LGMD2B (LGMD type 2B) (n = 8), as well as 
from normal controls (n = 6). All other detailed informa-
tion is summarized in Table 1 and Supplementary Table 
1. GSE6011 and GSE13608 were used to verify the hub 
genes of DMD and BMD. The GSE6011 and GSE13608 
platforms were “GPL96, [HG-U133A] Affymetrix 
Human Genome U133A Array” and “GPL570, [HG- 
U133_Plus_2] Affymetrix Human Genome U133 Plus 
2.0 Array,” respectively. GSE6011 contained skeletal 
muscle biopsies obtained from 22 patients with DMD 

Table 1 Demographic and Clinical Characteristics of Subjects in GSE109178

Characteristics Healthy Control (n=6) DMD (n=17) BMD (n=11) LGMD2B (n=8) LGMD2I (n=7)

Sex N/A Male: n=17 Male: n=11 Male: n=3; Female: n=5 Male: n=4; Female: n=3

Age (Mean±SEM) N/A 3.753±0.533 20.000±5.669 21.00±2.944 (n=6, N/A n=2) 19.570±4.628

Pathology N/A Mild: n=0 Mild: n=6 Mild: n=5 Mild: n=5

Moderate: n=4 Moderate: n=3 Moderate: n=1 Moderate: n=1
Severe: n=13 Severe: n=2 Severe: n=2 Severe: n=1
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and 14 healthy donors. GSE13608 included skeletal mus-
cle biopsies taken from five patients with BMD and six 
normal adults. The series matrix file and the annotation 
SOFT table of the platform were downloaded. Figure 1 
shows the workflow of the present project.

Data Pre-Processing
For all three datasets, the probe names were converted into 
gene symbols via the Perl program and normalized by quan-
tiles. Subsequently, the data were pre-processed with the 
“Impute” package in “R” and the values of multiple probes 
for the same gene were averaged. After log2-transformation, 
21,756 genes in GSE109178 were further analyzed using the 
“Limma” package in “R,” with the 10,800 genes exhibiting 
the most (top 50%) variation in expression levels being 
screened out for the subsequent WGCNA.15

Co-Expression Network Analysis 
Utilizing WGCNA
The WGCNA analysis was carried out via the “WGCNA” 
package in “R”, to generate a co-expression network and to 
disclose the key modules which were highly associated with 
clinical features of muscular dystrophy.10 First, a soft threshold 
ranging from 1 to 30 was determined. This was the lowest 
value for obtaining a relatively high scale-free network without 
batch effects when the degree of independence exceeded 0.8. 
Furthermore, the weighted adjacency matrix was transformed 
into a topological overlap measure (TOM) matrix to measure 
the connectivity property of a gene in the network. Finally, 
based on the TOM dissimilarity, the genes with similar expres-
sion profiles were then classified into different modules to 
construct a clustering dendrogram through linkage hierarchical 
clustering. The minimal number of genes for each module was 

Figure 1 Schematic chart of the work flow indicates the steps of the current work.
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set to 30, and the threshold for merging similar modules was set 
to 0.2.

Selecting Significant Modules of Clinical 
Features
To determine module–trait relationships, we calculated the 
gene significance (GS), which was defined as the log10 trans-
formation of the P-value (GS = lgP) in the linear regression 
between gene expression and clinical information, as well as 
module significance (MS), which was defined as the average 
absolute GS of all the genes involved in the module. Generally, 
the module with the highest MS score among all selected 
modules was recognized as closely related to the clinical 
trait.10,16 Moreover, we only selected the positively correlated 
modules with R2 > 0.4, and P < 0.01, for the subsequent 
analysis.

GO Enrichment and KEGG Pathway 
Analyses for Key Modules
Gene Ontology (GO) enrichment and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analyses of genes in 
key modules were performed using the Database for 
Annotation, Visualization and Integration Discovery 
(DAVID, https://david.ncifcrf.gov). A P-value of < 0.01 was 
set as the cut-off criterion in each category. The top 15 records 
of each category of GO analysis (Biological Process, Cellular 
Component and Molecular Function) and KEGG pathways 
were visualized using the “Ggplot2” package.

