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Abstract: Carnitine is a naturally occurring amino acid derivative that is involved in the transport
of long-chain fatty acids to the mitochondrial matrix. There, these substrates undergo β-oxidation,
producing energy. The major sources of carnitine are dietary intake, although carnitine is also en-
dogenously synthesized in the liver and kidney. However, in patients on dialysis, serum carnitine
levels progressively fall due to restricted dietary intake and deprivation of endogenous synthesis in
the kidney. Furthermore, serum-free carnitine is removed by hemodialysis treatment because the
molecular weight of carnitine is small (161 Da) and its protein binding rates are very low. Therefore,
the dialysis procedure is a major cause of carnitine deficiency in patients undergoing hemodialysis.
This deficiency may contribute to several clinical disorders in such patients. Symptoms of dialysis-
related carnitine deficiency include erythropoiesis-stimulating agent-resistant anemia, myopathy,
muscle weakness, and intradialytic muscle cramps and hypotension. However, levocarnitine admin-
istration might replenish the free carnitine and help to increase carnitine levels in muscle. This article
reviews the previous research into levocarnitine therapy in patients on maintenance dialysis for the
treatment of renal anemia, cardiac dysfunction, dyslipidemia, and muscle and dialytic symptoms,
and it examines the efficacy of the therapeutic approach and related issues.

Keywords: carnitine; carnitine deficiency; end-stage kidney disease; peritoneal dialysis; hemodialysis

1. Introduction

Carnitine, with a molecular weight of 161 Da, is a water-soluble quaternary amine. It
is derived from lysine and methionine, which are two essential amino acids. Its primary
role is in facilitating the transport of long-chain fatty acids to the mitochondrial matrix.
These substrates are delivered for β-oxidation and the subsequent production of energy.
Carnitine is primarily biosynthesized in the kidney and liver and is found in virtually all
tissues but predominantly in cardiac and skeletal muscle.

Patients on hemodialysis often have carnitine deficiency [1]. Carnitine deficiency
is associated with several clinical disorders, such as erythropoiesis-stimulating agent
(ESA)-resistant anemia, muscle weakness, myopathy, and intradialytic muscle cramps
and hypotension. Additional clinical disorders of carnitine deficiency include dyslipi-
demia, cardiac arrhythmia, cachexia, insulin resistance, and glucose intolerance [2–4]. The
characteristic features of dialysis-associated carnitine deficiency are reduced levels of free
carnitine and elevated levels of acylcarnitine. Free carnitine levels are mainly decreased
by its removal during hemodialysis, whereas the accumulation of acylcarnitine and an
aberrantly elevated plasma acylcarnitine to free carnitine ratio are due to deficient renal
clearance and β-oxidation failure [1,2]. Accordingly, carnitine supplementation in dialysis
patients with carnitine insufficiency may yield clinical benefits by ameliorating several of
the above-mentioned conditions.

In this review, we describe the profile of carnitine metabolism and the effects of car-
nitine treatment on the metabolism and function of dialysis patients. We also assess the
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current findings related to the carnitine treatment of patients undergoing dialysis ther-
apy, particularly its impact on cardiac function, ESA-resistant anemia, muscle symptoms,
and malnutrition.

2. Carnitine Homeostasis

The main dietary sources of carnitine are meat products, with small amounts of
carnitine found in vegetables [5,6]. About 100–400 mg per day of carnitine is provided
from a normal diet. Dietary carnitine is absorbed from the intestine by both active and
passive transport and meets 65–75% of daily needs. The remaining 25–35% is supplied
by biosynthesis in the kidney and liver from methionine and lysine. Carnitine is found
both intracellularly and extracellularly and in both non-esterified and esterified forms.
The former is free carnitine, while the latter is acylcarnitines. Short-, medium-, and long-
chain fatty acids are found in carnitine esters and are present in biological systems. The
proportion of acylcarnitine varies widely according to physical activity, disease condition,
and nutritional state. Under normal conditions in humans, acylcarnitine accounts for
approximately 20% of total carnitine in serum, 10–15% of that in the liver and skeletal
muscle, and 50–60% of that in urine [7–9].

Under physiological conditions, the total carnitine content in the body has been
estimated to be 100 mmol. More than 90% of total body carnitine is found in skeletal
muscle, with 2–3% in the liver and kidney. Thus, only 0.5–1% is present in the extracellular
fluid [10]. The brain has a relatively low concentration of carnitine, despite being one of the
few organs with endogenous biosynthesis capability. Carnitine cannot bind to protein and
is mainly filtered at the glomeruli of the kidney. However, over 90% of filtered carnitine is
reabsorbed by the proximal renal tubule in individuals with normal kidney function, and
the serum excretory threshold level of free carnitine in the kidney appears to be 40 µmol/L,
which is near the normal serum concentration of free carnitine [5,6]. Tubular reabsorption
of free carnitine predominates. Therefore, the excretion of acylcarnitine by the kidney is 4-
to 8-fold higher than that of free carnitine [5]. Plasma membrane transporters and carnitine-
dependent enzymes are important for maintaining carnitine homeostasis. Together, free
and acylcarnitine comprise the carnitine system.

The high-affinity Na+/carnitine cotransporter OCTN2 is the most physiologically
associated plasma membrane transporter of carnitine [11]. OCTN2 is extensively found
in numerous tissues, such as the heart, skeletal muscle, kidney, and placenta. OCTN2 is
localized to the brush border of tubular epithelial cells in the kidney and is most active in
the proximal tubules of the nephron, which is the site of approximately 65% of reabsorption
and secretion [12]. The association of mutations in the OTCN2 gene with primary systemic
carnitine deficiency indicates its importance [13].

Carnitine/acylcarnitine translocase (CACT) and carnitine acyltransferases are known
as carnitine-dependent enzymes. CACT converts mitochondrial carnitine to cytoplasmic
acylcarnitine and allows the flow of both carnitine and short-chain acyl-carnitines into and
out of the mitochondria [14]. Carnitine acyltransferases exist in tissue-specific isoforms
with distinct kinetic characteristics and with significant modulatory targets involved in
fatty acid metabolism and coenzyme-A (CoA) release [15].

The proper function of OCTN2 and the various carnitine-dependent enzymes is
needed to maintain the carnitine system. Carnitine has an important role in energy
metabolism. It transports long-chain fatty acids across the inner mitochondrial membrane
and modulates β-oxidation and the resulting adenosine triphosphate (ATP) production [16].
Furthermore, carnitine participates in intermediary metabolism by regulating the ratio of
acyl-CoA/CoA in the cell. The main mechanisms underlying this function of carnitine are
the production of short-chain acylcarnitines, which are catalyzed by carnitine acetyltrans-
ferase, and the conversion of carnitine to acylcarnitine, which is catalyzed by CACT [14,17].
Carnitine has a buffer action for accumulated acyl-CoA. The accumulation of acyl-CoA
inhibits several enzymes, including acetyl CoA carboxylase, adenine nucleotide translocase,
citrate synthetase, pyruvate dehydrogenase, and pyruvate carboxylase, and it induces mito-
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chondrial dysfunction. Therefore, an accumulation of acyl groups within the mitochondria
inhibits the activity of energy-producing enzymes. Acyl-CoA is restricted to the mito-
chondrial matrix and cannot pass the membrane. However, its acyl group is transferred
from acyl-CoA to carnitine, and carnitine is metabolized into acylcarnitine. Acylcarnitine
translocates from mitochondria to the extracellular fluid and is finally excreted via the
urine. The detoxifying effects of carnitine are important for cell metabolism [18]. The fatty
acid metabolism and functions of carnitine are shown in Figure 1.

Figure 1. Fatty acid metabolism and metabolic functions of carnitine. CACT, carnitine acetyltransferase; CPT, carnitine
palmitoyl transferase; OCTN2, organic cation/carnitine transporter 2, PCS, palmitoyl CoA synthetase.

Serum carnitine concentrations are 50–60 µmol/L, which is calculated as the sum of
free carnitine and acylcarnitine. When serum-free carnitine drops below 20 µmol/L, the
clinical symptoms of carnitine deficiency can develop. In patients with severe hereditary
metabolic diseases, acylcarnitine is found in the serum and urine. In these patients, the
endogenous carnitine pool falls into a deficit to manage the crucial acyl transfer, which
increases the acyl/free carnitine ratio in serum. A ratio exceeding 0.4 has been used
to indicate carnitine insufficiency in clinical practice [19]. Daily urinary total carnitine
excretion typically consists of 50% acylcarnitine, resulting in a urinary acyl/free carnitine
ratio of about 1.0 [20]. Carnitine homeostasis is shown in Figure 2.
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Figure 2. Carnitine homeostasis. MW, molecular weight; OCTN2, organic cation/carnitine transporter 2.

