
Relative phase of distributed oscillatory dynamics implements a working
memory in a simple brain

Raymond L. Dunn1, Caitriona Costello1, Jackson M. Borchardt1, Daniel Y. Sprague1, Grace C.
Chiu1, Julia M. Miller2, Noelle L’Etoile2, Saul Kato1*

1Weill Institute of Neurosciences, University of California San Francisco
2Department of Cell and Tissue Biology, University of California San Francisco
*Correspondence: saul.kato@ucsf.edu

Abstract

We report the existence of a working memory system in the nematode C. elegans that is
employed for deferred action in a sensory-guided decision-making process. We find that
the turn direction of discrete reorientations during navigation is under sensory-guided
control and relies on a working memory that can persist over an intervening behavioral
sequence. This memory system is implemented by the phasic interaction of two
distributed oscillatory dynamical components. The interaction of oscillatory neural
ensembles may be a conserved primitive of cognition across the animal kingdom.

Main

Distributed brain oscillations and their interactions have long been hypothesized to be a
fundamental building block of neural computation and cognitive function in complex-brained
animals (Buszaki, 2006). Considerable theoretical work has been devoted to understanding how
these observed phenomena might implement particular cognitive functions (Engel et al., 2001).
However, experimental establishment of causal roles and mechanistic understanding of
proposed functional implementations have been elusive, due at least in part to the sheer
complexity of the networks comprising these brains as well as the challenge of observing these
networks at a high unit sampling density. By contrast, in simpler-brained animals with vastly
lower neuron counts, oscillators serving to produce repetitive bodily movement, i.e. central
pattern generators, have been closely studied and systematically dissected, often yielding deep
mechanistic insight into the production of adaptive but robust rhythmic motor patterns
(Harris-Warrick, 1992). But the general cognitive function of sensory-driven discrete
decision-making has been rarely studied in simple animals (Briggman et al., 2005). Intuitively,
even simple organisms stand to gain from the ability to execute a canonical decisional process:
collecting sensory evidence, integrating that evidence with internal state, and executing a
contingent action at a later time.

The 1 millimeter long 302-neuron nematode C. elegans crawls on its right or left side when on a
flat surface. During foraging, the worm crawls in a straight or curved forward direction and
punctuates bouts of forward crawling with discrete reversal-then-turn reorientation maneuvers,
either in the dorsal or ventral direction (Fig. 1a). The choice of this direction has been
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traditionally modeled as an unregulated random process, akin to the randomizing tumbles of a
bacterium performing biased random-walk chemotaxis (Pierce, 1999). In this study, we show
that the dorsal-ventral turn decision, rather than being random, can be strongly biased by
sensory stimulation.

To test whether the final turn direction was informed by sensory experience prior to the reversal,
we used closed-loop optogenetic stimulation to simulate an asymmetric odor signal from the
worm’s frame of reference. We repeatedly stimulated the AWA sensory neuron, known to
mediate chemotaxis to certain attractants, such as diacetyl, via pulsatile activity responses
(Itskovits et al., 2018), triggered on either ventral or dorsal head-swings during forward motion
(Fig. 1a). Animals showed a strong preference for resolving the reversal with a turn in the
favored direction as they resumed forward locomotion (Fig. 1b).

This observation suggests two key features of the sensory control of the behavior. First, to
assign the stimulus to a particular direction, the animal needs to integrate sensation with
proprioception or motor commands for head swings. Second, to act appropriately after the
reversal, the animal needs some form of working memory (Fig. 1c).

To study the neural dynamics that coordinate this process, we recapitulated our
headswing-timed closed-loop stimulation paradigm using volumetric confocal microscopy of an
immobilized, paralyzed worm in a microfluidic chip. In this setup, we can continuously read out
the whole brain activity of the animal at single-neuron resolution, extract detailed neuronal
activity in real time using machine vision, and optogenetically stimulate selected neurons with
respect to ongoing patterns of activity (Figs. 1d,e).