Construction of a PPI Network and 
Topological Analysis
The PPI network of the genes in key modules was evaluated 
using the online search tool STRING (Search Tool for the 
Retrieval of Interacting Genes, https://string-db.org). The plug- 
in Molecular Complex Detection (MCODE) of Cytoscape17 

was employed to check the clusters and visualize the protein 
interactions. The criteria for selection were as follows: 
MOCDE score > 5, degree cutoff = 2, max. Depth = 100, 
k-core = 2, and node score cutoff = 0.2). The potential key 
genes were explored using the CytoHubba plug-in, and the top 
20 nodes ranked by degree were collected for subsequent 
analysis.18,19

Identification of Candidate Hub Genes
Genes with higher relevance were screened out using module 
connectivity, measured by module membership (MM) ≥ med-
ian and clinical trait relationships, measured by GS ≥ median.20 

These genes, along with 20 potential key genes acquired from 
CytoHubba previously, underwent Venn diagram analysis 
(http://bioinformatics.psb.ugent.be/webtools/Venn/) to iden-
tify candidate hub genes. The outputs were of great importance 
in the PPI network for key modules and were tightly linked to 
clinical features.

Selection of Real Hub Genes Through 
Expression Level and (Receiver Operating 
Characteristic) ROC Curve
We further utilized two independent datasets, GSE6011 
and GSE13608, to verify the real hub genes in DMD and 
BMD, respectively. After preprocessing, the raw data were 
extracted and unpaired Student’s t-test (two-tailed) was 
used to evaluate significant differences between the 
patients with MD and healthy subjects. The diagnostic 
accuracy of these genes was evaluated using the area 
under the curve (AUC) of the ROC in Prism 5.0. The 
significantly altered genes (P < 0.05) with AUC > 0.80 
(P < 0.05) were regarded as true hub genes.

Results
Construction of a Co-Expression 
Network via WGCNA
As the training dataset, GSE109178 possessed complete clin-
ical information. A total of 10,725 genes in GSE109178 were 
first employed to construct co-expression networks with 
WGCNA, after removing genes without information. The 
hierarchical clustering dendrogram showed that all 49 samples 
clustered well, without outliers, and were mainly divided into 
two groups. All samples from healthy donors (GSM2934813– 
GSM2934818) were enrolled in one cluster (Figure 2A). 
Subsequently, a power of β = 13 was selected as the soft- 
threshold to generate a scale-free network with an indepen-
dence degree of up to 0.9, as shown in Figure 2B. Figure 2C 
indicates that 11 co-expression modules were exported using 
the average linkage hierarchical clustering algorithm. There 
were 1763 genes in the black module, 4594 in the dark-grey 
module, 1079 genes in the dark-olive-green module, 72 genes 
in the dark-orange module, 100 genes in the dark-red module, 
345 genes in the green-yellow module, 398 genes in the gray60 
module, 314 genes in the light-green module, 455 genes in the 
purple module, 176 genes in the royal-blue module, and 64 
genes in the sky-blue module. The remaining 1365 genes that 
did not belong to any module went to the gray module, which 
was ruled out for the following analysis.
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Key Modules Associated with Clinical 
Features
The module-trait relationships shown in Figure 2D depict 
the correlation between the available clinical messages 

(sex, age, pathology, DMD, BMD, LGMD2B, and 
LGMD2I) and each module in GSE109178 by calculating 
the value of MS. It is noteworthy that the black module 
had a strong correlation with pathology (R2 = 0.66, P = 

Figure 2 WGCNA analysis. (A) The clustering dendrograms of samples. The samples were well divided into two group with no outlier; (B) determination of the soft- 
thresholding power (β) in WGCNA. The left panel shows the influence of soft-threshold power on the scale-free fit index and the right panel shows the impact of soft- 
threshold power on the mean connectivity; (C) gene clustering tree built by hierarchical clustering of adjacency-based dissimilarity to detect 11 co-expression clusters with 
corresponding color assignments. Each color represents a module and the gray module indicates none co-expression among the genes; (D) the module-trait relationships. 
Each row correlates to a module eigengene, column to a trait. Each cell includes the corresponding correlation and P - value. Positive correlation is in red and negative 
correlation is in blue; (E) correlated hierarchical clustering of the adjacency modules. Branches of the dendrogram group are correlated; (F) correlated heatmap of 
eigengene adjacency. Light-blue represents low adjacency, while red represents high adjacency.
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2E-07) and DMD (R2 = 0.63, P = 1E-06). The genes in the 
light-green module were significantly affected by age (R2 

= 0.41, P = 0.004) and BMD (R2 = 0.43, P = 0.002). In 
addition, the sky-blue module was most significantly asso-
ciated with LGMD2I (R2 = 0.64, P = 6E-07). Figure 2E 
shows the interaction-based relationships for the 11 mod-
ules, suggesting that all the modules were chiefly divided 
into two clusters, based on their ME correlation. The 
heatmap in Figure 2F shows the adjacencies in the eigen-
gene network, which also indicates a high level of inde-
pendence among the modules. Considering the higher 
occurrences of DMD and BMD, we focused on the black 
and light-green modules for further analysis.

