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Abstract: Background and objectives: The aims of this study were to investigate changes in the
hemodynamics associated with different types of aortic prostheses and to evaluate patient-prosthesis
mismatch (PPM) at rest and after exercise. Materials and Methods: We retrospectively analyzed
150 patients who presented with indications for aortic valve replacement (AVR) with/without
concomitant surgery from March 2019 to January 2020. The study population included 90 (60%) men
and 60 (40%) women (mean age, 67.33 ± 10.22 years; range, 37–88 years). Echocardiography data
such as peak and mean transprosthetic pressure gradients (Gmax, Gmean), velocity (V), effective
orifice area (EOA), and indexed EOA (iEOA) were derived at rest and after exercise at baseline and
before discharge. The study patients performed the six-minute walk test (6MWT) on the 5th–7th
postoperative day. Results: Stented tissue valves showed excellent performance at rest and after
exercise in comparison with mechanical valves, which showed favorable hemodynamics at rest
only. At the time of discharge, moderate PPM was observed in 7/74 patients (9.5%) at rest and 5/98
(3.3%) patients after exercise. None of the patients showed severe PPM. EOA and iEOA were not
significantly different between the groups. However, the stented group showed more pronounced
changes in EOA and iEOA after exercise, whereas the changes in the mechanical valve group did
not reach significance. Conclusions: In the early postoperative period, mechanical valves and stented
valves showed favorable resting hemodynamics. The PPM rate measured after exercise was lower
than that at rest.
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1. Introduction

Aortic valve replacement (AVR) is one of the most common procedures in adult cardiac surgery,
with approximately 45,000 implantations in one year performed in the USA alone [1–5]. The aim of
surgical valve implantation is to provide an adequate transprosthetic gradient, which improves left
ventricle (LV) hemodynamics and facilitates normalization of LV parameters [6]. Aortic valve (AV)
prostheses are evaluated not only on the basis of peak and mean gradients, but also by velocity and
effective orifice area (EOA). However, with manufacturer sizing systems, the variable hemodynamic
responses to resting and exercise conditions in ex vivo and in vivo conditions restrict adequate
hemodynamic evaluation of AV prostheses [7].

Another source of debate related to AVR is the effects of patient-prosthesis mismatch (PPM) on
different types of prostheses at rest and after physical activity [8]. One study claimed that mechanical
valve prostheses do not show an increase in EOA after exercise [8]. The stented tissue valve has
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been reported to show excellent hemodynamics, similar to stentless valve prostheses, both at rest and
during exercise [9]. We hypothesized that a six-minute walk test (6MWT), rather than a bicycle ramp
test, would be a suitable activity for the majority of patients in our study and utilized it for exercise
testing of AV hemodynamics. The aims of this study were to investigate the changes in hemodynamics
associated with different types of AV prostheses and to evaluate PPM at rest and after exercise.

2. Materials and Methods

2.1. Study Population

Symptomatic patients with moderate or severe aortic stenosis, regurgitation, or mixed AV
dysfunction referred for AVR at the Cardiac Surgery Department of the University Hospital of the
Lithuanian University of Health Sciences were enrolled. Patients with concomitant procedures
were enrolled as well. However, patients with previous open-heart surgery, active endocarditis,
and emergent conditions were excluded from the study. Preoperative and early postoperative
data, including demographic data, medical history, physical examination findings, New York Heart
Association (NYHA) classification status, EuroSCORE II, The Society of Thoracic Surgeons (STS)
risk score, transthoracic echocardiography findings at rest and after exercise, and intraoperative
transesophageal data, were obtained for each patient. Additional information pertaining to the surgical
technique, valve size, type, and manufacturer was also obtained.

We retrospectively analyzed 150 patients from March 2019 to January 2020 who showed indications
for AVR with/without concomitant surgery. This study population included 90 (60%) men and 60 (40%)
women with a mean age of 67.33 ± 10.22 years (range, 37–88 years). The duration of the natural course
of AV disease before surgery was calculated from the first hospital admission to the operation date.
AV disease symptoms may include dizziness, fainting, chest pain, irregular heartbeat, and fatigue
after exercise. Preoperatively, the majority of patients were in New York Heart Association (NYHA)
classes II (47.3%) and III (50.7%). Indications for AVR were as follows—stenosis (87.4%), regurgitation
(11.3%), and mixed stenosis (1.3%). The tricuspid aortic valve was observed in 66% of patients and
bicuspid pathology was present in 31.3% of patients. More than 90% of the patients had degenerative
AV disease, whereas 2.7% had rheumatic disease.