In our immobilized whole-brain imaging setup, in all trials, we observed cycles of the fictive
command state sequence (forward-backward-turn) widely distributed across neurons. To
distinguish between the observed behavior of the worm and the fictive command-state cycles
which have been previously ascribed to neural dynamics in restrained worms (Kato et al., 2015,
Fig. 1a), we abbreviate each state: forward (FWD), reversal (REV), and dorsal/ventral
(DOR/VEN) turn (TURN). As reported previously, the first principal component of the whole
brain recording reliably reveals this command-state-reflecting dynamical process, consisting of
cycles of forward and reversal periods, which we term PC1 (Kato et al., 2015). During forward
locomotion, head swings are especially pronounced. We therefore performed PCA on the
residuals of PC1, restricting to periods for fictive forward locomotion only, which yielded a
second strong stereotyped network oscillation (Fig. 1f), which we termed PC_DV. We found this
faster oscillating component to be distributed across 6-10 neurons in the head of the animal that
are variously implicated in motor control of the head muscles, sensorimotor integration, and
proprioception (Gray et al., 2005; Yeon et al., 2018; Fig 1g).

The neuron class we observed with highest PC_DV loading was SMDV, and its contralateral
neuron class SMDD has a large negative loading (Fig. 1g). Previous studies have shown SMDV
reliably correlates with ventral head curvature during forward crawling and ventral post-reversal
turns; SMDD correlates with dorsal turns (Hendricks et al., 2012; Kato et al., 2015). Here, their
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anti-phasic coupling during FWD suggests their activity corresponds to fictive head swings
consistent with sinusoidal crawling during the forward command state.

During reverse locomotion, the head oscillations present during forward crawling are
suppressed (Alkema et al., 2005). During REV epochs, the PC_DV component continues to
display oscillatory behavior; however, the magnitude is typically attenuated and the regularity of
the oscillation period and waveform is reduced (see example worm, Fig. 1g,h). Toward the end
of a reversal epoch, the magnitude of the PC_DV oscillation typically increases over the course
of 1-2 oscillations, exhibited in SMDD/V as well as other PC_DV neurons. As such, the
magnitude of PC_DV stratifies neural trajectories of fictive post-reversal turns in the
low-dimensional state space projection (see example worm, Fig. 1h), delineating the worm’s
choice of fictive post-reversal turn direction. We surmise that the PC_DV oscillation decouples
from motor output during reversals but does not disappear, and recouples leading up to a
reversal termination in order to effect the post-reversal turn.

Distributed neural correlates of working memory

In order to test the hypothesis that sensory information that enters the system at a specific
phase of the head swing during forward locomotion and is held in working memory to inform
deferred behavioral choice, we combined whole-brain imaging with perturbative optogenetic
stimulations during the FWD command state (Fig. 2a-c). Each 16-24 minute recording captured
10-30 forward-reversal-turn sequences. Stimulation of AWA shifted the distribution of times until
the next REV (Fig. 2d) compared to a control distribution computed for spontaneous REV
transitions. Using a trained decoding framework fit on individual stimulation trials (see Methods),
we found that the dorsal/ventral identity of fictive post-reversal turns could be predicted by AWA
optogenetic stimulation when combined with phase information of PC_DV at the time of
stimulation (Fig. 2e,f). This confirms the existence of a functioning working memory in our
immobilized setup, lasting up to tens of seconds during fictive reversal periods (Fig. 2g), as
distributions of reversal times are typically longer in immobilization chips (Kato et al., 2015). The
persistence of this working memory capability during immobilization and muscle paralysis
demonstrates that the memory is carried by an internal state, rather than being embodied in
body posture or muscle activation.

We hypothesized that the sensory memory is stored as a change in the levels of certain
neurons, either absolute or relative to other neuron level changes. However, using our decoding
framework, we were unable to find any neurons whose static or monotonic activity levels were
predictive of turn identity. We then asked if the sensory memory is stored as a change in the
amplitude of oscillating neurons. While we did observe shifting imbalances of oscillation
amplitude in SMDV versus SMDD in some recordings, these imbalances were not predictive of
the turn identity until roughly one oscillation just prior to the post-reversal turn (Fig. 3j),
suggesting that the difference in oscillation amplitude of these neurons does not provide the
working memory through the early period of reversal when PC_DV is attenuated. In any case,
purely observational studies of neural activity do not discriminate causal activity from
epiphenomenal “ride-along” activity.
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Therefore, to better assess the causal role of particular neurons in holding a sensory memory or
driving turn identity, we turned to selectively stimulating non-sensory neurons during whole-brain
imaging, at particular times relative to the PC1 (command state) transitions as revealed by
whole-brain activity. We started by stimulating SMDD/V neuron classes given that they signal
turn choice. The opposing phase of the SMDD and SMDV class neurons and role naturally
suggested a hypothesis that the selective activation of either opposing class leading up to
reversal termination would influence the identity of the post-reversal turn. We used a digital
micromirror device to spatially restrict our laser stimulation to selectively stimulate either neuron
class, and we timed stimulations to occur during fictive reversals (Fig. 3a,b). Surprisingly,
selective optogenetic stimulation of the ventral or dorsal class of neurons, e.g. SMD neurons,
though demonstrably hyperpolarizing the neurons (Fig. 3c), did not affect the resulting turn
identity (Fig. 3d; aggregate data of PC_DV neuron stimulation, see below). This suggests that
the activity of SMD neurons, while clearly signaling the turn identity, are not the locus of the
memory trace initially established upon sensory-proprioceptive integration. Interestingly, despite
the inability to bias turn identity, stimulation of either SMD neuron class elicited immediate
reversal terminations (Fig. 3e,f).