3. Carnitine Deficiency in Patients Who Are Undergoing Dialysis Therapy

Carnitine homeostasis is profoundly perturbed in patients with end-stage kidney
disease, particularly patients on dialysis. Dietary intake of carnitine is decreased due to
falls in appetite, total energy levels, and protein intake. In addition, accumulating evidence
has linked inflammation to malnutrition, and chronic inflammation might also interrupt
carnitine transfer in the intestine [21]. Protein-energy wasting (PEW) and inflammation
are the most pivotal risk factors for morbidity and mortality in patients on dialysis [22–24].
Carnitine biosynthesis can also fall in patients on dialysis due to reduced biosynthesis in the
kidney and limited compensation by the liver [25]. Furthermore, the kidney disease may
itself modulate OCTN2 activity on the renal tubule [26]. Filtered carnitine in the glomerulus
cannot be reabsorbed in anuric patients undergoing hemodialysis. Therefore, chronic
hemodialysis treatment reduces serum and tissue levels of carnitine and can promote
acylcarnitine accumulation. As a result of the low molecular weight of carnitine and its
high hydrophilicity and absence of protein binding, carnitine is significantly removed by
the dialyzer [27,28].

According to Japanese guidelines [29], a free carnitine level < 20 µmol/L is defined
as carnitine deficiency, a high risk of carnitine deficiency is defined as a level in the
range of 20–36 µmol/L, and carnitine insufficiency is defined as a serum acyl/free carnitine
ratio > 0.4. Consequently, serum carnitine levels are significantly lower in patients receiving
hemodialysis than in healthy individuals at 22.0 ± 5.4 µmol/L and 43.3 ± 8.6 µmol/L,
respectively [30]. Serum endogenous carnitine levels are significantly negatively correlated
with dialysis therapy duration, with most of the reduction occurring within the first
few months of hemodialysis initiation [30]. Long-term hemodialysis (i.e., longer than
1 year) is also linked to a marked 38% reduction in muscle carnitine pools compared with
those before hemodialysis initiation [30]. Another investigation also reported that the total
carnitine and acylcarnitine levels in muscle were significantly decreased in patients on
dialysis [31]. We recently reported the prevalence of carnitine deficiency in 150 patients
on hemodialysis [32]. Of these, serum free carnitine levels were below the normal range
(36–74 µmol/L) in 90% of the patients, and 25.3% of the participants met the definition
of carnitine deficiency (<20 µmol/L). Furthermore, 64.7% were diagnosed as having high
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risk of carnitine deficiency (acyl/free carnitine ratio > 0.4). In addition, just 13.3% of the
participants (n = 20) had a normal ratio of ≤0.4 and 86.7% of the participants (n = 130)
were diagnosed with carnitine insufficiency. A longer duration of dialysis was significantly
associated with lower serum carnitine levels in multivariate analysis [32].

Acylcarnitine levels are significantly higher in patients on maintenance hemodialysis
than in healthy individuals. Acylcarnitine levels are significantly elevated in patients
who have been receiving hemodialysis for at least 12 months [4,28]. Indeed, acylcarnitine
levels account for about 50% of the total serum carnitine stores in these patients com-
pared with just 15% in healthy individuals [4,28]. Hemodialysis procedures decrease free,
short-chain, medium-chain, and dicarboxylic acylcarnitines but do not affect long-chain
acylcarnitines [33]. The dialytic removal of acylcarnitine during a single hemodialysis
session is significantly associated with the carbon chain length of the acyl groups, with no
major removal of the 18-carbon chain esters [34]. The removal rate of acylcarnitine clearly
decreases as the carbon chain length increases because it increases their molecular weight
and alters their lipophilicity. Furthermore, longer-chain acylcarnitines can bind to pro-
tein [35]. Therefore, the acyl/free carnitine ratio is positively correlated with the number of
months on hemodialysis treatment [30,36]. Acylcarnitines are classified according to carbon
chain length. Tandem mass spectrometry can determine the details of acylcarnitines, such
as whether they are short-chain, middle-chain, and long-chain acylcarnitines. Tandem mass
spectrometry has revealed that a lower ratio of acetylcarnitine (C2)/(palmitoylcarnitine +
octadecenoylcarnitine [C16+C18:1]), which indicates the ratio of short-chain/long-chain
acylcarnitines, in patients on hemodialysis is associated with all-cause mortality [37].

4. Removal of Carnitine by Dialysis Therapy

In 2018, 339,841 patients underwent maintenance dialysis in Japan. Of these, 37.0% were
receiving hemodiafiltration. Approximately 71% of patients who were receiving hemodi-
afiltration were treated with online hemodiafiltration and the pre-dilution method [38,39].
Compared with conventional high-flux hemodialysis, hemodiafiltration is a more effective
technique; it relies on high-flux membranes that can remove both small solutes, such as
urea, and low-molecular weight proteins, such as β2-microglobulin [40,41]. Serum car-
nitine is removed by hemodialysis. Previous work determined the percent reduction in
serum-free carnitine in patients on hemodialysis with or without diabetes and without lev-
ocarnitine treatment. The reductions in plasma free carnitine were −64.7% and −66.6% in
patients with or without diabetes, respectively [33]. However, the hemodialysis procedure
was not described in detail (i.e., blood and dialysate flow rates, treatment time, and Kt/V).
We previously investigated the reduction rate of the serum carnitine level after single ses-
sions of hemodialysis and hemodiafiltration [32]. Hemodialysis using high-flux dialyzers
was conducted at blood and dialysate flow rates of 200–240 mL/min and 500 mL/min,
respectively. Hemodiafiltration using high-flux hemodiafilters was performed at blood
flow, replacement fluid, and dialysate flow rates of 200–300, 200–250, and 250–300 mL/min,
respectively. Although no significant differences were evident in the patients’ baseline
characteristics or in the pre-dialysis serum total, free, or acylcarnitine concentrations be-
tween the hemodialysis and hemodiafiltration groups, the Kt/V values were 1.28 ± 0.27
and 1.45 ± 0.31 in the hemodialysis and hemodiafiltration groups, respectively (p = 0.042).
There was a significantly greater decrease in serum total, free, and acylcarnitine levels in
the hemodiafiltration group. Reduction rates of serum free carnitine of 64% ± 4% and
75% ± 7% were obtained under hemodialysis and hemodiafiltration conditions, respec-
tively (p < 0.0001). These findings indicate the greater clearance of small molecular weight
solutes by hemodiafiltration.

Patients on peritoneal dialysis exhibit a decreased serum free carnitine level and in-
creased acyl/free carnitine ratio compared with age- and sex-matched individuals with
normal kidney function [42,43]. In patients on peritoneal dialysis, the mechanism of car-
nitine deficiency is considered to be decreased dietary intake of carnitine-containing food,
decreased renal carnitine synthesis, and decreased renal excretion of acylcarnitine [27,30].
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Another contributor might be the loss of free carnitine into the peritoneal dialysis fluid [44].
The prevalences of carnitine deficiency, high risk of carnitine deficiency, and carnitine
insufficiency in peritoneal dialysis patients are comparable to those of age-, sex-, and
dialysis vintage-matched hemodialysis patients [45]. Lower serum-free carnitine levels are
associated with a longer duration of peritoneal dialysis and an older age.

5. Carnitine Supplementation in Dialysis Patients

The association between carnitine deficiency and a decreased serum-free carnitine
level may result in various cellular metabolic disorders, such as reduced mitochondrial β-
oxidation of fatty acids and consequent diminished energy production and storage of toxic
acylcarnitines and suppression of carnitine-related enzymes involved in metabolism [46].
These carnitine-related metabolic aberrations may induce the above-mentioned clinical
disorders frequently found in patients on dialysis, which include muscle weakness and
cardiomyopathy, PEW, plasma lipid abnormalities, and ESA-resistant anemia, as well as
hemodialysis-associated symptoms such as hypotension and muscle cramps [2–4].