Functional Enrichment Analyses of Genes 
in Key Modules
The scatter plots in Figures 3A and B and 4A and 
B demonstrate the correlation between module member-
ship and gene significance in the clinical features of the 
black and light-green modules, respectively. We conducted 
GO and KEGG analyses via the DAVID website to expand 
our understanding of the function of the genes in the key 
modules. Figure 3C–E demonstrates that the genes in the 
black module were mainly gathered in BP, CC, and MF, 
including in the “extracellular matrix organization” 
(GO:0030198, P = 7.68E-12), “extracellular exosome” 
(GO:0070062, P = 3.07E-15), and “extracellular matrix 
structural constituent” (GO:0005201, P = 1.15E-06) path-
ways. In addition, the genes also referred to “inflammatory 
response” (GO:0006954, P = 5.66E-10) and “immune 
response” (GO:0006955, P = 1.77E-05). Figure 3F pre-
sents the enriched KEGG pathway of the black module 
genes, including “Staphylococcus aureus infection” 
(hsa05150, P = 2.87E-08), “Phagosome” (hsa04145, P = 
6.77E-08), and “Tuberculosis” (hsa05152, P = 6.43E-07). 
As for the light-green module, as demonstrated in Figure 
4C–E, the genes were mainly clustered in BP, CC, and MF, 
including “antigen processing and presentation of exogen-
ous peptide antigen via MHC class I, TAP-independent” 
(GO:0002480, P = 7.84E-06), “ER to Golgi transport 
vesicle membrane” (GO:0012507, P = 1.49E-05), and 
“protein binding” (GO:0005515, P = 1.02E-05). In addi-
tion, they also referred to “protein polyubiquitination” 
(GO:0000209, P = 8.29E-04) and “ubiquitin-protein trans-
ferase activity” (GO:0004842, P = 2.47E-05). Figure 4F 
shows the enriched KEGG pathway of the light-green 

module genes, which include “Phagosome” (hsa04145, 
P=3.28E-04), “Antigen processing and presentation” 
(hsa04612, P=3.87E-04), and “Graft-versus-host disease” 
(hsa05332, P=0.002666998). The results of GO and 
KEGG analyses for black and light-green modules are 
listed in Supplementary Tables 2–5.

PPI Network Analysis and Candidate Hub 
Genes
To further probe the hub genes in key modules, we gen-
erated a protein-protein network and performed 
a topological assessment. Figure 5A shows the protein- 
protein cluster with the highest score (33.238) by MCODE 
in the black module, which was composed of 43 nodes and 
698 interactive edges. As shown in Figure 5B, the top 20 
genes ranked by degree, calculated using CytoHubba also 
formed a sub-network. Detailed information on these 
genes is provided in Supplementary Table 6. Similarly, 
17 nodes and 136 edges constituted the highest score 
(17) cluster in the light-green module, as shown in 
Figure 5C, while the top 20 genes from CytoHubba are 
listed in Supplementary Table 7, and the sub-network is 
shown in Figure 5D. Since higher MM and GS should 
indicate a closer association of the gene with the clinical 
feature, we then filtered the genes in key modules under 
the condition of MM ≥ median (MM Black ≥ 0.6321; MM 
light-green ≥ 0.7077) and GS ≥ median (black, GSDMD ≥ 
0.2908; GSBMD ≥ 0.2867). A total of 690 genes in the 
black module and 106 genes in the light-green module 
were screened out. After cross-matching with the top 20 
genes using CytoHubba, 12 genes in the black module and 
8 genes in the light-green module were selected as poten-
tial hub genes (Figure 6A and B).

Identification of Real Hub Genes
ROC curves and AUCs are useful tools for evaluating test 
accuracy and identifying biomarkers to distinguish between 
patients with and without a health outcome of interest.21,22 

Therefore, in order to identify the true hub genes as biomar-
kers of DMD and BMD, after testing the expression level for 
all the candidates, ROC curves were generated and the AUC 
(95% CIs) was calculated by capitalizing the independent 
expression profiles (Table 2, Figure 6C and D). According to 
our criteria, we discovered that nine abnormally expressed 
genes exhibited a high predictive accuracy for DMD, includ-
ing VCAM1, TYROBP, CD44, ITGB2, CSF1R, LCP2, 
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C3AR1, CCL2, and ITGAM, as well as two genes for BMD, 
including UBA5 and UBR2.