In search of other neurons that may encode future turn identity, we performed reversal-timed
stimulations of other nonsensory head neurons RIA and RIV. Previous studies implicated RIA in
sensory-proprioceptive integration; it exhibits compartmentalized calcium dynamics along the
nrV and nrD regions of its nerve ring neurite, which tightly correlate with SMDV and SMDD
activation during ventral and dorsal head bending, respectively (Hendricks et al. 2012). RIV has
functional overlap with SMDV (Gray et al. 2005), however it is typically thought of as a motor
neuron due to its synaptic connectivity (Witvliet et al. 2020). We found that spatially localized
optogenetic stimulations of subcompartments of RIA, and as well as RIV, were capable of
immediately terminating reversals upon stimulation (Fig. 3g-i). This substantiates the distributed
nature of the PC_DV oscillation, not just in the display of shared activity but in influence on
behavior.

Interestingly, the capability of RIA subcompartments to terminate fictive reversal was gated by
the instantaneous activity of PC1 at the time of stimulation on a per-trial basis (Fig. 3k,l),
suggesting that some time-varying process during reversal command state dictates REV
termination by PC_DV neurons. Focusing next on stimulations that forced an output from the
emerging D/V decision process by terminating reversal, we found that the activity level of
PC_DV, or individual neurons with high PC_DV loadings (Fig. 1g), was predictive of the turn
(Fig. 3j). We suspect the non-monotonic time-course of predictivity is a consequence of
oscillatory dynamics in these neurons; PC_DV captures both DOR and VEN depolarizations,
whereas individual PC_DV neurons only show turn-direction-dependent differential activity
during half of the oscillation cycle, enabling better classification. The observation that both PC1
gating and D/V predictability diminish rapidly in models fit on timepoints prior to stimulation
suggests that the timescale of PC1 gating and PC_DV recoupling may be coordinated.
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Evidence for phase-based memory

To store a value reliably using the phase of an oscillator over several oscillation periods, we can
envision two possible scenarios: (1) the oscillator must maintain a stable frequency and there
must be another temporally stable process to function as a reference clock, such as a
fixed-timescale ramp-to-threshold process or a slower oscillator with a period that is a near
multiple of the first oscillator; (2) in the case of a variable oscillator, the oscillator must be
coordinated dynamically with a process capable of maintaining a relative phase over oscillation
cycles with jointly varying period. Given the aforementioned observed correlation of sensory
stimulus phase and reversal onset phase, we surmised that the second temporal process, in
either scenario, would reside in PC1 or some of its constituent neurons. Similar scenarios have
been argued to be at play in mammalian working memory (Lisman et al., 2013).

Upon closer study of trials when we stimulated AWA during forward command states, we
discovered a correlation between the phase of PC_DV oscillations at the time of the AWA
stimulation pulse and the phase of PC_DV oscillations at the time of the subsequent PC1
reversal onset (Fig. 2h). Reversal command state transitions after AWA stimulation do not
appear to be triggered immediately, in comparison to RIA/SMD/RIV evoked reversal
terminations, which occur within seconds (Fig. 2d). Furthermore, the second peak in the
distribution of time to initiation of REV (~30s) for AWA stimulations roughly corresponds to one
typical period of PC_DV oscillation (Fig. 1f, 2d). Therefore, our sensory stimulus triggers the
onset of a fictive reversal not only in the near future, but also one oscillation cycle in the future,
preserving the phase relationship between stimulation and internal representation of the
proprioceptive state. Additionally, when paired with measurement of AWA activity at stimulation,
the phase of PC_DV is predictive for turn direction on an individual trial basis (Fig. 2i),
demonstrating that the PC_DV phase at the onset of fictive reversal is informative for prediction
of turn choice but only following successful AWA stimulation. This suggests the possibility that
the setting of the relative phase of PC_DV and PC1 may in fact be the mechanism for storing
the memory of the head direction of a salient AWA stimulus.