Carnitine supplementation for the treatment of dialysis-related carnitine deficiency
can be performed orally or intravenously. Multiple investigations have evaluated the
benefits of carnitine supplementation in patients on dialysis. Intravenously administered
levocarnitine has a bioavailability of 100%. When a dose of 1–2 g levocarnitine is intra-
venously administered to healthy individuals, the serum carnitine levels rapidly increase
to 10 times that of the threshold for renal tubular reabsorption; 70–90% is consequently
excreted in an unchanged form in the urine 12–24 h after administration. Therefore, a
single dose of levocarnitine does not persist in the system for a sufficient length of time
for any significant amount to equilibrate into the skeletal and cardiac muscle. However,
for hemodialysis patients, an intravenous dose of levocarnitine remains in the blood for
a long enough time for it to be taken up into the organs or tissue compartments, with up
to about 90% of the administered levocarnitine possibly moved into tissues [4]. Chronic
intravenous levocarnitine administration elevates muscle carnitine levels by between 60%
and 200% [47–50].

In contrast, the bioavailability of oral levocarnitine administration is low, even in
healthy individuals. Only 15% of a standard 2-g dose is absorbed into the blood in healthy
individuals and just 5% of an oral 6-g dose [51,52]. The bioavailability of oral levocarnitine
in patients on dialysis has not yet been evaluated. The metabolism of dietary carnitine and
choline produces trimethylamine N-oxide (TMAO), which directly induces atherosclerosis
in rodents [53,54]. Intestinal bacteria metabolize carnitine and choline to trimethylamine,
which is absorbed in the intestine. Trimethylamine is itself oxidized by hepatic flavin
monooxygenase to make TMAO [55]. Under normal conditions, TMAO is rapidly removed
from the circulation, largely via excretion in the urine [56,57]. Accordingly, circulating
TMAO levels appear to be associated with coronary artery disease and may also be associ-
ated with mortality in patients on long-term hemodialysis [58,59]. However, no study has
shown whether oral levocarnitine treatment or TMAO levels would accelerate atherosclero-
sis in hemodialysis patients. Thus, additional work is required to evaluate the superiority,
efficacy, and safety of intravenous levocarnitine administration compared with oral ad-
ministration because there is no evidence of associations between the increased levels of
TMAO and atherosclerosis progression in dialysis patients.

The National Kidney Foundation has stated that the detection and diagnosis of
dialysis-related carnitine deficiency, as well as the decision to treat chronic dialysis patients
with levocarnitine, should be determined by clinical symptoms and signs [60]. Furthermore,
proof of decreased serum-free carnitine levels or an increased acyl/free carnitine ratio is
dispensable for the clinical diagnosis of dialysis-related carnitine deficiency. Serum-free
carnitine levels are helpful to rule out dialysis-related carnitine deficiency. However, low
concentrations of serum-free carnitine cannot be used as a predictive factor of a clinical
response to levocarnitine treatment.
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In addition, the National Kidney Foundation has declared that the administration
of levocarnitine to dialysis patients should be considered for the following four clinical
conditions [60]: (1) patients with anemia who are unable to maintain optimal hemoglobin
or hematocrit levels with the use of ESA, despite adequate iron status, and with no other
identifiable cause of anemia or a hypo-response to ESA; (2) patients with intradialytic
hypotension and no other possible causes with repeated symptomatic intradialytic hy-
potensive events requiring treatment; (3) patients with cardiomyopathy who have heart
failure symptoms such as New York Heart Association class III–IV or symptomatic car-
diomyopathy with documented impaired left ventricular ejection fraction (LVEF) and a
poor response to standard medical therapy; and (4) selected patients who have symptoms
that diminish their quality of life, including skeletal muscle weakness and malaise.

6. Anemia

In patients with end-stage kidney disease, anemia is induced by decreased production
of erythropoietin by the kidney or fibrosis of the bone marrow. Renal anemia is commonly
treated with ESA in patients with impaired kidney function. Although renal anemia
strongly influences prognosis, higher-dose ESA may increase the risk of cardiovascular
events in the dialysis population [61,62]. Moreover, the dosage of ESAs to maintain target
hemoglobin levels varies widely among patients on dialysis [63]. A lower hematocrit level
has been associated with shorter survival [64]. However, a lower hematocrit level was not a
significant predictor of mortality in multivariate analysis adjusted for age, serum albumin,
and the presence of diabetes. ESA resistance, which is characterized by inflammation and
malnutrition, may be a significant novel predictor of mortality [64]. Patients with target
hematocrit levels (i.e., 33–36%) receiving a higher ESA dose exhibit a rate of mortality
double that of patients with hematocrit levels in the same range but receiving a low ESA
dose. Therefore, the use of ESAs should be minimized and ESA resistance is recognized as
an important marker for improving survival in the dialysis population.

Levocarnitine administration is suggested as a potential additional therapy to ESA
in the management of renal anemia. The Centers for Medicare and Medicaid Services
allow intravenous levocarnitine administration to patients on hemodialysis who have ESA-
resistant anemia and decreased serum carnitine levels [64]. Although the most common
cause of hyporesponsiveness to ESAs is iron deficiency, carnitine deficiency is proposed
to be one of the causes of ESA-resistant anemia in Japanese Society for Dialysis Therapy
guidelines [65]. Serum carnitine levels have been reported to be lower in patients with
severe anemia needing high-dose ESA than in patients with mild-to-moderate anemia or
no anemia [66]. In patients with a lower serum carnitine level and need for higher-dose
ESA, erythrocyte membranes develop osmotic fragility. This shortens the survival time
of erythrocytes and lowers hematocrit levels [67–70]. However, erythrocyte stability is
reported to be improved by levocarnitine therapy, and this treatment would be associated
with improved survival of erythrocytes through the following mechanism: levocarnitine
regulates the erythrocyte membrane lipid complex, modifies the fatty acid metabolism,
enhances the Na-K pump activity of erythrocytes, reduces membrane rigidity, and decreases
erythrocyte calcium levels [69,71–74].

A systematic review and recent meta-analysis found that levocarnitine treatment
ameliorates renal anemia and decreases ESA requirements in hemodialysis patients [75,76].
The efficacy of levocarnitine for treating renal anemia in patients on dialysis has been
investigated by multiple studies. This work is summarized in Table 1 [43,69–71,77–94].
The aim of these studies was to maintain hematocrit or hemoglobin levels in carnitine and
control groups by significantly decreasing the dosage of ESA in carnitine patients. ESA
resistance can be determined by measuring the erythropoietin resistance index (ERI), which
is calculated as the ESA dose divided by the hemoglobin level and body weight of each
patient. This index is useful for assessing the response of the body to levocarnitine. Any
decrease in ESA dosage or increase in the hemoglobin level during the observation period
would decrease this index. The ERI was reduced by levocarnitine treatment in several
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studies, suggesting that levocarnitine improves erythropoietin efficiency versus control
groups. However, the CARNIDIAL trial found no improvement in the ERI with levocarni-
tine administration in patients with a shorter duration of hemodialysis (<6 months) and no
documented carnitine deficiency. In addition, levocarnitine treatment increased calcium
and phosphate levels and was not associated with parathyroid hormone or fibroblast
growth factor 23 [94,95].

Further studies should be conducted to determine whether levocarnitine treatment is
effective in all dialysis patients with renal anemia and whether it improves long-term out-
comes. Moreover, its dose–response profile in renal anemia has not yet been investigated.

Table 1. Studies of the effects of levocarnitine on renal anemia in dialysis patients.

Ref Study Design Subjects Dose and Route Treatment
Duration Findings a

[77] Two-way, parallel,
double-blind

29 HD patients 20 mg/kg per Dx, IV 6 mo ↑ RBC survival T0: 39.1 days; T6: 42.7 days (p = 0.058)
29 HD patients Placebo, IV → RBC survival T0: 40.2 days; T6: 35.4 days (NS)

[78] One-way, open-label 14 HD patients
(ESA-resistant) 500 mg/day PO 3 mo ↑ Ht T0: 24.0% ± 2.0%; T3: 26.1% ± 2.0% (p = 0.003)

[71] One-way, open-label 15 HD patients 30 mg/kg per Dx, IV 3 mo ↑ Ht T0: 30.8% ± 1.9%; T3: 34.2% ± 2.4% (p < 0.0001),
↓ Deformability of RBCs (p < 0.004)

[43] One-way, open-label 12 PD patients 2 g/day PO 3 mo ↑ Ht T0: 35.4% ± 3.3%; T3: 38.1% ± 3.4% (p < 0.03),
↑ Hb T0: 11.0 ± 1.1 g/dL; T3: 11.9 ± 1.0 g/dL (p < 0.01)

[79]

Two-way, parallel,
double-blind

28 HD patients 20 mg/kg per Dx, IV
6 mo

→ Ht T0: 34.1% ± 3.2%; T6: 32.8% ± 4.0% (NS)
28 HD patients Placebo → Ht T0: 32.9% ± 3.3%; T6: 33.9% ± 2.9% (NS)