Discussion
The purpose of the current work was: 1) to determine the key 
molecular pathways involved in DMD and BMD, and 2) to 
identify the potential hub genes that could be used as bio-
markers for monitoring disease progression or predicting 
prognosis. Therefore, we selected GSE109178 with suffi-
cient clinical messages and applied WGCNA for correlated 

gene mining. This bioinformatics approach transforms the 
gene expression profile into a co-expression network, offer-
ing informative insights on a systematic level.23 In this study, 
we detected 11 modules in the GSE109178 dataset. In 
patients with DMD, the genes in the key (black) module 
were mainly located in the “extracellular exosome” and 
“immune response” pathways. For BMD samples, the 
genes in the key (light-green) module were chiefly enriched 
in “protein polyubiquitination,” which has not previously 
been demonstrated. Combined with PPI analysis, nine and 

Figure 3 GO enrichment and KEGG analyses for black module. (A) Scatterplot of gene significance for pathology vs module membership in black module; (B) scatterplot of 
gene significance for DMD vs module membership in black module; (C–E) the top 15 terms of GO categories of biological process (BP), cellular component (CC) and 
molecular function MF, respectively; (F) the top 15 terms of KEGG analysis. P-value < 0.01 was considered significantly.
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two genes were eventually filtered out as the hub genes for 
DMD and BMD, respectively. These critical genes may have 
a diagnostic value in the pathogenesis of MD. To the best of 
our knowledge, this is the first report of WGCNA concerning 
MDs, particularly BMD, for exploring trait-module relation-
ships and potential biomarkers.

As a common form of MD, DMD affects approximately 1 
in 3500 live male births worldwide.24,25 Mutations in dystro-
phin lead to the loss of dystrophin protein, which is vital for 
maintaining muscle integrity. Dystrophic muscles undergo 

cycles of necrosis and muscle repair, along with chronic 
inflammation. Ultimately, the impaired muscle is replaced 
by adipose and scar tissue, resulting in fibrosis. A number of 
complex secondary damages and altered expressions of mul-
tiple genes played a role in this procedure.26 According to our 
results, both pathology and DMD were tightly linked to the 
black module. Indeed, the symptoms of DMD are much more 
serious than those of other MDs,27 implying that manipula-
tion of these genes might be beneficial in improving muscle 
function. Moreover, “extracellular exosome” was referred to 

Figure 4 GO enrichment and KEGG analyses for light-green module. (A) Scatterplot of gene significance for age vs module membership in light-green module; (B) 
scatterplot of gene significance for BMD vs module membership in light-green module; (C–E) the top 15 terms of GO categories of biological process (BP), cellular 
component (CC) and molecular function (MF), respectively; (F) KEGG analysis. P-value < 0.01 was considered significantly.
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in the functional terms of the black module. Exosomes are 
extracellular vesicles with diameters of 40–150 nm. As car-
riers of multiple signaling factors, exosomes are thought to 
be involved in numerous physiological and pathological 
activities.28 In terms of muscle regeneration, exosomes can 
be secreted by differentiating myoblasts to deliver essential 
molecules, including proteins, inflammatory cytokines, 
miRNAs, and lipids.29,30 In particular, the enhanced serum 
levels of non-coding RNAs found in patients with DMD 
were coordinated with the expression of CD63, an exosomal 
surface marker, indicating that the impaired muscle likely 
released exosomes to “rescue” neighboring cells from injury 
or death.31 Conversely, growing evidence suggests that exo-
somes might exert pathogenic roles in DMD by promoting 
phenotypic transformation from normal fibroblasts to 
myofibroblasts.32 Accordingly, the precise role of exosomes 
remains a matter of debate. Meanwhile, in light of our func-
tional assessments of black module genes, defective 

downstream cascades, including immunological and inflam-
matory processes, as well as autophagy, might result in 
identification of muscle pathology in DMD.33 Normal skele-
tal muscles have a low ability to generate localized immune 
responses, whereas muscles with dystrophin deficiency can 
sustain a proinflammatory microenvironment activating 
innate immune pathways, due to a missing immune privi-
leged status.33 Steroid administration mitigated symptoms in 
patients with DMD by suppressing muscle-specific T cell 
accumulation.34 Similarly, as an immunosuppressor, rapamy-
cin ameliorated dystrophic phenotypes in mdx mice,35 sug-
gesting that reducing the immunity burden might be 
a promising therapy. Moreover, the key genes revealed in 
this study included VCAM1 (vascular cell adhesion protein 1), 
TYROBP (transmembrane immune signaling adaptor 
TYROBP), CD44, ITGB2 (integrin subunit beta 2), CSF1R 
(colony stimulating factor 1 receptor), LCP2 (lymphocyte 
cytosolic protein 2), C3AR1 (complement C3a receptor 1), 