To understand how the phase of PC_DV at (i) stimulation, (ii) REV onset, and (iii) during
reversal interacts with PC1-mediated gating of reversal command state termination, we
conducted additional analyses on the coordination between PC_DV phase and PC1 phase.

Integration of sensory-decision drive and proprioceptive drive for reorientations

One interpretation of the ability of proprioceptive neurons to immediately terminate fictive
reversals is that they signal the successful execution of physical bending that produces reverse
movement. In addition to their role in reorientations during foraging, reverse crawling is used by
C. elegans to escape predatory fungal traps and noxious stimuli (Maguire et al., 2011; Kaplan
and Horvitz, 1993). Escape reversal bouts can be longer and may partially explain the increase
in long REV epochs observed in the chip. We wondered whether a proprioceptive reverse
termination signal would interfere with the putative role of PC1 as a reliable clock supporting
phase-based memory.
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Returning to a decoding framework, we found that the magnitude of PC1, in the negative
direction, was a predictor of successful reversal terminations initiated by RIA (nrV or nrD)
stimulation (Fig. 3k). As PC1 decays, the system becomes permissive for proprioception-driven
reversal termination. Additionally, individual neuron predictivity was positively correlated with
PC1 loading (Fig. 3l). This suggests that the decay of the activity of PC1 neurons with positive
PC1 loading such as OLQ, URX, or the ramping of PC1 neurons with negative loading such as
RME, could potentially function as timers, possibly in conjunction with other sensory or motor
roles previously implicated (Fig 4a) (Kaplan and Horvitz, 1993; Hart et al. 1995; Zimmer et al.,
2009). Interestingly, the backward command neuron AVA, which has the largest PC1 loading of
all neurons and is required for communication of the command state to the downstream body
motor system that controls body posture (Kato et al., 2015; Pokala et al., 2014), was not a
predictor of induced reversal terminations, suggesting it may not have a casual role in initiating
reversal terminations. AVA’s relationship to PC1 dynamics as an output to downstream motor
systems or muscles may be analogous to SMD’s relationship to PC_DV dynamics.

To test the hypothesis of dynamical coordination between PC1 and PC_DV, we first fit an
exponential to PC1 during reversal command state (Fig. 4a) and found that the time constant of
PC1 ramping is correlated with reversal duration (Fig. 4b), the timescale over which the memory
must be maintained. We then examined whether the period of PC_DV oscillation is embedded
within the longer period of PC1 oscillation (Fig. 4c). The distribution of the PC1 period appears
to accumulate at integer multiples of the nested PC_DV phase, consistent with prior reports of
the nesting of SMD oscillations and forward and backward command states (Kaplan et al.
2020). Combined with perturbative experiments (Fig. 3), we conclude that within a reversal
epoch, the PC1-gated decoupling and recoupling of PC_DV from motor output during reversal
are aligned to the phase of PC_DV.

Discussion

In summary, in our virtual-reality experimental paradigm (Fig. 1) we activate sensory neurons
with pulses timed with respect to head bending or its neural correlate (Fig. 2), mimicking
spatially asymmetric odor input with respect to the worm’s frame of reference. These stimuli
trigger reversals aligned to the phase of proprioceptive dynamics (Fig. 3), which we speculate
become uncoupled during reversal to allow for oscillatory dynamics to propagate sensory
information forward in time and are then recoupled to behavioral output by coordination with a
gating process present in PC1 dynamics (Fig. 3,4). Our experiments argue against the
encoding of working memory in static neural activity levels for the sensory-guided
decision-making capability we study here. They instead suggest that this working memory is
implemented by the maintenance of the relative phase of two coordinated dynamical units
distributed across many neurons.

