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Abstract
Background  Cognitive impairment occurs in multiple sclerosis (MS) and undergoes a progressive worsening over disease 
course. However, clinicians still struggle to predict the course of cognitive function. To evaluate baseline clinical and imaging 
predictors of cognitive abilities worsening over time, we performed a latent trajectory analysis for cognitive performances 
in MS patients, up to 15 years from disease onset.
Methods  We collected age, sex, education, dominant and non-dominant 9-hole peg test (9HP) and timed 25-foot walk 
(T25-FW) as well as MRI measures (grey matter volume and lesion load) within 6 months from disease diagnosis for relaps-
ing–remitting MS (RR-MS) patients. At diagnosis and over the follow-up, we also assessed cognitive status through the 
symbol digit modalities test (SDMT). Cognitive impairment was defined by applying age-, gender- and education-adjusted 
normative values. Group-based trajectory analysis was performed to determine trajectories, and the predictive value of clini-
cal and imaging variables at baseline was assessed through multinomial logistic regression.
Results  We included 148 RR-MS (98 females and 50 males). Over 11 ± 4 year follow-up, 51.4% remained cognitively stable 
whereas 48.6% cognitively worsened. Cognitively worsening patients had a higher T25FW time (p = 0.004) and a reduced 
hippocampal volume at baseline (p = 0.04).
Conclusion  Physical disability as well as hippocampal atrophy might depict patients at risk of cognitive worsening over the 
disease course. Therefore, using such predictors, clinicians may select patients to carefully evaluate for cognitive impairment 
as to eventually introduce cognitive rehabilitation treatments.

Keywords  Cognitive dysfunction · Hippocampus · Biomarkers · Magnetic resonance imaging · Disability predictors · 
Longitudinal data analysis

Introduction

Cognition can be impaired in up to 70% multiple sclerosis 
(MS) patients from disease onset [1], mostly affecting atten-
tion, information processing speed and long-term memory 
[2] with a negative impact on everyday activities [3]. Lesion 
load and global and regional brain atrophy, together with 
microstructural changes throughout the brain, are associated 
with deficits in cognition for MS patients in cross-sectional 
studies [4, 5]. Over the disease course, cognitive function 
might further worsen [6]. However, clinicians still strug-
gle to predict whether a patient will deteriorate in terms of 
cognitive abilities over the long-term follow-up due to the 
lack of baseline reliable predictive biomarkers. Available 
longitudinal studies showed that increased lesion load and 
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grey and white matter atrophy are associated with cognitive 
worsening in MS [7–11]. Baseline measures such as grey 
matter volume, temporal atrophy, diffuse microstructural 
changes and, specifically, microstructural alterations in the 
anterior thalamic radiations and the superior longitudinal 
fasciculus might predict cognitive outcome in MS up to 
7 years from disease onset [11, 12]. However, in order to 
better tailor disease management and treatment strategies at 
disease diagnosis, taking into account also the possibility of 
cognitive deterioration over time with subsequent negative 
impact on social life, predictive biomarkers for long-term 
cognitive outcome in MS are extremely needed.

Group-based trajectory analysis is a statistical approach 
allowing to identify and summarize complex patterns in lon-
gitudinal data assuming that the sample is composed of a 
mixture of different groups following similar longitudinal 
trends for a specific variable [13]. Initially, this approach 
was applied in psychology [14] and criminology [15], but 
only recently it was applied also in medicine, especially for 
evaluating cognitive trajectories in people with mild cogni-
tive impairment [16, 17]. Hereby, we aim at classifying long-
term longitudinal cognitive trajectories of MS patients using 
the group-based trajectories analysis. Moreover, we also aim 
to evaluate the demographic, clinical and imaging measures 
predicting cognitive worsening over long-term follow-up.

Methods

Study design

This is a retrospective study including newly diagnosed 
relapsing–remitting MS subjects (RR-MS), with cognitive 
assessment at diagnosis that have been followed up prospec-
tively up to 15 years.