According to prosthesis type, the patient population was divided into stented (n = 113), mechanical
(n = 34), and stentless (n = 3) valve groups. However, due to the small number of patients in the
stentless valve group, this group has been excluded from our analysis.

All human sections were acquired from the University Hospital of the Lithuanian University of
Health Sciences. The Regional Medical Research Ethics Committee of the Lithuanian University of
Health Sciences (No.BE-2-69, 17 September 2019) approved this research protocol. Informed consent
was obtained from all patients.

2.2. Surgical Techniques

All procedures were performed using a standard general anesthesia protocol. After endotracheal
intubation and jugular vein and radial artery cannulations, transesophageal echocardiography was
routinely used for cardiac function monitoring. All patients underwent AVR with or without
concomitant surgery using standard cardiopulmonary bypass (CPB) via median (n = 147) or partial
upper sternotomy (n = 3) under moderate hypothermia (n = 146) or hypothermic circulatory arrest
(n = 4). Patients who required an aortic root enlargement procedure were excluded from the study.
Myocardial protection was performed by selective administration of St. Thomas’ Hospital cardioplegic
solution into the coronary artery or the aortic root (initial dose, 15 mL/kg; maintenance dose, 10 mL/kg).
Cardioplegia was repeated every 30 min using a cross-clamp.

Cardiopulmonary bypass (CPB) under moderate hypothermia (30 ◦C–32 ◦C) or hypothermic
circulatory arrest (27 ◦C) was performed using a roller pump (Stockert S5; Sorin Group, Munich,
Germany) and oxygenator (Sorin Group, Mirandola, Italy). Heparin (3–4 mg/kg) was administered



Medicina 2020, 56, 674 3 of 13

and supplemented as required to maintain an active clotting time of ≥480 s. Heparin, mannitol,
and sodium bicarbonate were added to the circuit as the primary solution. CPB was performed at flow
rates of 150–200 mL/kg/min, with cooling at the rate of 1 ◦C/min and rewarming at the rate of 1 ◦C
every 3 min. The ascending aorta and right atrium were cannulated to establish CPB. In some cases
involving AVR and concomitant procedures, two separate venous cannulas in both cava veins were
utilized to provide blood return. The left atrium drained via the right upper pulmonary vein or via
the pulmonary trunk. After aortic cross-clamping was applied, transverse aortotomy was performed
just above the sinotubular junction, the valve was excised, and meticulous calcium debridement
was performed. The prosthesis was selected after measurement using manufacturer-provided sizers.
The CPB and aortic cross-clamping times were recorded.

Indications for weaning from CPB have been standardized at our institute and include stability of
blood pressure, recovery of wall motion, and ST-segment normalization. A dose of protamine was used
to reverse the effects of heparinization. Patients with ventricular fibrillation after aortic unclamping
were electrically cardioverted with 10- to 20-joule direct shocks. A deairing procedure through the aortic
root and left atrial vents was completed and checked by transesophageal echocardiography. In addition,
transesophageal echocardiography was also performed in all patients to confirm the adequacy of
replacement, including the presence of a paravalvular leak and prosthesis function, and assessment
of ventricular function. After removal of the cannulas, myocardial pacing was positioned. Stainless
steel wires (6-calibre for men and 5-calibre for women) were passed transversely through the sternum.
Drains were typically left in the anterior mediastinum and pericardium, and the incision was closed.

The decision to use a tissue or mechanical valve prosthesis and the type of valve selected was
based on the preference of the surgeon and patient. The majority of valves (96.7%) were implanted into
the intra-annular position with continuous running 2-0 Prolene sutures, whereas 3.3% of the valves
were implanted in the supra-annular position with interrupted pledgeted mattress sutures. Isolated
AVR was performed in 47 (31.3%) cases. Concomitant procedures included coronary artery bypass
graft (CABG) with or without concomitant surgery in 79 (52.7%) patients, whereas 24 (16%) patients
required other procedures for the mitral valve (MV), tricuspid valve (TV), ascending aorta, congenital
inter-septal defects, and carotid artery.