Four-way, parallel,
double-blind

32 HD patients 10 mg/kg per Dx, IV

6 mo

→ Ht T0: 33.9% ± 3.2%; T6: 35.1% ± 4.2% (NS)
30 HD patients 20 mg/kg per Dx, IV → Ht T0: 33.7% ± 3.5%; T6: 33.9% ± 3.4% (NS)
32 HD patients 30 mg/kg per Dx, IV → Ht T0: 33.6% ± 3.3%; T6: 33.5% ± 2.7% (NS)
33 HD patients Placebo → Ht T0: 34.2% ± 3.2%; T6: 35.1% ± 4.2% (NS)

[80] Two-way, parallel,
double-blind

48 HD patients 20 mg/kg per Dx, IV
6 mo

↑ Hb T0: 9.7 ± 1.1 g/dL; T6: 10.8 ± 1.2 g/dL (p < 0.0001)
65 HD patients Placebo, IV → Hb T0: 9.8 ± 1.2 g/dL; T6: 9.9 ± 1.3 g/dL (NS)

[81] Two-way, parallel, open
label

78 HD patients 1 g/Dx, IV
7 mo

↑ Hb T0: 7.5 ± 1.5 g/dL; T7: 11.4 ± 1.2 g/dL (p < 0.05)
↓ ERI T0: 183 ± 16 U/kg; T7: 142 ± 12 U/kg (p < 0.05)

78 HD patients No treatment
→ Hb T0: 7.5 ± 1.4 g/dL; T7: 9.2 ± 1.2 g/dL (NS)
→ ERI T0: 185 ± 15 U/kg; T7: 160 ± 12 U/kg (NS)

[82] Two-way, parallel,
double-blind

18 HD patients 15 mg/kg per Dx, IV
6 mo

↑ Ht T0: 24.2% ± 2.2%; T6: 32.5% ± 3.7% (p = 0.001)
↑ Hb T0: 7.9 ± 0.8 g/dL; T6: 10.3 ± 1.1 g/dL (p = 0.001)

13 HD patients Placebo, IV → Ht T0: 27.5% ± 4.5%; T6: 30.2% ± 4.0% (p = 0.1)
→ Hb T0: 8.0 ± 0.4 g/dL; T6: 8.7 ± 2.5 g/dL (p = 0.4)

[83] Two-way, parallel,
single-blind

10 HD patients 20 mg/kg per Dx, IV
2 mo ↑ Hb +0.89 ± 0.56 g/dL vs. −0.47 ± 0.77 g/dL (p = 0.001)10 HD patients Plaxevo, IV

[84] Double-blind, crossover,
placebo-controlled 16 HD patients 20 mg/kg per Dx, IV

3 mo
→ ESA doses T0: 8562 ± 6762 U; T3: 8750 ± 7094 U (NS)

Placebo, IV → Hb T0: 11.3 ± 1.9 g/dL T3: 11.5 ± 1.5 g/dL (NS)

[85] Two-way, parallel,
open-label

20 HD patients 1 g per Dx, twice a
week, IV 6 mo

↑ Hb T0: 6.8 ± 1.0 g/dL; T6: 7.7 ± 1.1 g/dL (p < 0.001)
↓ ERI values not reported (p < 0.001)

20 HD patients No treatment →Hb T0: 6.7 ± 1.0 g/dL; T6: 6.9 ± 1.0 g/dL (NS),→ ERI (NS)

[86] Two-way, parallel,
open-label

20 HD patients 1 g/Dx, IV
3 mo

↑ Hb T0: 7.8 ± 1.3 g/dL; T3: 9.9 ± 1.9 g/dL (p < 0.05)
20 HD patients No treatment → Hb T0: 7.8 ± 1.1 g/dL; T12: 8.5 ± 1.2 g/dL (NS)

[87] One-way, open-label 62 HD patients
600 mg/day, PO for

12 mo, then 1 g/Dx IV
for 12 mo

24 mo ↑ Hb T0: 10.2 ± 1.2 g/dL; T12: 10.9 ± 0.9 g/dL

18 PD patients 600 mg/day, PO 12 mo → Hb T0: 10.6 ± 1.1 g/dL; T12: 10.6 ± 1.3 g/dL

[88] Two-way, parallel,
double-blind

24 HD patients 1 g/day, PO

4 mo

→ Hb T0: 10.5 ± 2.5 g/dL; T4: 11.3 ± 2.1 g/dL (NS)
↓ ESA doses T0: 7250 ± 5202 U/week;
T4: 2500 ± 4180 U/week (p < 0.001)

27 HD patients Placebo, PO → Hb T0: 9.5 ± 2.2 g/dL; T4: 9.9 ± 2.5 g/dL (NS)
↓ ESA doses T0: 8000 ± 3186 U/week;
T4: 6000 ± 5083 U/week (p = 0.033)

[89] Two-way, parallel,
open-label

25 HD patients 1 g/Dx, IV and
1 g/non-Dx, PO

36 mo

↓ ESA doses T0: 5976 ± 1732 U/week;
T36: 3391 ± 659 U/week (p < 0.001)

35 HD patients No treatment → ESA doses T0: 6100 ± 1587 U/week;
T36: 5519 ± 1360 U/week (NS)

[90] Two-way, parallel,
double-blind

13 HD patients 20 mg/kg per Dx, IV
4 mo

→ ESA doses T4: −769 ± 1739 U/week (NS),
→ Hb T4: −0.08 ± 0.90 g/dL (NS)

13 HD patients Placebo, PIV → ESA doses T4: +153 ± 177 U/week (NS),
→ Hb T4: −0.26 ± 0.56 g/dL (NS)

[91] Two-way, parallel,
open-label

23 HD patients 15 mg/kg per Dx, IV
6 mo → ESA doses,→ Ht (NS)22 HD patients No treatment
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Table 1. Cont.

Ref Study Design Subjects Dose and Route Treatment
Duration Findings a

[92] Two-way, parallel,
double-blind

13 HD patients 1 g/Dx, IV
6 mo

↓ ERI T0: 102 ± 53 U/kg/week; T6: 63 ± 38 U/kg/week
(p < 0.02)

11 HD patients Placebo, IV → ERI T0: 79 ± 32 U/kg/week; T6: 80 ± 47 U/kg/week (NS)

[70] Two-way, parallel,
double-blind

10 HD patients 1 g/Dx, IV
6 mo

↓ ERI T0: 135 ± 79; T6: 118 ± 108 U/kg per week per %Ht
(p < 0.05)

11 HD patients Placebo, IV ↑ ERI T0: 136 ± 66; T6: 217 ± 204 U/kg per week per %Ht
(p < 0.05)

[69] Two-way, parallel,
double-blind

20 HD patients 5 mg/kg or 25 mg/kg
per Dx, IV 4 mo

↓ ERI T0: 16.0 ± 11.0; T4: 13.6 ± 10.5 U/kg per week per gHb
(p < 0.02)

20 HD patients Placebo, IV Values not reported

[96] Two-way, parallel,
double-blind

13 HD patients 20 mg/kg per Dx, IV
6 mo ↓ ERI -1.62 ± 0.91 vs. +1.33 ± 0.79 U/kg per gHb (p < 0.05)14 HD patients Placebo, IV

[93] Two-way, parallel,
open-label

30 HD patients 1 g/Dx, IV
12 mo

↓ ERI T0: 10.7 ± 7.3; T12: 6.4 ± 3.8 U/kg per gHb per week
(p < 0.0001)

30 HD patients No treatment → ERI T0: 10.0 ± 7.9; T12: 9.6 ± 6.5 U/kg per gHb per week
(NS)

[94] Two-way, parallel,
double-blind

46 HD patients 1 g/Dx, IV
12 mo

→ ERI T0: 20.6 ± 12.8; T12: 15.6 ± 15.9 IU/kg per gHb
(p = 0.10)

46 HD patients Placebo, IV → ERI T0: 15.8 ± 11.3; T12: 9.5 ± 5.8 IU/kg per gHb (p = 0.10)

Dx, dialysis session; HD, hemodialysis; ERI, erythropoietin resistance index; ESA, erythropoiesis-stimulating agent; Hb, hemoglobin; Ht,
hematocrit; IV, intravenous injection; mo, months; NS, not significant; PO, per oral; RBC, red blood cell; Ref, reference. a The findings show
no difference (→), a decrease (↓), or an increase (↑).