Subject enrolment

We included subjects receiving a new diagnosis of RR-MS 
from January 2004 to January 2012 at the ‘Federico II’ Uni-
versity (Naples, Italy).

Inclusion criteria were (i) diagnosis of RR-MS 
according to 2001, 2006 or 2010 McDonald’s criteria 
as appropriate [18–20] and (ii) ≤ 6 months from dis-
ease diagnosis. Exclusion criteria were past or present 
systemic medical conditions or psychiatric diseases or 
treatments that might impact on cognitive performances 
(i.e. chemotherapy, or corticosteroid treatment from less 
than 1 month).

Exclusion criteria were past or present systemic medical 
conditions or psychiatric diseases.

Sociodemographic (age, gender and education) and 
clinical data (age at onset, disease duration, EDSS, 9-hole 

peg board test for dominant [9HP-D] and non-dominant 
hand [9HP-ND] and Timed 25-Foot Walk [T25-FW], 
global annualized relapse rate calculated as total number 
of relapse before enrolment over disease duration from 
disease onset) were collected at baseline. MS subjects 
were treated with different disease-modifying treatments 
(DMTs), possibly changed or discontinued during the study 
period as for clinical practice. DMTs including interferon-
beta, glatiramer acetate, dimethylfumarate and terifluno-
mide were classified as first line, while all other DMTs 
were classified as second-line DMTs. Changes in DMTs, 
the occurrence of phenotype conversion from RR-MS to 
secondary progressive MS (SPMS), following clinical 
diagnosis, and the occurrence of relapses over the follow-
up were recorded. Follow-up visits were scheduled as for 
clinical practice (mostly every 6 months or on the occasion 
of relapses).

Neuropsychological assessments

Cognitive function at baseline was assessed within 
6 months from disease onset through the Symbol Digit 
Modalities Test (SDMT) [21]. SDMT rough scores were 
age, gender and education corrected by applying the availa-
ble normative values and cognitive impairment was defined 
if the corrected scores fell below the 5th percentile [22, 
23]. Only patients with at least three different cognitive 
assessments (including the baseline assessment) were 
enrolled in the study.

MRI data acquisition and analysis

MRI scans were acquired at baseline on 3 T scanner (Trio, 
Siemens Medical Systems, Erlangen, Germany), with the 
acquisition protocol including a 3D T1-weighted magnet-
ization-prepared rapid acquisition gradient echo sequence 
(MPRAGE; TR = 1900 ms; TR = 3.39 ms; TE = 3.4 ms; 
TI = 900 ms; flip angle = 9°; voxel size = 1 × 1 × 1 mm3; 
field of view = 250 × 250; 160 axial slices) and a fluid-atten-
uated inversion recovery sequence (FLAIR; TR = 9620 ms; 
TE = 30 ms; TI = 2500 ms; field of view = 250 × 250; voxel 
size = 1 × 1 × 3 mm3; 48 axial slices).

For the determination of brain volume measurements, 
hyperintense lesions on FLAIR images were identified and 
segmented using a semiautomatic approach (Jim 7, Xinapse 
Systems, Northants, UK). Then, to correct for the possible 
impact of white matter (WM) lesions on volume measure-
ments, the resulting lesion masks were co-registered via affine 
registration to the MPRAGE, and masked-out. From lesion 
masked MPRAGE images, grey matter (GM) and normal 
appearing WM (NAWM) volumes were estimated with FSL’s 
Structural Image Evaluation Using Normalization of Atrophy 
(SIENAX) [24], and the normalized brain volume (NBV) was 
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calculated summing GM and WM volumes and multiplying 
such value for the SIENAX scaling factor. Furthermore, sub-
cortical GM volumes were also obtained, using the FIRST rou-
tine (FMRIB’s Integrated Registration Segmentation Toolkit 
http://​fsl.​fmrib.​ox.​ac.​uk/​fsl/​fslwi​ki/​FIRST) [25], obtaining left 
and right caudate nucleus, pallidum, putamen, thalamus and 
hippocampus volumes, which were subsequently averaged. 
Similarly to the procedure done with the NBV calculation, 
deep GM volumes were also normalized by multiplying for 
the SIENAX scaling factor.