Figure 5 Diagram of PPI networks. The balls represent the gene nodes, the connecting lines represent the interactions. The size of the ball is corresponding to its node 
degree, indicating that the bigger the ball is, the higher node degree is. (A) The cluster with highest score analyzed by MCODE in black module; (B) the top 20 hub gene in 
black module by Cytohubba; (C) the cluster with highest score analyzed by MCODE in light-green module; (D) the top 20 hub gene candidates in light-green module.
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Figure 6 The validation for hub genes. (A) Venn diagram for selecting hub candidates in black module; (B) Venn diagram for selecting hub candidates in light-green module; 
(C) the ROC curves for true hub genes in black module; (D) the ROC curves for true hub genes in light-green module.
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CCL2 (C-C motif chemokine ligand 2), and ITGAM (integrin 
subunit alpha M). With the exception of VCAM1, CD44, and 
CCL2, none of these genes have been investigated in DMD– 
related experimental studies.36–38 Likewise, most of these 
genes were listed in “response to wounding”-related modules 
in dystrophic co-expression networks constructed by other 
teams using different DMD datasets, which was in line with 
the outcome of this study.39 In view of the diagnostic value of 
these genes, there is an urgent need to evaluate the likelihood 
of these genes as novel biomarkers to monitor disease 
progression.

BMD is significantly less severe than DMD, and there-
fore, a number of “preclinical” or “asymptomatic” cases 
have been identified.40 Intriguingly, our results indicated 

that the key BMD module was associated with age. This 
relationship probably explains the delayed onset and much 
longer normal life expectancy reported in patients with 
BMD.41,42 In addition, given that the same pathogenic 
gene (dystrophin) is implicated in both conditions, we 
initially speculated that BMD might share a majority of 
molecular pathways or hub genes with DMD. Notably, 
light-green module genes clustered in distinct GO and 
KEGG categories, in which “protein ubiquitination” was 
highlighted. As one of the protein post-translational mod-
ifications, ubiquitylation commences with the transfer of 
ubiquitin to proteins, subsequently resulting in the forma-
tion of a ubiquitin chain on the targets. This orchestrated 
procedure is strictly managed by several enzymes, 

Table 2 The Validation of the Potential Hub Genes of DMD and BMD

Module Color Validation Dataset Gene AUC P-value# 95% CI## P-value### Significance