7. Cardiac Function

Cardiovascular disease is a leading cause of mortality in dialysis patients [93]. Ap-
proximately 75% of end-stage kidney disease patients commencing hemodialysis treatment
experience left ventricular dysfunction, represented by reduced LVEF, which is a significant
risk factor for congestive heart failure [97]. Furthermore, intradialytic hypotension has been
linked to mortality and is an independent predictor of mortality in this population [97–99].

The main energy source for cardiac myocytes is β-oxidation of fatty acids. Carnitine
concentrations in myocytes are some of the highest of all cell types. Furthermore, the pro-
duction of intracellular acylcarnitine and lactate is induced by myocardial ischemia. Thus,
levocarnitine treatment might be useful for cardiac symptoms. Numerous investigations
have reported the efficacy of levocarnitine treatment in terms of cardiac function; these are
summarized in Table 2 [49,50,89,100–108].

The relationship between hypotensive episodes and levocarnitine treatment has
also been investigated in dialysis patients. Patients who experience hypotension during
hemodialysis treatment have lower serum carnitine levels than normotensive individu-
als [109]. Levocarnitine treatment significantly reduces intradialytic hypotension versus
placebo [49,110]. Accordingly, intravenous levocarnitine supplementation is allowed for
the management of dialysis-related hypotension in hemodialysis patients who have lower
serum carnitine levels by the Centers for Medicare and Medicaid Services.

A strong correlation has been found between LVEF and serum carnitine levels in
patients on dialysis. In addition, 3-month administration of levocarnitine improves LVEF,
significantly so in patients with repeated hypotensive events [111]. It was suggested that
patients experiencing symptomatic hypotension had a significantly lower LVEF and a
higher mortality risk compared with asymptomatic patients [110]. Other studies have
obtained similar results [89,103,112]. Mounting evidence favors a role for levocarnitine in
the management of cardiac dysfunction. On the other hand, other studies have reported
the ineffectiveness of levocarnitine treatment [50,104]; however, these findings must be
interpreted with caution, because these studies included patients with normal LVEF. In our
previous reports, atherosclerosis assessed by brachial-ankle pulse wave velocity and cardiac
function assessed by LVEF and left ventricular mass index (LVMI) were improved by
levocarnitine treatment in patients on hemodialysis [107,113]. Levocarnitine administration
decreased N-terminal pro-brain natriuretic peptide (NT-proBNP) levels and ameliorated
the ERI. Furthermore, the responders to levocarnitine treatment were patients with left
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ventricular hypertrophy, as defined by the LVMI on echocardiography. These results
suggest that levocarnitine treatment might be effective for patients with a larger baseline
LVMI [107]. Therefore, these results indicate that levocarnitine treatment is beneficial for
patients with left ventricular hypertrophy, reduced LVEF, or dialysis-related hypotension.

Table 2. Studies of the effect of levocarnitine on cardiac function and hypotension in dialysis patients.

Ref Study Design Population Dose and Route Treatment
Duration Findings a

[101] Two-way, crossover,
double-blind

9 HD patients 990 mg/day PO then
placebo for 2 mo each

2 mo
↓ Hypotension (p < 0.001)

9 HD patients Placebo then 990 mg/day
PO for 2 mo each → Hypotension (NS)

[50] Two-way, parallel,
double-blind

14 HD patients 2 g/Dx, IV
6 weeks No difference in cardiac function (NS)14 HD patients Placebo

[49] Two-way, parallel,
double-blind

38 HD patients 20 mg/kg per Dx, IV 6 mo ↓ Hypotension (p < 0.02)
44 HD patients Placebo → Hypotension (NS)

[102] One-way, open-label 13 HD patients 1 g/Dx, IV 3 mo ↑ LVEF T0: 42.4 ± 19.4%; T3: 48.6 ± 17.6% (p < 0.05)

[89] Two-way, parallel,
open-label

25 HD patients 1 g/Dx, IV and
1 g/non-Dx PO 36 mo

↑ LVEF (p < 0.05)

35 HD patients No treatment ↓ LV end-diastolic volume (p < 0.05)

[103] One-way, open-label 11 HD patients 1 g/day PO then 0.5 g/day
PO for 1 mo each 2 mo

→ LVEDD, LVFS (NS)
↑ Cardiac scintigraphy (p < 0.001)

[104] One-way, open-label 9 HD patients
(impaired LVEF) 500 mg/day, PO 6 mo

↑ LVEF T0: 44.9% ± 12.2%; T6: 53.8% ± 13.8% (p = 0.005)
↓ CTR T0: 56.4 ± 5.4; T6: 53.8 ± 4.0 (p = 0.042)

[100] One-way, open-label 11 HD patients
(impaired LVEF) 1 g/Dx, IV 8 mo ↑ LVEF T0: 32.0% T8: 41.8% (p < 0.05)

[105] Two-way, parallel,
open-label

10 HD patients 10 mg/kg/day, PO
12 mo

↓ LVMI T0: 151.8 ± 21.2; T12: 134 ± 16 g/m2 (p < 0.01)
10 HD patients No treatment → LVMI T0: 153.3 ± 28.2; T12: 167.1 ± 43.1 g/m2 (NS)

[106] Two-way, parallel,
double-blind

20 HD patients 1500 mg/day, PO
6 mo

No difference in cardiac function (p = 0.67)
35 HD patients No treatment Cardiac function was not investigated.

[107] Two-way, parallel,
double-blind

10 HD patients 900 mg/day, PO
3 mo

↑ LVEF T0: 61.8% ± 16.0% T3: 64.4% ± 13.8% (p < 0.05)
↓ Hypotension T0: 4.0 ± 1.7; T3: 1.3 ± 0.9 times/mo (p < 0.05)

8 HD patients Placebo → LVEF (NS)

[108] Two-way, parallel,
open-label

75 HD patients 20 mg/kg/day, PO
12 mo

↑ LVEF T0: 53.1% ± 5.3% T12: 58.6% ± 5.5% (p < 0.001)
↓ LVMI T0: 112 ± 26; T12: 107 ± 24 g/m2 (p < 0.001)

73 HD patients No treatment → LVEF, LVMI (NS)

[109] Two-way, parallel,
double-blind

18 HD patients 30 mg/kg/before Dx, IV
3 mo ↓ Hypotension 9.3% vs. 33.1% (p < 0.0001)15 HD patients Placebo, IV

CTR, cardiothoracic ratio; Dx, dialysis session; HD, hemodialysis; IV, intravenous injection; LVEDD, left ventricular end-diastolic dimension;
LVFS, left ventricular fractional shortening; LVEF, left ventricular ejection fraction; LVMI, left ventricular mass index; mo, months; NS, not
significant; PO, per oral; Ref, reference. a The findings show no difference (→), a decrease (↓), or an increase (↑).

Myocardial fatty acid metabolism, as assessed by 123-I–labeled β-methyl-p-iodophenyl-
pentadecanoic acid (BMIPP), has been reported to be reduced in patients on long-term
hemodialysis and recovered by levocarnitine therapy [102]. Tetradecyl glycidic acid
(TDGA) impairs mitochondrial carnitine acyltransferase 1, and its administration induces
left ventricular hypertrophy with enhanced lipid accumulation in the rat heart [111]. BMIPP
washout from the myocardium is also decreased after TDGA administration [114]. There-
fore, carnitine deficiency interrupts fatty acid metabolism in the myocardium and leads
to myocardial lipid storage in patients on hemodialysis. A decreased free carnitine con-
centration results in disrupted fatty acid transfer into mitochondria; subsequently, the
accumulation of acylcarnitine in the mitochondria disrupts carnitine-related enzymes
involved in ATP production and transportation. Accordingly, levocarnitine treatment-
induced amelioration of myocardial fatty acid metabolism and the acyl/free carnitine ratio
might help to improve LVEF and decrease the LVMI.

Although levocarnitine treatment may be beneficial in improving LVEF, it is important
to determine whether the treatment reduces cardiac events, hospitalizations, and mortality.
To clarify the association between levocarnitine treatment and the hospitalization rate and
number of hospital days, a large cohort study was conducted in patients on hemodialy-
sis [115]. This study enrolled 2967 patients who were treated with levocarnitine for at least
3 months and had a 3-month or longer pre-levocarnitine period. The adjusted relative risk
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of hospitalization significantly decreased during the levocarnitine treatment compared
with the rate before the initiation of levocarnitine treatment. Compared with the base-
line hospitalization rate before levocarnitine treatment initiation, levocarnitine decreased
the hospitalization rate by 34% and 58% at 6–9 months and 15–18 months, respectively.
Furthermore, patients with cardiovascular disease, anemia, and hypoalbuminemia prior
to levocarnitine treatment benefited most from levocarnitine treatment, in whom it was
associated with fewer hospitalizations [115].