Statistical analyses

Statistical analyses were performed using Stata software 
(version 13; StataCorp LP, College Station, TX). Demo-
graphic, clinical and cognitive features of MS patients 
were presented as means, medians or proportions as 
appropriate. Group-based trajectory analysis was car-
ried out using the SAS procedure Proc Traj embedded in 
STATA [26]. Group-based trajectory analysis identifies 
latent subgroups from a larger sample with distinct tra-
jectories over time for the outcome measures. Time can 
vary by person and subjects will be assigned to a specific 
group based on the largest posterior probability of group 
membership. Considering MS phenotype and presump-
tive disease burden over time, models with 2–5 latent 
subgroups were assessed and the optimal number of sub-
groups for each outcome measure was defined by selecting 
the lowest Akaike’s information criterion (AIC) [27]. In 
order to evaluate longitudinal trajectories, we performed a 
group-based trajectory analysis using a regression model, 
including SDMT-corrected scores at each time point as 
dependent variable, disease duration calculated from 
disease onset as an independent variable, gender, age at 
onset and annualized relapse rate at diagnosis and EDSS at 
baseline were examined as time-stable covariates and dis-
ease-modifying treatment and the occurrence of relapses 
were used as time-varying covariates, thus correcting the 
models for such changes and evaluating their impact on 
the overall trajectories.

Once membership was assigned, we assessed the 
predictive value of clinical (9HP-D, 9HP-ND, T25FW 
and the occurrence of conversion to SPMS) and imag-
ing (normalized cortical grey matter, T2 lesion load, 
caudate nucleus, pallidum, putamen, thalamus and hip-
pocampus volume) variables at baseline using an age- 
and gender-adjusted logistic regression. Odds ratio (OR) 
was reported. We evaluated normal distribution of vari-
ables and/or residuals through statistical and graphical 
approaches. The p value was not corrected for multiple 
comparisons due to the exploratory nature of the analy-
sis. Results were considered statistically significant for 
p < 0.05.

Results

Baseline features

We included 148 RR-MS patients (98 females and 50 males). 
Patients were followed up to 11 ± 4 years. Sixty patients 
underwent MRI scan at baseline. Demographic, clinical and 
neuroimaging data at enrolment are summarized in Table 1.

At baseline, 19 out of 148 patients (12.8%) showed a defi-
cit in SDMT (Table 2). After about 10 years, 36 out of 148 
patients (24.3%) showed a deficit in SDMT.

Cognitive function trajectories

By comparing the AIC coefficient, we selected the 2 trajec-
tories’ model. We depicted MS patients with stable SDMT 
(76 patients, 51.4%) and MS patients experiencing SDMT 
worsening over time (72 patients, 48.6%). SDMT trajectories 
are reported in Fig. 1a. Amid patients classified as cogni-
tively stable, only 2 out of 76 (3%) showed a SDMT deficit, 
while for patients classified as cognitively worsened, 34 out 
of 72 (47.2%) were classified as impaired.

Cognitive worsening over time was predicted by T25FW 
and hippocampal volume (OR: 0.25; 95%CI = 0.10, 0.64; 
p = 0.004; and OR: 5.1; 95%CI = 1.12, 22.8; p = 0.04, respec-
tively; Fig. 1b, c; Table 3).

Discussion

In this retrospective study, we investigated cognitive trajec-
tories in a large cohort of RR-MS patients over a long-term 
follow-up (up to 15 years). We observed that the cognitive 
function in MS might either remain stable or deteriorate over 
time. We also pointed out that patients undergoing cognitive 
worsening over long-term follow-up show a higher degree 
of motor disability as well as reduced hippocampal volume.