The Bio-Bentall procedure involves aortic root and ascending aorta replacement with Medtronic
Freestyle stentless porcine valves or biological valve conduits with a linear ascending aortic prosthesis.
The Mech-Bentall procedure refers to mechanical valve conduit implantation and ascending aorta
replacement. Left and right coronary ostia were implanted into the prosthesis with 5/0 and 4/0
Prolene sutures, respectively. Mitral valve (MV) annuloplasty was standardized in our center and was
performed using double semi purse-suture annuloplasty with Teflon pledget reinforcement [10].

The mean cross-clamp time and mean cardiopulmonary bypass time were 70.9 ± 26.16 min
and 112.47 ± 43.04 min, respectively. Four patients underwent AVR under circulatory arrest for
12.75 ± 4.9 min (9–20 min). All patients with a mechanical prosthesis or tissue valve prosthesis
with atrial fibrillation (AF) received long-term warfarin treatment with a target of an international
normalized ratio (INR) of 2.0–2.5. Antithrombotic therapy with two months of warfarin administration
was given in the early postoperative period to patients who received an aortic tissue valve prosthesis.

Figure 1 shows the valve types and their size distribution. Aortic valve prostheses were
divided on the basis of their structure into stented tissue, stentless tissue, and mechanical prostheses.
The mechanical valve prostheses included St. Jude Regent (n = 16, 10.7%), Sorin Carbomedics (n = 14,
9.3%), St. Jude Master (n = 2, 1.3%), Medtronic ATS (n = 1, 0.7%), and St. Jude Master Aortic Valved
Graft (n = 1, 0.7%), and were implanted in 34 (22.7%) patients. The stented valve prosthesis group
included St. Jude Epic (n = 4, 2.7%) and St. Jude Trifecta (n = 109, 72.7%) and were implanted in more
than 75% of the study patients. The stentless aortic valve prosthesis group received the Medtronic
Freestyle valve (n = 3, 2%). The mean prosthesis size was 24.83 ± 1.95 mm. Projected indexed effective
orifice area (iEOA) data retrieved from the manufacturer provided effective orifice area (EOA) data
compared to the body surface area (BSA) [11].
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Figure 1. Types and sizes of prostheses.

2.3. Echocardiographic Analysis

Patients with an AV prosthesis (n = 150) underwent Doppler echocardiography at rest.
Echocardiography data such as maximum and mean transprosthetic pressure gradients (G max,
G mean), velocity (V), effective orifice area (EOA), and indexed parameter (iEOA) were derived at
baseline and before discharge at rest and after exercise. Color Doppler flow images were obtained in
the apical and parasternal views. Maximum and mean transprosthetic gradients were measured using
the Bernoulli equation: maximum gradient (mmHg) = 4 × (VAVmax

2
− VLVOTmax

2) and mean gradient
(mmHg) = 4 × (VAVmean

2
− VLVOTmean

2), where V = transaortic or transprosthetic velocity. EOA and
iEOA were assessed using the continuity equation for the velocity time integral (VTI) at rest and right
after exercise. EOA was calculated using the formula EOA = (CSALVOTVTILVOT)/VTIAV, where CSA is
the cross-sectional area in cm2 and VTI is the velocity time integral [12]. The term ‘iEOA’ refers to EOA
divided by BSA. PPM was considered severe when iEOA was <0.65 cm2/m2, moderate for iEOA of
0.65–0.85 cm2/m2, and absent for iEOA >0.85 cm2/m2.

The following LV measurements and aortic valve parameters were obtained in all patients:
LV end-diastolic diameter, LV septal and posterior thicknesses, LV mass, and aortic annulus. The LV
ejection fraction (EF) was determined using the Simpson biplane method. Low LVEF refers to EF < 45%.
To assess LV diastolic function, measurements of the E-wave, E/A ratio, and E/e were included in the
study protocol. Left ventricular function was assessed from the short axis of the parasternal view,
and left ventricular hypertrophy (LVH) was defined by linear measurements as 95 g/m2 in women and
115 g/m2 in men [13].