Black GSE6011 VCAM1 1.000 < 0.0001 1.000 to 1.000 <0.0001 ***

Black GSE6011 TYROBP 1.000 < 0.0001 1.000 to 1.000 <0.0001 ***

Black GSE6011 CD44 0.997 < 0.0001 0.987 to 1.007 <0.0001 ***

Black GSE6011 ITGB2 0.991 < 0.0001 0.970 to 1.011 <0.0001 ***

Black GSE6011 CSF1R 0.988 < 0.0001 0.960 to 1.015 <0.0001 ***

Black GSE6011 LCP2 0.944 < 0.0001 0.877 to 1.011 <0.0001 ***

Black GSE6011 C3AR1 0.935 < 0.0001 0.853 to 1.016 <0.0001 ***

Black GSE6011 CCL2 0.863 0.0002509 0.744 to 0.983 0.0007 ***

Black GSE6011 ITGAM 0.857 0.0003196 0.728 to 0.986 0.0003 ***

Black GSE6011 CXCR4 0.776 0.005337 0.612 to 0.941 0.0059 **

Black GSE6011 CDK1 0.761 0.008550 0.599 to 0.923 0.0098 **

Black GSE6011 TLR8 0.503 0.9750 0.310 to 0.696 0.8702 n.s

Lightgreen GSE13608 UBA5 1.000 0.006192 1.000 to 1.000 0.0013 **

Lightgreen GSE13608 UBR2 0.933 0.01766 0.780 to 1.087 0.0068 **

Lightgreen GSE13608 CUL3 0.833 0.06795 0.584 to 1.083 0.0989 n.s

Lightgreen GSE13608 NEDD4 0.767 0.1442 0.461 to 1.072 0.1390 n.s

Lightgreen GSE13608 HECTD1 0.667 0.3614 0.289 to 1.044 0.4809 n.s

Lightgreen GSE13608 ZNRF1 0.633 0.4652 0.262 to 1.005 0.3899 n.s

Lightgreen GSE13608 FBXO32 0.5667 0.7150 0.1911 to 0.9423 0.5405 n.s

Lightgreen GSE13608 CUL1 0.533 0.8551 0.165 to 0.902 0.9031 n.s

Notes: #P-value of AUC; ##95% confidence interval of AUC; ###P-value of gene expression comparison calculated by un-paired t-test (two-tailed), normal vs patients; 
**P-value < 0.01; ***P-value < 0.001. 
Abbreviation: n.s, no significance.
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including ATP-dependent activating enzyme (E1), ubiqui-
tin-conjugating enzymes (E2), and ubiquitin protein ligase 
(E3). Ubiquitination is thought to control protein degrada-
tion because it favors multiple biological functions, such 
as selective autophagy. Hence, dysfunction of the ubiquitin 
proteasome machinery could contribute to muscle 
pathologies.43,44 Nevertheless, most lines of evidence are 
directly linked to DMD rather than BMD. Altered levels of 
proteasome and ubiquitin were discovered in the cyto-
plasm of necrotic fibers from patients with DMD.45 

Restoration of the dystrophin protein by blocking the 
proteasome was observed in golden retriever muscular 
dystrophy dog models.46 Four E3 ubiquitin ligases 
(Zfand5, FBXO33, Amn1, and Trim75) likely regulated 
the mutated dystrophin levels in a new DMD mouse 
model, affecting disease progression.47 Additionally, 
despite the insufficient evidence in BMD, the two hub 
genes we found here are closely associated with ubiquiti-
nation. The encoding product of UBA5 (ubiquitin-like 
modifier activating enzyme 5) is a member of the E1-like 
ubiquitin-activating enzyme family. UBR2 encodes the 
ubiquitin protein ligase E3 component, n-recognin 2. 
Further research is required to demonstrate the exact func-
tion of ubiquitination-associated molecules in the context 
of BMD. On the other hand, we noticed that “phagosome” 
appeared in KEGG enrichments of the light-green module. 
As a regular physiological activity, autophagosomes 
engulf cellular components and organelles to fuse with 
lysosomes, which activates the process of degradation. 
Importantly, in a dystrophic animal model, inhibition of 
autophagic signaling likely led to increased autophago-
some escape, implying that impaired autophagic traffick-
ing might favor dystrophic progression.48,49 Combined 
with several immune system-related terms in GO/KEGG 
enrichments in light-green modules (such as GO:0002480- 
antigen processing and presentation of exogenous peptide 
antigen via MHC class I, TAP-independent; GO:0002474- 
antigen processing and presentation of peptide antigen via 
MHC class I antigen processing and presentation of exo-
genous peptide antigen via MHC class I, TAP-dependent; 
hsa04612-Antigen processing and presentation, etc), we 
hypothesized that chronic inflammation due to autophago-
some escape might be involved in BMD occurrence.

Despite these important findings, we acknowledge that 
our study has several limitations. First, the potential mole-
cular pathways were mainly recognized based on data 
mining through bioinformatic methods and therefore still 
need to be experimentally validated. Second, the number 

of samples in the raw dataset was relatively small; there-
fore, more work focused on the potential biomarkers is 
necessary by using a larger sample size, especially for 
those that have not yet been reported in DMD or BMD. 
Third, functional studies are warranted to identify drug 
candidate targets and develop potential therapies. In addi-
tion, important findings of other types of MD (such as 
LGMD2I), which were neglected in the current study, 
should also be further studied.

In summary, the current study concentrated on the co- 
occurrence network generated through WGCNA using the 
expression profiles from MDs. The analysis of the key 
modules revealed the involvement of “exocellular exo-
somes” and “immune response” in DMD as well as “ubi-
quitination” in BMD, indicating the distinct pathways in 
the two muscular dystrophies. We also identified the hub 
genes, including VCAM1, TYROBP, CD44, ITGB2, 
CSF1R, LCP2, C3AR1, CCL2, and ITGAM for DMD, 
along with UBA5 and UBR2 for BMD. Our results not 
only offer a reference for a more comprehensive under-
standing of dystrophinopathies, but also provide new per-
spectives on the underlying mechanism. Additionally, the 
key molecules disclosed here might become novel biomar-
kers for the diagnosis, treatment, and prognosis of DMD 
and BMD.
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