The major novelty of the present study is the data-driven 
approach to define trajectories based on longitudinal per-
formance, identifying clusters of individuals who have fol-
lowed a similar developmental trajectory on an outcome of 
interest [13, 28]. Differently from other available statisti-
cal approaches such as hierarchical modelling and latent 
curve analysis estimating the population average trajectory, 
group-based trajectory analysis assumes that the population 
is made of distinct groups, each one following a different 
underlying trajectory. Group-based trajectory analysis iden-
tifies groups of individuals following similar progressions of 
some phenomenon over time taking into account the effects 
of covariates on both trajectory shape and group member-
ship throughout the follow-up period for each single subject. 

1217Neurological Sciences (2022) 43:1215–1222

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST


1 3

Particularly, time-stable covariates influence group mem-
bership, while time-dependent covariates explain variation 
about the average trajectory within each group. For these 
characteristics, group-based trajectory modelling should be 
preferred to hierarchical and latent curve modelling when 
handling non-monotonic trajectories and trajectories that 
do not vary regularly in the population. Moreover, while 
raw categorization in stable versus worsening patients only 

considers the first and last measure, here, we took advantage 
from the trajectory analysis, providing the unique opportu-
nity to depict the trend for each measure throughout the time 
span. This might be particularly relevant in disorder such 
as MS, where fluctuating symptoms like fatigue, anxiety or 
depression may harshly impact cognitive performance [29]. 
The importance of such approach was also recently high-
lighted from Healy et al. who were able to classify patients 

Table 1   Demographic, clinical and neuroimaging features at baseline

ARR​ annualized relapse rate; N number; EDSS expanded disability status scale; SD standard deviation. All volumes are expressed in milliliters

Characteristic

Subjects Total 148
Sex Male, N (%) 50 (34)

Female, N (%) 98 (66)
Age, mean ± SD (range) (years) 35.1 ± 8 (16–58)
Age at diagnosis, mean ± SD (range) (years) 28.4 ± 7.5 (13–45)
Disease duration from onset, mean ± SD (range) (years) 6.7 ± 0.1 (0.1–30.9)
EDSS, median (range) 2 (1.5–4.5)
ARR, mean ± SD (range) 0.94 ± 0.41 (0–2.5)
Timed 25-foot walk, mean ± SD (range) 5.9 ± 0.2 (5.6–6.3)
Nine hole peg-board test dominant hand, mean ± SD (range) 20.7 ± 0.5 (19.8–21.6)
Nine hole peg-board test non dominant hand, mean ± SD (range) 21.8 ± 0.5 (20.7–22.8)
Follow-up time, mean ± SD (Range) (years) 11 ± 4 (1–35)
Number of cognitive assessment over the follow-up, median (range) 4 (2–5)
Cortical grey matter (volume), mean ± SD 756.2 ± 50.92
Normal appearing white matter (volume), mean ± SD 667.8 ± 42.92
T2-weighted lesion load (volume), mean ± SD 7.3 ± 7.92
Caudate nucleus (volume), mean ± SD 3.6 ± 0.59
Pallidum (volume), mean ± SD 1.7 ± 0.22
Putamen (volume), mean ± SD 4.9 ± 0.76
Thalamus (volume), mean ± SD 7.3 ± 0.9
Hippocampus (volume), mean ± SD 3.9 ± 0.5

Table 2   Clinical and cognitive assessments over the follow-up

EDSS expanded disability status scale; SD standard deviation; SDMT symbol digit modalities test

Time points 1 2 3 4 5 6

Number of subjects 148 148 148 125 76 33
Time from baseline cognitive assess-

ment, mean ± SD (years)
- 1.98 ± 0.21 9.96 ± 1.92 11 ± 1.89 11.42 ± 1.76 11.93 ± 1.51

Time from previous cognitive assess-
ment, mean ± SD (years)

- 1.98 ± 0.21 7.96 ± 1.92 1.12 ± 0.34 1.09 ± 0.25 1.04 ± 0.19

EDSS, mean ± SD 2.3 ± 0.7 2.5 ± 0.8 3.3 ± 1.1 3.4 ± 1.3 3.6 ± 1.6 3.6 ± 1.4
% of patients experiencing a relapse - 33.1 59.2 4.8 3.4 0.7
Disease-modifying therapy No treatment, (%) 62 1.4 2 0.80 1.3 0