All Doppler measurements were averaged during sinus rhythm for three cardiac cycles and for
five cardiac cycles with rhythm disturbance. Doppler echocardiography during the early postoperative
and follow-up visits was performed with a protocol developed for this study. Transthoracic imaging
was performed by one of three highly trained sonographers using the Philips EPIQ 7G and Philips
CX50. For each case, 2D images and color-flow Doppler in multiple views were included.

Ninety-eight (65.3%) patients underwent exercise echocardiography with the six-minute walk test
(6MWT). Doppler measurements for Gmax, Gmean, V, EOA, and iEOA were obtained in all patients
within 2 min after termination of exercise.



Medicina 2020, 56, 674 5 of 13

2.4. Six-Minute Walk Test

Exercise tests were performed according to the American Thoracic Society guidelines [14].
Study patients performed 6MWT on the 5th–7th postoperative day. Patients were allowed to take
medication and have a light meal prior to the test. Blood pressure and blood saturation were measured
before and after the test. In accordance with the protocol, the patients rated shortness of breath and
fatigue level on the 10-grade Borg scale before and after the test.

Subjects were instructed to walk at their own pace and to try to cover the distance as much
as possible. The exercise was symptom-limited and terminated based on maximal patient effort.
Since patients were allowed to stop and rest while walking the 30-m corridor, investigators encouraged
subjects using standardized phrases and informed them about the remaining distance. Walking distance
was used to calculate the predicted distance, as shown by Enright et al. [15]. These gender-specific
equations and walking distance represent the walk percentage for healthy adults.

2.5. Data Analysis

All normally distributed data were expressed as mean ± standard deviation (SD) and numbers
(percentages). Continuous data without a normal distribution were presented using the median with
the interquartile range (IQR). Differences between continuous variables were tested using Student’s test
or the Mann–Whitney test, depending on the distribution of the data. Differences between categorical
variables were evaluated using chi-squared and Fisher’s exact tests. Differences were considered
significant when the P-value was less than 0.05. All statistical analyses were performed using IBM
SPSS Statistics for Windows, version 26.0 (IBM Corp., Armonk, NY, USA).

3. Results

3.1. Patient Characteristics

Preoperative and operative characteristics of the study patients are shown in Table 1.
The mechanical and stented tissue valve groups showed a significant sex-related difference.
Stented tissue valve prostheses were more frequently used in female patients, whereas mechanical
valve prostheses were predominantly used in male patients. The stented valve group represented the
older patients in the study population, whereas the mechanical valve group represented the younger
patients. Moreover, the prevalence of arterial hypertension (AH) and ischemic heart disease (IHD)
were greater in the stented group of patients than in those who received mechanical values. Similarly,
the STS score and EUROSCORE were much higher in the stented group than in the mechanical valve
group. The stented tissue valve group showed a longer ICU stay than the mechanical valve group.
Tricuspid aortic valve (TAV) dominated the pathology in the stented group, whereas bicuspid aortic
valve (BAV) was predominantly present in the mechanical valve group. The incidence of hospital
mortality was higher in the stented tissue valve group than in the other group.

Table 1. Baseline characteristics of groups stratified by prosthesis type.

Variables Mechanical Valve
(n = 34)

Stented Tissue Valve
(n = 113) p-Value

Gender
Female 8 (23.5%) 52 (46.0%) <0.05
Male 26 (76.5%) 61 (54.0%) <0.05

Age (yr) 54.47 ± 9.03 71.27 ± 6.98 <0.001
BMI (kg/m2) 27.14 ± 4.94 29.01 ± 5.24 NS
BMI grade (kg/m2)

Normal (18.5–25) 13 (38.2%) 23 (20.4%) NS
Underweight (<18.5) No 1 (0.9%) NS
Overweight (25–30) 12 (35.3) 52 (46.0%) NS
Obese (>30) 9 (26.5%) 37 (32.7%) NS
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Table 1. Cont.