The accuracy of the prediction response to a past stimulus (Fig. 2 e,i; Fig. 3 j,k) and the noise
of the measurements of phase relationships and spread of state space trajectories imply the
presence of uncontrolled variability. If neural responses were more reliable, perturbative
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experiments would be likely to be more effective and efficient in dissecting mechanisms. We
might drive more reliable responses by exploring closed-loop stimulation parameters that
generate more comprehensive or precise control of the sensorium as well as the organismal
state of the animal. Previous work has found that downstream neural responses are more
reliable when AWA optogenetic stimulation is paired with optogenetic stimulation of AWC,
another sensory neuron that plays a key role in attractant chemotaxis (Dobosiewicz et al.,
2019).

While no neurons in our recordings appeared to explicitly encode, across the intervening
reversal period, future dorsal/ventral turns by way of modulating their stable activity level or in
their amplitude of fluctuations, we cannot rule out the existence of neurons that possess
sub-cellularly localized calcium fluctuations that do not reach the nuclear-localized calcium
sensor, or that have an intracellular calcium concentration outside the dynamic range of our
sensor, or that do not show activity via our pan-neuronal activity indicator, for technical reasons
such as low genetic expression levels. We also cannot rule out the possibility that other
non-neural activity internal signals, such as neuropeptide concentration or the facilitation of a
particular set of synapses, carry the dorsal/ventral sensory memory. However, given the
evidence of a causal role of relative phase in our perturbative studies, we suggest that phase
encoding carries the early memory trace for this working memory system.

We surmise that the original function of the head neural oscillator was to produce physical
movement, and the motor-decoupled mode of operation only arose later to support the function
of working memory, endowing the animal the ability to perform deferred sensory-guided action
selection. This evolutionary step, from embodied to internal neural oscillations, may represent
the origin of a functional primitive of cognition subsequently recruited to do far more complex
forms of thinking.

Methods

Strain list:

Strain name Experiment Genotype Construct Ref

OH16230 Control otIs670 V;
otIs672.

N/A Yemini et al.
2021

FC128 Fig. 3 otIs670 V;
otIs672.

PFC079
(glr-3p::WOrMs
ChRmine::wrmS
carlet @ 5ng/ul)
+ unc-122 RFP
(50ng/ul)

This study

FC134 Fig. 1b, Fig 2 otIs670 V;
otIs672.

PFC082
(odr-10p::WOrM

This study
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sChRmine::wrm
Scarlet @
2.5ng/ul) +
unc-122 RFP
(50ng/ul)

Behavior imaging and quantification: Worms were prepared 24 hours in advance of imaging: L4
worms were picked onto fresh NGM agar plates with an OP50 lawn. Immediately before
imaging, worms were picked onto a fresh NGM agar plate without food, into a drop of M9.
Single worms were aspirated out of that drop and washed 3x by aspirating into new drops of
M9. Finally, the worm was aspirated onto an NGM agar plate without food, with care taken to
re-aspirate excess M9. Worms were imaged while crawling on the surface of the agar without lid
for 1-2 recordings of 12 minutes each. Data were acquired on a Leica M205 with TL5000 base.
Images were captured on an ORCA-FLASH V3 set to 100 ms exposures. Image FOV was set to
4.78mm. Worms were automatically tracked over the course of an experiment with the
microscope’s motorized stage centered on the worm’s centroid.

For experiments involving optogenetics, care was taken to reduce activation of the
optogenetic channel from brightfield illumination light. About 24 hours prior to imaging, 80ul of
100uM all-trans retinal in M9 was added to the bacteria lawn of L4s. Worms were then placed in
foil at 20 C until imaging. Microscope illumination was set to 2. During an imaging session,
worms were partially covered if not being immediately prepared for an experiment. We used a
Leica LED3 set to 100% for the optogenetic illumination source. We automatically triggered
optogenetic stimulation to positive (clockwise) or negative (counterclockwise) head
displacements using a threshold set by the operator during recording and switched between
negative and positive midway through each imaging session. Real-time estimation of head
displacement was computed using software incorporating worm posture extraction routines from
Tierpsy Tracker (Javer et al., 2018).

We quantified the recording videos using Tierpsy Tracker to identify reversals, then for
each reversal, we took the difference of the inbound angle of the preceding forward run and the
outbound angle of the following forward run, as tracked by the automatic centroid tracker.