First line, (%) 38 97.2 76.2 62.4 44.8 42.4
Second line, (%) 0 1.4 21.8 36.8 53.9 57.6

SDMT, mean ± SD 50.5 ± 12.7 45.8 ± 12.1 43.9 ± 12 43.7 ± 11.9 43.6 ± 11 44.3 ± 11
% of patients failing the test 12.8 25 23.8 24 23.4 27.3
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with SDMT worsening over time using a latent trajectory 
analysis adjusted for demographic covariates [30]. How-
ever, authors did not seek to evaluate baseline predictors 
of SDMT worsening over time. With this study, we evalu-
ated trajectories for SDMT and we also sought to investigate 
baseline predictors of cognitive decline. Previous studies 
report that the proportion of MS patients showing cognitive 

decline spans from 28 to 70% [11, 12, 31, 32]. This wide 
range is mostly due to the number tests/domains explored 
and also to the different definitions of cognitive decline. 
Here, we found that 48.7% of MS patients deteriorated over 
a long-term follow-up. Although this proportion is in line 
with previous findings, when considering our longer follow-
up, one would expect a higher rate of cognitive worsening. 

Fig. 1   Cognitive trajectories 
based on SDMT score from 
baseline over the follow-up and 
predictors of cognitive abilities 
worsening. a We identified 2 
cognitive trajectories based on 
SDMT score: MS patients with-
out SDMT worsening over time 
(76 patients, 51.4%) or who 
developed SDMT worsening 
over time (72 patients, 48.6%). 
The probability of belonging to 
SDMT stable group increases 
with the b shorter timed 25-foot 
walk (p = 0.004) and c higher 
hippocampal volume (p = 0.04)

Table 3   Baseline clinical and imaging predictors of cognitive worsening over time

OR odds ratio; CI confidence intervals; SD standard deviation
* Age- and gender-adjusted logistic regression

Group Cognitively stable patients Cognitive-
declining 
patients

OR 95% CI p value*

Number of patients 76 72
9-hole peg test, dominant hand, mean ± SD (seconds) 19.08 ± 2.79 22.31 ± 5.89 0.72 0.5—1.05 0.19
9-hole peg test, non-dominant hand, mean ± SD (seconds) 20.3 ± 3.87 23.35 ± 6 1.19 0.88—1.6 0.29
Timed 25-foot walk, mean ± SD (seconds) 5.53 ± 1.07 6.36 ± 2.04 0.25 0.10—0.64 0.004*
Normalized cortical grey matter, mean ± SD (ml) 767.26 ± 49.73 742.61 ± 49.93 0.95 0.86—1.05 0.45
T2 lesion load, mean ± SD (ml) 8.38 ± 8.22 12.3 ± 13.79 1.01 0.99—1.03 0.12
Caudate nucleus volume, mean ± SD (ml) 4.92 ± 0.57 5.02 ± 0.79 0.9 0.53—1.07 0.09
Pallidum volume, mean ± SD (ml) 2.42 ± 0.22 2.34 ± 0.31 3.2 0.04—282.12 0.61
Putamen volume, mean ± SD (ml) 6.84 ± 0.66 6.7 ± 1.14 0.25 0.06—1.11 0.07
Thalamus volume, mean ± SD (ml) 10.3 ± 0.93 9.72 ± 1.28 0.78 0.2—3.07 0.72
Hippocampus volume, mean ± SD (ml) 5.53 ± 0.46 5.24 ± 0.84 5.1 1.12—22.8 0.035*
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In addition, we should also consider that amid these wors-
ening patients were those contributing the most to SDMT 
impairment prevalence at follow-up, thus suggesting that 
trajectories provide a framework of cognitive longitudinal 
assessment encompassing pre-fixed time points.