Uremia alters both carnitine and fatty acid metabolism. The combination of uremia-
induced left ventricular hypertrophy and carnitine deficiency impairs myocardial metabolism
and cardiac function. Levocarnitine treatment might partly improve the uremic hypertro-
phy, besides augmenting the metabolism. Additional large-scale clinical studies must be
performed to clarify whether levocarnitine treatment ameliorates cardiovascular mortality
in patients on dialysis.

8. Muscle Symptoms and Quality of Life

Sarcopenia and muscle weakness are frequent in patients with chronic kidney disease.
Sarcopenia is caused by the aggravation of some physiological systems and is associated
with aging. Decreased muscle strength and skeletal muscle mass are related to physical
function [116,117]. In the general population, sarcopenia has been linked to adverse clinical
outcomes, such as mortality, disability, hospitalization, falls, decreased quality of life,
and need for long-term care [116,117]. Sarcopenia has also been associated with negative
outcomes in patients with end-stage kidney disease or on dialysis [118–121]. Generally,
physical activity falls with age in not only the general population, but also among patients
with chronic kidney disease [122]. Patients on dialysis with decreased physical function
have been found to have higher mortality than those with better physical function [123].
Although the clinical importance of sarcopenia is recognized, there are no clear intervention
methods for the dialysis population. The pathophysiology of this syndrome is believed to
be associated with amino acid deficiency, including that of carnitine.

In addition to sarcopenia, both inflammation and PEW are significant predictors of
mortality in patients receiving dialysis therapy [22–24]. A recent meta-analysis reported a
28–50% prevalence of PEW or frailty in patients receiving dialysis [124]. Another report
revealed that 30% of dialysis patients had mild or moderate malnutrition and that 6–8% of
patients had severe malnutrition [125–127]. Although three pathophysiologies—sarcopenia,
frailty, and PEW—are distinguished, they share some components that are associated
with hospitalization and mortality. In particular, malnutrition and chronic inflammation
complicated with sarcopenia are important predictors of clinical outcomes in patients on
hemodialysis [128,129]. In addition, elevated proinflammatory cytokine levels stimulate
protein catabolism through the ubiquitin–proteasome pathway, leading to muscle weakness
or wasting [130]. The production of inflammatory cytokines, such as interleukin (IL)-1, IL-6,
and tumor necrosis factor (TNF)-α, can be decreased by levocarnitine treatment [131–133].

Levocarnitine corrects insufficient energy supplies at the cellular level, alleviates long-
chain fatty acid transport into mitochondria, and accelerates the removal of short- and
medium-chain fatty acids stored during metabolism. Therefore, levocarnitine treatment
may have beneficial effects on muscle wasting because fatty acid is the main source of en-
ergy in skeletal muscle [134]. Levocarnitine may increase the β-oxidation rate of fatty acids
and maintain glycogen stores in skeletal muscle, thereby boosting ATP production [135].
Skeletal muscle function may be improved or maintained via levocarnitine-mediated
augmentation of energy metabolism. Levocarnitine supplementation improves not only
physical function but also mental and cognitive function in elderly individuals with normal
kidney function [136,137]. Although levocarnitine supplementation fails to increase arm
and leg muscle strength, it does increase the lean muscle mass of the arm and leg in elderly
individuals with normal kidney function [138].

In Japan, patients receiving hemodialysis who had muscular symptoms such as cramps
and asthenia have been found to have significantly lower endogenous serum carnitine
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levels compared with non-symptomatic patients [139]. Thirty patients on hemodialysis
with muscular weakness, fatigue, or cramps were treated with levocarnitine for 12 weeks.
Some muscle symptoms were improved in approximately 70% of the patients [139]. Four-
teen patients on hemodialysis were treated with levocarnitine in a double-blind crossover
manner to investigate carnitine levels in muscle and serum before and after 2 months of
levocarnitine treatment. Although levocarnitine treatment ameliorated symptoms such as
asthenia and cramps occurring during hemodialysis, these symptoms worsened during
the washout period (i.e., after levocarnitine treatment was ceased) [140]. In addition, to
evaluate the efficacy of levocarnitine for muscle function, a two-way parallel controlled
trial was conducted for 6 months [141]. Muscle strength was significantly improved in
four of the seven patients in the levocarnitine group at the study end, whereas none of the
seven controls showed a significant improvement. Thereafter, all 14 patients were treated
with levocarnitine for 10 months, with muscle strength increased in nine of the 14 pa-
tients. We previously conducted a randomized control trial of 91 hemodialysis patients
who had lower serum carnitine levels [142]. The participants were randomly assigned to
receive intravenous levocarnitine treatment (levocarnitine group) or no treatment (control
group) for 12 months. Clinical dry weight, body mass index, and serum albumin levels fell
significantly in the control group. However, there were no such results in the levocarni-
tine group. In addition, there were significant differences in the percent changes in arm
muscle area, hand grip strength, and lean body mass after 12 months between the two
groups [142]. Levocarnitine treatment was beneficial in patients on dialysis, particularly in
elderly patients or those with diabetes, because it was able to maintain lean body mass and
muscle function.

In addition to muscle and dialytic symptoms in patients on dialysis, a significant
association has been reported between the acyl/free carnitine ratio and the physical compo-
nent of the 36-Item Short Form Survey (SF-36) in men. Moreover, levocarnitine treatment
improves SF-36 scores compared with baseline [68]. Furthermore, to evaluate health-
related quality of life from the perspective of patients on dialysis, the SF-36 score was
measured. Symptoms during hemodialysis were evaluated at each dialysis session using
additional questionnaires. Six months of oral levocarnitine therapy boosted general health
and physical function [143]. The efficacy of levocarnitine treatment for dialysis patients
in terms of muscle symptoms, physical activities, and quality of life is summarized in
Table 3 [49,50,83,84,87,100,139–147].

A meta-analysis failed to identify the clinical significance of levocarnitine treatment of
intradialytic hypotension and muscle function [148]. However, some major limitations were
noted, such as the small number of patients in many of the studies and a low associated
statistical power. Furthermore, the definitions of dialysis-related hypotension and muscle
cramps were not unified. To confirm the clinical efficacy of levocarnitine treatment of
intradialytic hypotension and muscle cramps, additional adequately sized randomized
clinical studies are required in this population.

Table 3. Studies of the effect of levocarnitine on muscle symptoms and quality of life in dialysis patients.

Ref Study Design Subjects Dose and Route Treatment
Duration Findings a

[101] Double-blind, cross-over,
placebo-controlled 18 HD patients 990 mg/day, PO

Placebo, PO 2 mo ↓ Cramps (p < 0.001), ↓ Asthenia (p < 0.001),
↓ Dyspnea (p < 0.001)

[140] Double-blind, cross-over,
placebo-controlled 14 HD patients 2 g/day, PO

Placebo, PO 2 mo ↑ Exercise time (p = 0.01), ↓ Asthenia (p = 0.01),
↓Muscle cramps (p = 0.01)

[50] Two-way, parallel,
double-blindl

14 HD patients 2 g/Dx, IV
1.5 mo No difference in muscular status (NS)14 HD patients Placebo, IV

[144] One-way, open-label 6 HD patients 2 g/day, PO 1.5 mo No difference in muscular function (NS)

[49] Two-way, parallel,
double-blind

38 HD patients 20 mg/kg per Dx, IV
6 mo

↓ Cramps (p = 0.02), ↓ Asthenia postdialysis (p = 0.04),
↑ O2 consumption (p = 0.03)44 HD patients Placebo, IV

[145] One-way, open-label 26 HD patients
2 g/dialysate (n = 11),

2 g/day PO (n = 6),
2 g/Dx IV (n = 9)

6 mo ↓ Cramps (p = 0.04), ↓ Pain (p = 0.04),
↑ Isometric force (p = 0.001)
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Table 3. Cont.