Variables Mechanical Valve
(n = 34)

Stented Tissue Valve
(n = 113) p-Value

BSA (m2) 1.99 ± 0.23 1.95 ± 0.24 NS
Onset of symptoms (months) 6 (0–36) 8 (1-84) NS
NYHA (class)

I 1 (2.9%) No NS
II 17 (50.0%) 51 (45.1%) NS
III 15 (44.1%) 61 (54.0%) NS
IV 1 (2.9%) 1 (0.9%) NS

STS score (%) 1.11 (0.38–11.69) 2.38 (0.52–23.50) <0.05
EuroScore II (%) 1.9 (0.56–23.50) 3.7 (0.50–42.40) <0.05
Dominant valvular
dysfunction (n)

Stenosis 25 (75.8%) 103 (91.2%) <0.05
Regurgitation 7 (21.2%) 8 (7.1%) <0.05
Mixed dysfunction 2 (1.4%) 1 (0.7%) NS

Native valve
TAV 14 (42.4%) 82 (74.5%) <0.05
BAV 19 (57.6%) 28 (25.5%) <0.05

CPB time (min) 111.09 ± 51.13 112.27 ± 40.38 NS
Cross-clamp time (min) 70.79 ± 27.02 70.71 ± 26.21 NS
Operation time (min) 213.82 ± 65.41 212.55 ± 65.44 NS
ICU stay (day) 4 (1–7) 4 (1–49) <0.05
Prolonged ventilation (more
than 24 h) 1 (2.9%) 19 (17%) NS

Prosthesis size (mm)
19 No 1 (0.9%) NS
21 1 (2.9%) 9 (8%) NS
23 7 (20.6%) 34 (30.1%) NS
25 14 (41.2%) 34 (30.1%) NS
27 12 (35.3%) 35 (31%) NS
29 No No NS

PPM
At rest 1 (5.3%) 6 (11.3%) NS
After exercise 3 (11.1%) 2 (2.9%) NS

Types of operation
AVR 12 (35.3%) 35 (31%) NS
AVR + CABG ± concomitant surgery 10 (29.4%) 67 (59.3%) NS
AVR + concomitant surgery 12 (35.3%) 11 (9.7%) NS

ICU drainage bleeding (mL) 400.89 ± 140.185 364.29 ± 175.36 NS
Preoperative biochemical data

Creatinine (µmol/L) 80 (57–936) 90 (39–236) NS
Hb (g/L) 137.14 ± 20.21 129.89 ± 19.08 NS
Ht (%) 40.35 ± 5.33 38.73 ± 4.17 NS

Postoperative biochemical data
Creatinine (µmol/L) 81 (46–964) 93 (26–286) NS
Hb (g/L) 100.79 ± 12.85 96.35 ± 12.03 NS
Ht (%) 29.74 ± 3.8 28.92 ± 3.92 NS

Comorbidities
AH 22 (17.9%) 98 (79.7%) <0.05
COPD/Asthma 2 (16.7%) 10 (83.3%) NS
Current smoking 4 (50%) 4 (50%) NS
DM 2 (10%) 17 (85%) NS
Hyper/dyslipidaemia 17 (18.7%) 71 (78%) NS
History of stroke 1 (14.3%) 6 (85.7%) NS
Peripheral vessel diseases 3 (10.3%) 25 (86.2%) NS
IHD 14 (15.1%) 77 (82.8%) <0.05
MI 3 (12%) 22 (88%) NS
Kidney/Liver diseases 5 (15.6%) 25 (78.1%) NS

Hospital stay (days) 13 (8–67) 14 (7–113) NS
Hospital mortality No 6 (5.3%) NS

Abbreviations: SD, standard deviation; BMI, body mass index; BSA, body surface area; NYHA, New York Heart
Association; TAV, tricuspid aortic valve; BAV, bicuspid aortic valve; CPB, cardiopulmonary bypass; ICU, intensive
care unit; PPM, patient-prosthesis mismatch; AVR, aortic valve replacement; CABG, coronary artery bypass
graft; Hb, hemoglobin; Ht, haematocrit; AH, arterial hypertension; COPD, obstructive pulmonary disease;
DM, diabetes mellitus; IHD, ischemic heart disease; MI, myocardial infarction; NS, non-significant; STS, Society of
Thoracic Surgeons.
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Table 2 depicts the hemodynamic profiles associated with the two types of prostheses.
Preoperatively, the aortic annulus and ascending aorta were significantly different between stented
and mechanical valve groups. In the early postoperative period, stented and mechanical valve groups
showed favorable resting hemodynamics. None of the patients showed severe PPM. EOA and iEOA
were not significantly different between the groups. However, the peak and mean aortic gradients and
transprosthetic velocity of the stented group were significantly different from those of the mechanical
valve group. Surprisingly, the mean projected EOA of the stented group was statistically less than
those of mechanical valve group. Moreover, early postoperative left ventricular function and size were
similar in both groups.