Another noteworthy finding of the present study is that 
we highlighted distinct baseline clinical and radiological 
features able to predict the overall cognitive outcome. We 
observed that clinical measures of physical disability evalu-
ating the walking speed is a strong predictors of cognitive 
decline. Benedict et al. already reported a close interplay 
between motor abilities and the information processing 
speed cognitive function in MS patients [33], and specu-
lated that motor functions also depend upon intact cognition 
since the planning and the performance of the action require 
cognitive abilities such as attention and executive function 
[33]. The close interplay between motor abilities and cog-
nitive functions in MS might depend upon the disruption 
of shared cortico-subcortical networks and cortical pathol-
ogy. We might hypothesize that reduced walking speed at 
disease onset in patients developing cognitive impairment 
at follow-up reflects the presence of tissue microstructural 
changes and functional network disruption. This damage 
at baseline may not foster cognitive impairment, but pre-
dicts decline over time in cognitive functions, especially 
for information processing speed. Supporting this point, 
we also highlighted that hippocampal atrophy at baseline 
is associated with cognitive decline. Atrophy of the tem-
poral lobe was already associated with cognitive decline in 
MS patients [12]. Recently, Eijlers and colleagues reported 
that cognitive decline was predicted by white matter integ-
rity and deep grey matter volume in early stages of MS, 
whereas cortical atrophy leads to cognitive decline in more 
advanced MS patients or progressive MS [12]. A study con-
ducted from the same study group pointed out that while 
cognitive decline is strongly associated with cortical neuro-
degeneration in progressive stages of the disorder and with 
deep grey matter atrophy in RR-MS patients converting to 
progressive stages, white matter damage leads to a slower 
cognitive worsening in stable RR-MS patients [34]. In our 
sample, we demonstrated that RR-MS patients, who will 
develop cognitive impairment over the long-term follow-up, 
already show reduced hippocampal volume. Previous stud-
ies reported an association between hippocampal atrophy 
and cognitive impairment in cross-sectional studies [35, 36]. 
Indeed, the fact that declining patients display atrophy even 
in the absence of cognitive impairment at baseline might 
suggest that MRI measures we adopted actually depict an 
ongoing pathological processes that will only subsequently 
impact clinically relevant measures such as cognitive impair-
ment. One possible missing piece of the puzzle generating 
this clinical-radiological paradox might be the patients’ cog-
nitive reserve, which is the ability of the brain to cope with 

damages compensatory mechanisms not necessarily related 
with brain volume but also with brain functioning. Cogni-
tive reserve strongly depends, among the other factors, upon 
patient’s lifestyle, education and social activities [37]. In 
light with this finding, it is worth exploring the impact of 
cognitive rehabilitation treatment on cognitive outcome, as 
several reports have confirmed the efficacy of these treat-
ments on cognitive symptoms [38, 39]. These treatments 
may either be based on training exercises to improve specific 
cortical functions or may be delivered through non-invasive 
brain stimulation aimed at foster brain activity over specific 
cortical and subcortical grey matter regions [40].

We do acknowledge that this study is not without limita-
tion. Firstly, the lack of a control group prevents us to draw 
any final conclusion about the disease-specific cognitive 
worsening. We are aware that cognitive scores may reduce 
over the follow-up due to aging. However, in the attempt 
to overcome this issue, we did use the normative age- and 
gender-corrected scores. Similarly, the lack of the control 
group may also affect MRI results interpretation. Therefore, 
future longitudinal studies including HC group are highly 
recommended. Secondly, also depression and fatigue may 
impact on cognitive scores. The lack of such measures did 
not allow us to correct cognitive scores for neuropsychiatric 
features.

In conclusion, physical disability as assessed through 
T25FW as well as MRI measures might depict patients at 
risk of cognitive decline. Since cognitive impairment cor-
relates with neurodegeneration and harshly affects patient’s 
quality of life, proxies for cognitive deterioration over time 
should lead clinicians to tailored treatment choices and reha-
bilitation planning. However, further longitudinal long-term 
follow-up studies aiming at evaluating not only cognitive 
but also brain atrophy trajectories could better elucidate the 
underlying interplay between cognitive reserve, brain pathol-
ogy and both physical and cognitive disability accrual.
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