Whole-brain Ca2+ imaging of C. elegans: Two-layer PDMS microfluidic devices were
manufactured as previously described (Zimmer et al., 2009, Cáceres et al., 2012). Worms were
prepared 24 hours in advance of imaging: L4 worms were picked on to fresh NGM agar plates
with an OP50 lawn. Immediately prior to imaging, worms were picked onto fresh NGM agar
plates without food, and placed in a drop of M9 solution with 5mM tetramisole. Worms were left
in tetramisole for 10 minutes prior to being aspirated into the microfluidic channel. Worms were
imaged for 16-24 minutes. Data were acquired on an inverted spinning disk confocal
microscope (Leica DMi8 with Yokogawa CSU-W1 SoRA spinning disk) equipped with a sCMOS
camera (Telydyne Photometrics Kinnetix). About half of recordings were acquired at 2x2 camera
binning. The microscope objective lens was 40x 1.25NA WI. Sample Volumetric scans were
performed using a piezo stage with 10-12 Z-planes with z-spacing 2.5-3um. In select
recordings, 4 Z-planes with z-spacing 3um were used to measure neurons in lateralized
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anterior, lateral, dorsal, and ventral gangla at higher temporal resolution under equivalent optical
conditions. Prior to acquiring videos for calcium timeseries, a reference high-resolution structural
image was acquired: 40x1um Z planes under 4 different optical conditions to measure
NeuroPAL fluorescence (see Yemini et al. 2021). Exposures ranged from 30ms-80ms under
100-200uW illumination to minimize photobleaching.

For experiments involving optogenetics, care was taken to minimize activation of the
optogenetic channel from the blue light illumination for measuring GCaMP fluorescence. About
24 hours prior to imaging, 80ul of 1uM ATR in M9 was added to the bacterial lawn of L4s.
Worms were then placed in foil at 20 C until imaging. During an imaging session, worms were
partially covered if not being immediately prepared for an experiment. Worms were imaged
under 70-140uW of light at the sample, for 20-30 ms exposures within an 80 ms duty cycle -
20ms-30ms of light exposure, 50-60ms of blank time. The optogenetic illumination light source
was an 89NorthLDI-7 laser diode at 640 nm, powered to 10-20% of maximum illumination
intensity. This illumination was directed by a digital micromirror device (DMD, Mightex Polygon
P1000). Illumination was brightfield for worms with optogenetic construct expressed under a
single-neuron promoter, and localized to about 5x5um for localized illumination of optogenetic
constructs driven by multi-neuronal promoters.

Closed-Loop Experimental Framework (CLEF): Closed-loop acquisition of microscopy images
and delivery of perturbative stimulation were achieved via Closed-Loop Experimental
Framework (CLEF), a software system we developed to enable this study. Briefly, this system
provides coordination between, and interfaces for, input (from microscopy devices), control
(actuation/stimulation), storage (filesystem/network) and compute (computational models).
CLEF interacts with microscope components via Pycro-Manager (Pinkard et al., 2021) and
Micro-Manager (Edelstein et al., 2010).

Region of interest (ROI) detection in volumetric Ca2+ imaging data: ROI detection from neural
timeseries videos was adapted from Kato et al. 2012, implemented by the Napari (Chiu and
Clack, 2022b) eats-worm plugin. Briefly, interframe motion was first registered using manual
tracking (Schindelin et al. 2012). A reference ROI movie was then generated composed of each
image plane by averaging successive blocks of 20-200 movie frames to reduce noise. Each
frame of the reference was adaptively thresholded based on median image brightness, median
filtered, then convolved with a gaussian kernel. Local maxima were found and merged if peaks
were adjacent within a greedy threshold. For each ROI center, a surrounding region with radius
5-7 was defined, with overlapping adjacent regions excluded via Voronoi tessellation with area
shrinkage of 0.5 pixels. ROIs in adjacent timepoints were linked via local greedy matching. Cells
below detection threshold were extrapolated based on the motion of neighboring ROIs. Finally,
time-varying multi-plane ROIs were adjoined based on overlap. Each neuron was manually
verified by R.L.D. For high temporal resolution half-brain imaging experiments, images were
compressed along the Z axis via maximum intensity projection, becoming 3D ROIs. Neural time
series extraction was adapted from Kato et al., 2015. Briefly, for each 4D ROI, a single-cell
fluorescence intensity was computed taking the average of the brightest 30-60 voxels at every
time point after subtracting z-plane-specific background intensity. Background values were
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computed by averaging pixels not belonging to any ROI within a radius of 21 pixels. DF/F0 was
computed for each neuron, with F0 as mean background fluorescence.