Table 2. Hemodynamic performance based on the prosthesis types.

Variables Mechanical Valve
(n = 34)

Stented Tissue Valve
(n = 113) p-Value

Preoperative data
Gmax (mmHg) 69.72 ± 30.89 76.67 ± 37.84 NS
Gmean (mmHg) 47.10 ± 15.38 46.52 ± 22.33 NS
Vmax (m/s) 4.03 ± 1.11 4.22 ± 1.12 NS
EOA (cm2) 1.07 ± 0.87 0.91 ± 0.29 NS
iEOA (cm/cm2) 0.52 ± 0.33 0.47 ± 0.15 NS
LVEDD (mm) 51.30 ± 6.49 50.13 ± 7.95 NS
iLVEDD (mm/m2) 26.45 ± 4.39 26.26 ± 3.75 NS
LV mass (g) 258.83 ± 70.46 267.78 ± 61.06 NS
iLV mass (g/m2) 129.85 ± 27.39 137.93 ± 31.11 NS
LVH 20 (76.9%) 82 (84.5%) NS
LVEF (%) 48.68 ± 10.54 48.96 ± 10.17 NS
Low EF 6 (20.7%) 19 (20.7%) NS
Classical LF/LG 1 (2.9%) 8 (7.1%) NS
LV septal thickness (mm) 13.08 ± 2.37 14.28 ± 3.94 NS
LV posterior wall thickness (mm) 11.93 ± 1.95 12.10 ± 1.73 NS
Aortic annulus (mm) 24.78 ± 3.26 23.58 ± 2.38 <0.05
Sinuses Valsalva (mm) 36.71 ± 5.92 36.25 ± 4.78 NS
Proximal ascending aorta (mm) 40.22 ± 5.39 37.61 ± 4.42 <0.05
E (cm/s) 69.35 ± 22.9 77.12 ± 27.27 NS
E/A 1.02 ± 0.63 1.02 ± 0.57 NS
E/E’ 13.65 ± 6.42 13.04 ± 4.81 NS

Early postoperative data
Gmax (mmHg) 21.32 ± 8.71 14.24 ± 6.92 <0.001
Gmean (mmHg) 12.03 ± 5.67 7.24 ± 3.77 <0.001
Vmax (m/s) 2.24 ± 0.47 1.82 ± 0.41 <0.001

EOA (cm2) 2.61 ± 0.74 2.73 ± 0.82 NS
iEOA (cm/cm2) 1.28 ± 0.35 1.39 ± 0.38 NS
Projected EOA (cm2) 1.18 ± 0.38 1.05 ± 0.16 <0.05
LVEDD (mm) 49.69 ± 6.03 48.29 ± 6.23 NS
iLVEDD (mm/m2) 25.23 ± 3.54 24.97 ± 3.08 NS
LV mass (g) 242.73 ± 62.09 239.96 ± 61.01 NS
iLV mass (g/m2) 122.15 ± 28.74 122.81 ± 27.66 NS
LVEF (%) 46.47 ± 7.64 46.76 ± 8.12 NS
LV septal thickness (mm) 12.62 ± 2.1 13.1 ± 1.86 NS
LV posterior wall thickness (mm) 12 ± 1.65 12.01 ± 1.53 NS
Aortic annulus (mm) 24.87 ± 3.38 24.63 ± 1.83 NS
Sinuses Valsalva (mm) 38.05 ± 4.23 37.06 ± 4.98 NS
Proximal ascending aorta (mm) 37.38 ± 4.31 37.54 ± 4.38 NS
E (cm/s) 84.76 ± 30.29 87.65 ± 24.33 NS
E/A 1.32 ± 0.58 1.14 ± 0.43 NS
E/E’ 10.98 ± 4.08 13.52 ± 4.97 NS