Ref Study Design Subjects Dose and Route Treatment
Duration Findings a

[146] One-way, open-label 6 HD patients 2 g/day, PO 2 mo ↓ Cramps (p = 0.01), ↓Weakness (p = 0.001),
↓ Fatigue (p = 0.05)

[139] Two-way, parallel,
open-label

30 HD patients 500 mg/day, PO
3 mo

↓Weakness (p < 0.005), ↓ Fatigue (p < 0.005),
↓ Cramps/aches (p < 0.05)21 HD patients No treatment

[147] Two-way, parallel,
double-blind

9 HD patients 10 mg/kg per Dx, IV
4 mo

No difference in muscle cramps, uremic pruritus,
physical strength, and general well-being8 HD patients Placebo, IV

[143] Two-way, parallel,
double-blind

101 HD patients 1 g/day, PO
6 mo

1.5 mo, ↑ QOL (p = 0.02); 3 mo, ↑ QOL (p = 0.015);
>4.5 mo, ↓ QOL (p = 0.013)Placebo, PO

[141] Two-way, parallel,
double-blind

7 HD patients 2 g/Dx, IV for 6 mo, then 1
g/Dx, IV for 10 mo

16 mo
→ Daily activity score T0: 3.5; T6: 2.0 (NS)

7 HD patients No treatment for 6 mo,
then 1 g/Dx, IV for 10 mo → Daily activity score T0: 3.4; T6: 3.1 (NS)

[84] Double-blind, cross-over,
placebo-controlled 16 HD patients 20 mg/kg per Dx, IV

3 mo No changes in muscle parameters and QOL scoresPlacebo, IV

[96] Two-way, parallel,
double-blind

13 HD patients 20 mg/kg per Dx, IV
6 mo

↑ SF-36 scores T0: 33.9 ± 1.9; T6: 43.2 ± 3.0 (p < 0.05)
14 HD patients Placebo, IV → SF-36 scores T0: 40.6 ± 2.6; T6: 40.1 ± 3.0 (NS)

[83] Two-way, parallel,
single-blind

10 HD patients 20 mg/kg per Dx, IV
2 mo ↑ SF-36 scores T2: +18.3 ± 12.7 vs. −6.4 ± 16.4 (p = 0.001)10 HD patients Placebo, IV

[142] Two-way, parallel,
open-label

42 HD patients 1 g/Dx, IV
12 mo

↑ AMA: +2.11% vs. −4.11% (p < 0.01); ↑ LBM 0.70% vs.
−2.22% (p < 0.001); ↑ HGS: +1.58% vs. −2.69% (p < 0.05)42 HD patients No treatment

[87] One-way, open-label 62 HD patients 600 mg/day, PO for 12 mo,
then 1 g/Dx IV for 12 mo 24 mo ↓Muscle spasms in patients who had undergone HD for

>4 years (p-value not reported)18 PD patients 600 mg/day, PO 12 mo

AMA, arm muscle area; Dx, dialysis session; HD, hemodialysis; HGS, hand grip strength; LBM, lean body mass; IV, intravenous injection;
mo, months; NS, not significant; PD, peritoneal dialysis; PO, per oral; QOL, quality of life; Ref, reference; SF-36, 36-Item Short Form Survey.
a The findings showed no difference (→), or decrease (↓) or increase (↑).

9. Plasma Lipid Profiles and Inflammation-Related Parameters

Patients on dialysis exhibit a higher risk of atherosclerotic cardiovascular disease. Ob-
servational studies of dialysis patients have revealed a close relationship of dyslipidemia
(e.g., elevated low-density lipoprotein (LDL) cholesterol, low high-density lipoprotein
(HDL) cholesterol, elevated triglyceride, and/or elevated non-HDL cholesterol) with both
atherosclerosis severity and risk of coronary artery disease [149,150]. Furthermore, dys-
lipidemia has a closer association with ischemic heart disease than with cerebrovascular
disease. Several factors, including decreased activities of lipoprotein lipase and lecithin
cholesterol acyltransferase (LCAT) and decreased hepatic lipase levels, promote dyslipi-
demia development in chronic kidney disease patients. The 2003 guidelines of the National
Kidney Foundation’s Kidney Disease Outcomes Quality Initiative recommended a triglyc-
eride level < 500 mg/dL in a fasting blood sample, an LDL cholesterol level < 100 mg/dL,
and a non-HDL cholesterol level < 130 mg/dL [151].

Levocarnitine treatment may be beneficial for dyslipidemia in dialysis patients be-
cause carnitine increases the transport of free fatty acids into mitochondria and decreases
the availability of free fatty acids for triglyceride synthesis. Decreased carnitine levels
may be a possible contributing factor to hyperlipidemia in the dialysis population. In
addition, carnitine treatment may improve dyslipidemia because carnitine stimulates the
β-oxidation of long-chain fatty acids and decreases the ester bound to glycerol, even in
dialysis patients [100].

Inflammation is highly prevalent in patients on hemodialysis, and elevated C-reactive
protein is a predictor of all-cause and cardiovascular mortality in this population [152–156].
Inflammation can induce hepcidin overexpression and thus cause or aggravate absolute
iron deficiency by inhibiting iron enteral absorption and functional iron deficiency through
decreased release of stored iron from the liver and reticuloendothelial system [157]. The
antioxidant and anti-inflammatory effects of levocarnitine have been described in vitro
and in vivo [158,159]. Levocarnitine has also been shown to impact insulin sensitivity
and protein catabolism; it has been proposed that increased levocarnitine is likely to im-
prove nutritional status by reducing insulin resistance [160]. In one study, when patients
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were divided into two groups according to albumin level (<3.5 g/dL or ≥3.5 g/dL) be-
fore levocarnitine treatment, the higher albumin group displayed a significant increase
in the prealbumin level and an improved malnutrition–inflammation score (MIS) [161].
Some clinical trials have indicated that levocarnitine supplementation can improve nu-
tritional status in hemodialysis patients. It has been reported that oral levocarnitine
supplementation tended to lower graft loss within 3 months after kidney transplanta-
tion, which might be related to the antioxidant effects of carnitine [162]. Several stud-
ies have examined the effects of levocarnitine treatment on plasma lipid levels and
inflammation-related parameters in patients on maintenance dialysis. These studies are
listed inTable 4 [48,80,85,86,88,90,92,131–133,161,163–173].

Multiple studies have shown that levocarnitine treatment has beneficial effects on
dyslipidemia. Nonetheless, conflicting results were reported in some studies. A meta-
analysis failed to identify beneficial effects of levocarnitine treatment on dyslipidemia in
patients on dialysis [75,174]. However, another meta-analysis reported that levocarnitine
administration decreased LDL-cholesterol levels in a subgroup of patients intravenously
administered levocarnitine and with a longer interventional duration, whereas it was not
associated with a reduction in total cholesterol and triglycerides levels or an increase in
HDL-cholesterol levels [175]. Furthermore, meta-analyses demonstrated that levocarnitine
administration decreased serum C-reactive protein levels in both statistically significant and
clinically relevant manners [176] and that it increased total protein, albumin, transferrin,
and prealbumin levels [177]. However, there were several limitations in previous studies,
including differences among studies in plasma lipid levels and serum carnitine levels,
levocarnitine dosage, administration methods, and study durations. Furthermore, research
is required into specific dialysis populations with dyslipidemia, such as patients with low
HDL cholesterol or high triglyceride levels.

Table 4. Studies of the effect of levocarnitine on lipid profiles and inflammatory-related parameters in dialysis patients.

Ref Study Design Subjects Dose and Route Treatment
Duration Findings a

[163] Two-way, parallel,
open-label

8 HD patients 0.5 g/Dx IV for 2 mo, then
1.0 g/Dx IV for 1.5 mo 3.5 mo ↓ TG T0: 336 ± 56 mg/dL; T3.5: 244 ± 82 mg/dL (p < 0.05)

8 HD patients Placebo, IV 3.5 mo → TG T0: 329 ± 72 mg/dL; T3.5: 444 ± 82 mg/dL (NS)

[164] Two-way, parallel,
open-label

11 HD patients 1 g/Dx, IV for 1 mo then 2
g/Dx dialysate for 3 mo

4 mo
↓ TG, ↑ HDL (p-values not reported)

11 HD patients 1 g/Dx, IV for 1 mo then
4 g/Dx dialysate for 3 mo

[165] Two-way, crossover,
double-blind

9 HD patients 1 g t.i.d. PO then placebo for
5 wk each 5 wk

No difference in plasma lipid levels (NS)
9 HD patients Placebo then 1 g t.i.d. PO for