Identification of neuron genetic identities: In each recording, we detected 45-140 neurons.
Neurons were identified by assessing their anatomical position, relationship to surrounding
neurons, and their established activity patterns. Furthermore, the strains used for experiments
here express the NeuroPAL genetic cassette (Yemini et al., 2021), which uses a genetically
defined combination of 4 fluorophores to discriminate neurons based on multi-color reporter
expression. Neuron labels were assigned by hand, using NeuroPAL documentation for
guidance. In many cases ambiguity still existed, so here we opted for a more conservative
approach and chose not to ID neurons which could not be identified beyond a reasonable doubt,
and in Fig. 1e ambiguous identities are denoted in parentheses.

Neural timeseries derivatives and embeddings: Derivatives and PCA on neural time series data
was performed as previously described (Chartrand, 2011, Kato et al., 2015). Specifically,
total-variation regularization was used to compute de-noised time derivatives while resolving the
accuracy of command state transitions to single frames. Numerical differentiation helped to
mitigate the effects of drift on the neural signal, improving subsequent analyses. This approach
was also used for the calculation of PC_DV. In more detail, for calculating PC_DV, we first
subtracted the sums of projections to the derivative timeseries onto temporal PC1. Next, we
subsegmented forward command states and removed candidate forward states inconsistent
with sustained forward run defined by a threshold (<4s). The resulting segments were
concatenated for PCA (Jolliffe 2002) to define loadings. Full timeseries were then projected onto
these loadings. Prior to PCA, timeseries were detrended and regularized. For comparison
across animals, we applied PC matching by inverting projections such that genetically identified
neuron SMDV would be negative. In some cases, such as a large number of neurons drifting
out of the focal plane contributing high variance, this procedure was adjusted by first filtering
neurons with thresholded (0.5) normalized covariance to SMDV or by further subsegmenting the
beginning, or end, of the full timeseries, i.e. temporal cropping. Behavioral decoding of
whole-brain recordings was performed as previously described (Kato et al. 2015).

Linear predictive modeling framework: For predictive modeling in Fig. 2-3, we fit linear models
on single trials, predicting future command states, specifically TURN choice or REV termination.
We used linear SVM classifiers implemented by scikit-learn (Pedregosa et al., 2011) with 5-fold
cross validation to limit overfitting. To account for class balance, we report the balanced
accuracy metric, which is equivalent to accuracy score with class-balanced sample weights. For
timepoint predictive analysis (Fig. 3j,k), separate models were fit on neural activity (DFF and
derivative as independent features) at single timepoints relative to stimulation.

Statistical tests:
In Figs. 2d and 3e-i, the significance of the effect of neuron stimulation on time to reversal was
assessed using a Kolmogorov-Smirnov test. The comparable control distribution must account
for spontaneous command state transitions unaffected by stimulation. To calculate control null
distribution, first we take unstimulated states from control worms and compute the marginal
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distribution of time until state transition. We then accumulate shifted state durations selected
from our experimental group, based on time from stimulation, to generate the marginal
distribution of time until state transition. The circular correlation coefficient PC_DV phase at stim
onset and PC_DV phase at reversal onset (Fig. 2h) was calculated using
astropy.stats.circcorrcoef (Price-Whelan et al., 2022). Significance was assessed using
permutation testing. Non-significance of stimulation of dorsal and ventral turn neurons on turn
bias in Fig. 3d was assessed using a chi-squared test.