Abbreviations: EOA, efficient orifice area; iEOA, indexed efficient orifice area; LVEDD, left ventricular end-diastolic
diameter; iLVEDD, indexed left ventricular end-diastolic diameter; LVEF, left ventricular ejection fraction; E/A ratio,
the ratio of mitral E velocity to mitral A velocity; E’, early diastolic mitral annular velocity; LV mass, left ventricular
mass; iLV mass, indexed left ventricular mass; V, velocity; G, gradient; NS, non-significant.
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3.2. Hemodynamic Performance after Exercise

Valve hemodynamics at rest and right after exercise in the entire study population are illustrated
in Appendix A Figure A1. Data analysis showed a significant difference between EOA and iEOA
under different hemodynamic conditions, whereas V, Gmax, and Gmean were similar at rest and
after exercise.

In the separate group analysis (Table 3), the stented tissue valve and mechanical valve groups
demonstrated excellent hemodynamics. More pronounced changes were observed in the EOA and
indexed EOA in the stented group after exercise, whereas the changes in the mechanical valve group
did not reach significance.

Table 3. Resting and exercise differences between mechanical and stented tissue valves.

Variables
Mechanical Valve Stented Tissue Valve

At Rest After
Exercise p-Value At Rest After

Exercise p-Value

Gmax (mmHg) 21.32 ± 8.71 22.61 ± 11.38 0.583 14.24 ± 6.92 15.06 ± 6.55 NS
Gmean (mmHg) 12.03 ± 5.67 11.44 ± 7.05 0.871 7.24 ± 3.77 7.33 ± 3.06 NS

V (m/s) 2.24 ± 0.47 2.23 ± 0.59 0.707 1.82 ± 0.41 1.91 ± 0.39 NS
EOA (cm2) 2.61 ± 0.74 2.95 ± 0.79 0.182 2.74 ± 0.82 3.28 ± 0.92 <0.05

iEOA (cm/cm2) 1.28 ± 0.35 1.49 ± 0.39 0.181 1.39 ± 0.38 1.68 ± 0.46 <0.001

Abbreviations: EOA, efficient orifice area; iEOA, indexed efficient orifice area; V: velocity; G: gradient; NS, non-significant.

3.3. 6MWT Data

Table 4 shows the distance walked at discharge and during follow-up. In our study population,
17 patients did not enter the study protocol; six patients died during hospitalization, four patients
refused further study participation, and seven patients were unable to undergo the test due to
postoperative stroke or a history of stroke. The endpoints of the exercise test were shortness of
breath (n = 12), pain (knees, hips, etc., n = 3), and dizziness (n = 1). Ninety-nine (65.6%) patients
were analyzed at discharge. Fifty-two patients (34.7%) were unwilling to perform the 6MWT as
a result of postoperative fragility. Although the mean predicted distance was 800.75 ± 91.52 m,
only 32.8% ± 12.57% of that distance was covered in the early postoperative period. There was no
statistical difference between the PPM and PPM-free groups in the distance walked at discharge.

Table 4. 6MWT details.

Variables PPM-Free PPM p-Value

Distance at discharge (m) 282.50 (30–684) 305 (95–410) 0.991

3.4. PPM Rate

Moderate PPM was observed at rest in 7/74 patients (9.5%) and after exercise in 5/98 (3.3%)
patients at the time of discharge. None of the patients showed severe PPM during the study. Figure 2
depicts moderate PPM in 23-mm Sorin Carbomedics and Epic St. Jude prostheses and the 25-mm
St. Jude Trifecta prostheses at rest.

Figure 3 shows the detected PPM cases after physical exercise. Moderate PPM was detected
in patients with 21-mm, 23-mm, and 25-mm Sorin Carbomedics prostheses and 25-mm and 27-mm
St. Jude Trifecta prostheses.
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4. Discussion

In our study we showed favorable hemodynamics of stented tissue valves compared to mechanical
valves at rest. The EOA and iEOA increased after exercise in both groups, but not statistically
significantly in the mechanical valves group. Although PPM was rare in our study, the PPM rate
decreased after the exercise test, compare to those at rest.