5 wk each 5 wk

[48] Two-way, parallel,
double-blind

38 HD patients 20 mg/kg per Dx, IV 6 mo No difference in plasma lipid levels (NS)44 HD patients Placebo, IV 6 mo

[166] Two-way, parallel,
double-blind

15 HD patients 1–1.5 g/Dx, IV 2 mo No difference in plasma lipid levels (NS)15 HD patients Placebo 2 mo

[167] Two-way, parallel,
double-blind

11 HD patients 100 µmol/L dialysate 6 mo No difference in plasma lipid levels (NS)10 HD patients Placebo 6 mo

[168] Two-way, parallel,
open-label

6 HD patients 900 mg t.i.d. PO 1 mo ↑ TG T0: 180 ± 66 mg%; T1: 219 ± 88 mg% (p < 0.05)
4 HD patients Placebo 1 mo → TG T0: 222 ± 35 mg%; T1: 222 ± 35 mg% (NS)

[131] Two-way, parallel,
open-label

21 HD patients 20 mg/kg per Dx, IV
6 mo

↓ TG T0: 1.6 ± 0.6; T6: 1.5 ±0.7 mmol/L (p = 0.001), ↑ TP T0:
6.4 ± 0.5; T6: 6.9 ± 0.5 g/dL (p < 0.001), ↑ Alb T0: 3.6 ± 0.3;
T6: 4.1 ± 0.3 g/dL (p < 0.001), ↑ Tf T0: 1.2 ± 0.2;
T6: 1.6 ± 0.4 g/L (p < 0.001), ↑ BMI T0: 23.4 ± 4.0;
T6: 23.7 ± 4.0 (p < 0.001)

21 HD patients No treatment → TG, TP, Alb, Tf, BMI (NS)

[132] Two-way, parallel,
double-blind

20 HD patients 1 g/Dx, IV
6 mo

↓ CRP: T0: 2.1 ± 0.6 mg/dL; T6: 0.67 ± 0.1 mg/dL
(p = 0.02),→ TC, HDL, LDL, TG (NS)

15 HD patients No treatment → CRP, TC, HDL, LDL, TG (NS)

[88] Two-way, parallel,
double-blind

24 HD patients 1 g/day, PO
4 mo

↓ TG T0: 166 ± 71 mg/dL; T4: 138 ± 54 mg/dL (p = 0.001)
↑ HDL T0: 30 ± 7 mg/dL; T4: 34 ± 7 mg/dL (p < 0.001)

27 HD patients Placebo, PO ↑ TG T0: 142 ± 58 mg/dL; T4: 151 ± 48 mg/dL (p = 0.029)
→ HDL

[92] Two-way, parallel,
double-blind

13 HD patients 1 g/Dx, IV
6 mo

→ TC, HDL, TG (NS)
11 HD patients Placebo, IV → TC, HDL, TG (NS)
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Table 4. Cont.

Ref Study Design Subjects Dose and Route Treatment
Duration Findings a

[90] Two-way, parallel,
double-blind

13 HD patients 20 mg/kg per Dx, IV
4 mo

→ TC, TG (NS)
13 HD patients Placebo, PIV → TC, TG (NS)

[169] Two-way, parallel,
double-blind

32 HD patients 600 mg/Dx, IV

12 mo

↓MDA T0: 2.2 ± 0.7 µmol/mL; T3: 1.5 ± 0.7 µmol/mL
(p < 0.001)
↑ ABI T0: 0.71 ± 0.06; T3: 0.78± 0.08 (p < 0.001)

32 HD patients Placebo, IV
↑MDA T0: 1.94 ± 0.5 µmol/mL; T3: 1.9 ± 0.7 µmol/mL
(p < 0.01)
↓ ABI T0: 0.75 ± 0.08; T3: 0.72 ± 0.01 (p < 0.001)

[85] Two-way, parallel,
open-label

20 HD patients 1 g/Dx, twice a week, IV 6 mo ↓ TC (p < 0.001),↑ HDL (p < 0.001), ↓ TG (p < 0.001)
20 HD patients No treatment ↑ TC (p < 0.001), ↓ HDL(p < 0.01),→ TG (NS)

[86] Two-way, parallel,
open-label

20 HD patients 1 g/Dx, IV
3 mo

↓ TG T0: 190 ± 69 mg/dL; T3: 179 ± 51 mg/dL (p < 0.05)
↓ LDL 119± 21 mg/dL; T3: 98 ± 19 mg/dL (p < 0.05)
↓ CRP T0: 20.8 ± 1.7 µM; T3: 16.5± 1.3 µM (p < 0.05)

20 HD patients No treatment → TG, LDL, CRP (NS)

[161] One-way, open-label 50 HD patients 1 g/Dx, IV 12 mo ↑ LDL (p = 0.005), ↓ HDL (p = 0.001),→ TG (NS)

[133] Two-way, parallel,
open-label

18 HD patients 1 g/day, PO
3 mo

↓ CRP T3: −1.6 ± 2.3 mg/L (p < 0.05), ↓ IL-6
T3: −5.5 ± 3.6 ng/L (p < 0.001), ↓ IL-1β T3: −0.6 ± 0.6 ng/L
(p < 0.001)

18 HD patients No treatment → CRP, IL-6, IL-1β (NS)

[170] Two-way, parallel,
double-blind

18 HD patients 1 g/day, PO
3 mo

↓ CRP T0: 7.5 ± 5.5 mg/L; T3: 4.4 ± 3.3 mg/L (p < 0.05)
18 HD patients Placebo, PO → CRP T0: 6.5 ± 5 mg/L; T3: 6.3 ± 3.1 mg/L (NS)

[171] Two-way, parallel,
double-blind

18 HD patients 1 g/day, PO
3 mo

↓ SAA T3: −32% (p < 0.001)
18 HD patients Placebo, PO → SAA (NS)

[172] Two-way, parallel,
open-label

17 HD patients 1 g/day, PO
3 mo

→ BMI, Leptin, Adiponectin (NS)
25 HD patients No treatment → BMI, Leptin, Adiponectin (NS)

[173] Two-way, parallel,
open-label

20 HD patients 1 g/day, PO
2 mo

→ Alb T0: 3.37 ± 0.40 g/dL; T2: 3.38 ± 0.43 g/dL (NS)
20 HD patients No treatment → Alb T0: 3.35 ± 0.34 g/dL; T2: 3.40 ± 0.38 g/dL (NS)

[80] Two-way, parallel,
double-blind

48 HD patients 20 mg/kg per Dx, IV
6 mo

↓ CRP T0: 1.8 ± 1.2 mg/dL; T6: 1.2 ± 0.2 (p < 0.002),
↑ Alb T0: 3.6 ± 0.3 g/dL; T6: 3.9 ± 0.4 g/dL (p < 0.0001),
↑ BMI T0: 20.5 ± 0.1; T6: 21.2 ± 0.5 (p < 0.0001)

65 HD patients Placebo, IV → CRP (NS), ↓ Alb (p < 0.0001), ↓ BMI (p < 0.05)

ABI, ankle brachial index; Alb, albumin; BMI, body mass index; CRP, C-reactive protein; Dx, dialysis session; HD, hemodialysis; HDL,
high-density lipoprotein; IL, interleukin; LDL, low-density lipoprotein; MDA, malondialdehyde; IV, intravenous injection; mo, months; NS,
not significant; PO, per oral; Ref, reference; SAA, serum amyloid A; TC, total cholesterol; Tf, transferrin; TG, triglyceride; TP, total protein.
a The findings showed no difference (→), or decrease (↓) or increase (↑).

10. Conclusions

The number of patients being treated with dialysis therapy is increasing worldwide.
Patients with end-stage kidney disease who are receiving dialysis therapy frequently
experience carnitine system dysfunction. Carnitine deficiency and uremic syndrome
complicate the already complex pathophysiology of patients on dialysis. Furthermore,
a dysfunctional fatty acid metabolism induces surplus production of free radicals and
undesired apoptosis. Regarding carnitine deficiency, levocarnitine treatment positively
affects pathologic processes in patients on dialysis. There are four principal indications
for levocarnitine treatment in dialysis patients with carnitine deficiency according to the
American National Kidney Foundation: (1) ESA-resistant anemia that has not responded
to the standard ESA dosage; (2) recurrent symptomatic hypotension during hemodialysis;
(3) symptomatic cardiomyopathy or confirmed cardiomyopathy with reduced LVEF; and
(4) fatigability and muscle weakness that undermine quality of life. However, there were
some limitations in the previous studies regarding levocarnitine treatment in the dialysis
population, including sample size, adequacy of study design, and definition of target
diseases. Furthermore, research has not been able to identify a dose–response relationship
and the optimal administration route for levocarnitine treatment. Therefore, additional
adequately sized clinical trials are required to determine whether levocarnitine treatment
improves survival in patients on dialysis.
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