PC1 ramping and phase analysis
The time constant of PC1 ramping was calculated by fitting a saturating exponential to PC1
traces scaled to each reversal. PC1 and PC_DV phase were calculated by smoothing both
traces with a gaussian filter, identifying extrema with scipy.signal.find_peaks (Pauli, 2020), and
linearly interpolating between peaks and valleys. The ratio of PC1 to PC_DV period was
calculated using the inter-peak intervals of each signal for the corresponding cycles.
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Figure 1: Turn direction is influenced by preceding sensory neuron activation timed to head swings
a, Schematic of the closed-loop stimulation paradigm and the action sequence cycle during foraging.
b, Turn direction on reorientations is bidirectionally influenced by AWA stimulation in freely crawling animals: stimulation timed to 
dorsal head swings increases dorsal turn bias and stimulation timed to ventral head swings increases ventral turn bias.
c, Memory of sensory experience is maintained across the reversal interval to turn execution. 
d, NeuroPAL, panneuronal GCaMP6s, and genetically-confined rsChRmine expression in an immobilized worm imaged using 
volumetric confocal microscopy. 
e, Heat plot of fluorescence (dF/F) time series of head neurons, one neuron per row. Fictive command state is denoted by the 
colored strip at the bottom
f, PC_DV plotted for forward and subsequent reversal segments. PC_DV was calculated by performing PCA on the residuals of 
PC1, restricting to time-series epochs in the forward command state.
g, Bar plot of PC_DV weights for each neuron in PC_DV. Ambiguous neuron IDs are in parentheses.
h, Example worm trajectory embedded in PC1 and PC_DV space. PC_DV stratifies fictive post-reversal turn (blue: VEN, purple: 
DOR; third panel).
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a, Diagram of a paralyzed worm under whole-brain volumetric calcium imaging with brain-state-dependent AWA stimulation.
b, Example AVA, SMDV, and SMDD traces with AWA stimulation during fictive FWD command state.
c, Stimulation-triggered average of AWA dF/F.
d, Histogram of time between AWA stimulation and next reversal (Kolmogorov-Smirnov p=0.001 for comparison to control 
distribution).
e, Bar plots of balanced accuracy for turn choice prediction using models fit to the activity of AWA, PC_DV, or both at the time 
of AWA stimulation, 5-fold cross-validated.
f, Confusion matrix for the prediction of turn choice from AWA and PC_DV activity at the time of AWA stimulation.
g, Histogram of time between AWA stimulation and the subsequent turn for correct and incorrect model predictions in (f).
h, Plot showing the correlation between the phase of PC_DV at given AWA stimulation (inner ring) and the phase of PC_DV at 
the time of the subsequent reversal onset (outer ring, lines connect the corresponding phases). Shorter lines indicate a greater 
similarity between the two phases. Color corresponds to turn choice (blue: VEN, purple: DOR). Circular correlation coefficient r2 
= 0.2 (p=0.0001, permutation testing).
i, Bar plots of balanced accuracy for turn choice (VEN or DOR) prediction using models fit to the activity of AWA during stimula-
tion, or AWA activity during stimulation and PC_DV phase at reversal onset, 5-fold cross-validated.
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Figure 3: Stimulation of PC-DV neurons can terminate reversals but cannot control post-reversal turn 
direction.
a, Diagram of paralyzed worm under whole-brain volumetric calcium imaging with stimulation of PC_DV neurons during fictive 
reversals. A digital micromirror device was used to spatially restrict laser stimulation to selectively stimulate VEN or DOR-asso-
ciated PC_DV neurons, or subcompartments of the RIA neurite nrV and nrD.
b, Example AVA trace with SMDV stimulation timed to fictive reversals.
c, SMDV stimulation-triggered averages of SMDV activity for VEN (blue) and DOR (purple) turns. 
d, Stimulation of VEN- or DOR-associated PC_DV neurons or RIA subcompartments at reversal termination does not bias turn 
direction (chi-squared p=0.35).
e-i, Histograms of time between PC_DV neuron (SMDD, SMDV, nrV, nrD, or RIV) stimulation and reversal termination. Stimula-
tion increases the proportion of immediate reversal terminations relative to control (Kolmogorov-Smirnov p-values: nrD: 
p=0.0144, nrV: p=0.0002, SMDV: p < 0.0001, SMDD: p=0.0295, RIV: p=0.0787).
j, Accuracy of post-REV TURN prediction using classifiers trained on single timepoints of activity in PC_DV and its composing 
neurons prior to stimulation onset in RIA (nrV and nrD) stimulation trials.
k, Accuracy of REV termination prediction using classifiers trained on single timepoints of activity in PC1 and its composing 
neurons prior to stimulation onset in RIA (nrV and nrD) stimulation trials.
l, Prediction accuracy of PC1 neurons for reversal termination correlates with PC1 loading (Pearson’s r2=0.27).
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Figure 4

Figure 4: Phase and period coordination of the PC-DV and PC1 dynamical complexes.
a, Normalized PC1 traces, time-rescaled between reversal onset and offset, showing PC1 ramping during reversals.
b, The rise constant of PC1 correlates with the reversal duration (Pearson’s r=0.62).
c, Histogram of the ratio of PC1 period to PC_DV period during the PC1 segment shows accumulation at integral multiples.
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