We illustrated the ‘real world’ hemodynamic performance with different valves and patient
profiles at rest and after exercise. We conducted a retrospective study in a large cohort of patients
with AV disease from 1000 open-heart surgery centers to examine hemodynamic performance under
different physical conditions. We did not restrict study participation on the basis of patient age,
valve pathology, type of operation, or prosthesis selection, and we analyzed unselected data from the
general Lithuanian population.

The surgical aim of AVR is to improve the long-term patient status, not to solve the aortic valve
problem. For surgeons, the AVR is not an endpoint itself. The primary objectives of AVR are to decrease
mortality and improve quality of life. To our knowledge, this is the first study that utilized 6MWT to
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compare mechanical, stented, and stentless aortic valve prostheses. Previous studies on this topic used
a maximal ramp upright bicycle test [16–18]. Another study compared the exercise capacity of patients
with AS before and after transcatheter aortic valve implantation (TAVI) by 6MWT [19].

4.1. Valve Hemodynamics at Rest and Exercise

Although hemodynamics at rest and after exercise were similar in our study, EOA and iEOA
increased significantly after exercise. The stented tissue valve group showed better performance after
exercise, whereas the mechanical valve group showed favorable hemodynamics at rest. In a seminal
study by Ericiksson et al., the EOA of the mechanical valve did not change after exercise [20]. Similarly,
in our study, the mechanical valve showed less pronounced changes after exercise.

Stented prostheses showed superior hemodynamics compared to the mechanical prosthesis.
These prostheses have inherently lower transprosthetic gradients and velocity compared to mechanical
valves. Surprisingly, despite the large EOA and iEOA of stented valves, they did not show significant
differences in comparison with mechanical valves.

One of the main differences between stress echocardiography and our method to evaluate
hemodynamic performance was the lack of an assessment for transprosthetic gradient changes
during the test. Regardless, the 6MWT can be utilized for the hemodynamic assessment of aortic
valve prostheses.

4.2. 6MWT Performance

Since walking is a usual exercise for the general population, especially sexa-, septua-, and octogenarians,
we considered the use of this daily life activity to check prostheses performance. Thus, we utilized the
6MWT as an exercise test and reduced the possible sources of bias. To the best of our knowledge, this is
the first study to use 6MWT as an exercise test to check valve hemodynamics. In our study, we did not
find a difference between the distance covered in the PPM and PPM-free groups.

4.3. PPM Rate

Despite the 54% moderate PPM rate observed in a recent study [21], our study demonstrated
a moderate PPM rate of 9.5% at rest and 3.3% after exercise. We speculate that the low PPM rate
might be related to the excellent hemodynamic conditions afforded by the widely-used St Jude Trifecta
valve, which was used in more than 70% of the patients. Several studies have suggested that the
St Jude Trifecta valve shows favorable hemodynamics and is the best option for the aortic valve
position [9,22,23]. In a systematic review and meta-analysis by Phan et al., particular attention was
paid to the favorable mean gradient and EOA obtained with the Trifecta valve [24]. On the other hand,
the occurrence of PPM after exercise was mostly associated with the Carbomedics mechanical valve.
The main reason for this finding is that the stiff annulus cannot enlarge during exercise.

The incidence of PPM has declined over time with awareness of its negative consequences and the
availability of suitable valve alternatives [21]. Thus, PPM in most cases is surgeon-controlled and can be
avoided at the time of surgery. According to our data, the absolute number of PPM patients decreased
after the physical exercise test. This can be explained by the hydraulic equation G = Q2/(k × EOA2),
where G is the gradient, Q is the flow, and k is a constant [25]. Because of unchanged transprosthetic
gradients before and immediately after exercise and the high flow (high cardiac output) after exercise,
EOA increased and the PPM rate decreased. We conclude that the 6MWT can be used as an easy,
available, and reliable tool to assess valve hemodynamics.

4.4. Limitations

We could not obtain detailed echocardiographic data for the patients who died during
hospitalization. Moreover, only a limited proportion of the study population underwent 6MWT
and EOA measurements after the exercise test.
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5. Conclusions

Stented tissue valves show excellent performance at rest and after exercise in comparison with
mechanical valves, which show favorable hemodynamics only at rest. The PPM rate measured after
the exercise test was lower than that under resting conditions.
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