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Abstract

Missense mutations can have disastrous effects on the function of a protein. And as a

result, they have been implicated in numerous diseases. However, the majority of mis-

sense variants only have a nominal impact on protein function. Thus, the ability to distin-

guish these two classes of missense mutations would greatly aid drug discovery efforts in

target identification and validation as well as medical diagnosis. Monitoring the co-occur-

rence of a given missense mutation and a disease phenotype provides a pathway for

classifying functionally disrupting missense mutations. But, the occurrence of a specific

missense variant is often extremely rare making statistical links challenging to infer. In this

study, we benchmark a physics-based approach for predicting changes in stability, MM-

GBSA, and apply it to classifying mutations as functionally disrupting. A large and diverse

dataset of 990 residue mutations in beta-lactamase TEM1 is used to assess performance

as it is rich in both functionally disrupting mutations and functionally neutral/beneficial

mutations. On this dataset, we compare the performance of MM-GBSA to alternative strat-

egies for predicting functionally disrupting mutations. We observe that the MM-GBSA

method obtains an area under the curve (AUC) of 0.75 on the entire dataset, outperform-

ing all other predictors tested. More importantly, MM-GBSA’s performance is robust to var-

ious divisions of the dataset, speaking to the generality of the approach. Though there is

one notable exception: Mutations on the surface of the protein are the mutations that are

the most difficult to classify as functionally disrupting for all methods tested. This is likely

due to the many mechanisms available to surface mutations to disrupt function, and thus

provides a direction of focus for future studies.

Introduction

DNA sequencing has seen tremendous advances since the human genome was first sequenced

in 2001 [1,2]. DNA sequencing cost is a great indicator of this progress as it has decreased by

six orders of magnitude since the first sequenced human genome [3]. This in turn has facili-

tated the generation of large datasets of genetic variation [4–6]. Of particular note are the

ExAC and gnomAD databases, which contain the full human exome (protein-coding region)

for over 120,000 individuals [4]. However, despite these large collections of genetic variants,
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predicting the functional effect of a genetic variant remains a significant challenge for missense

mutations [7]. Missense mutations refer to a single-amino acid change to a gene.

Missense variants play a critical role in medical diagnosis and discovery since certain mis-

sense variants have been strongly correlated with disease susceptibility in several human can-

cers [8,9]. The most noteworthy examples are missense variants in tumor suppressor genes

BRCA1 and BRCA2 [8,10]. However, the challenge of utilizing missense variants for diagnosis

is that many missense variants are not deleterious to function, appearing in the human exome

at 7.9% of sites [4]. Additionally, the rarity of any one specific missense variant makes drawing

a statistical link between function and missense variant challenging [11,12]. Furthermore, rare

diseases contain another barrier to obtaining significant statistical links due to the rare occur-

rence of the disease itself. Lastly, further complicating the matter is the fact that experimental

assays to assess how a specific missense variant impacts protein function only covers a limited

space [8]—thereby further complicating experimental validation.

Several algorithms have been developed for predicting the functional outcome of a missense

variant [7,13–15]. Many of these algorithms rely on generating a multiple sequence alignment

(MSA) using the protein of interest, along with closely related sequences, typically from other

species. The fundamental premise of this analysis is that conserved residues in the MSA are

less tolerant to mutation. Some of the more robust tools in this space also incorporate struc-

tural information such as accessible surface area, B-factor, and hydrophobic propensity.

Despite some success, these tools have shown significant sensitivity to the input sequence

alignment, and thus performance varies across different systems [16].

In this work, we seek to benchmark a purely physics-based approach that is independent of

sequence alignment known as MM-GBSA [17,18]. MM-GBSA predicts the relative change in

folding free energy of an amino acid mutation using an implicit solvent model combined with

a molecular mechanics energy function. MM-GBSA indirectly captures mutations that disrupt

function by detecting mutations that significantly disrupt the stability of a protein. The link

between protein stability and function has long been known and explored [19]. A central pos-

tulate arising from this field of analysis has been that if a protein is significantly destabilized,

this will result in the protein misfolding, and consequently the mutation will disrupt protein

function.

Results

Beta lactamase dataset

Datasets play an important role in any benchmark study. They need to be large enough to get

meaningful statistics, and diverse enough to avoid bias in the data. Thus, we turned to a large

scale mutational study of beta lactamase TEM-1 [20]. Beta lactamase TEM-1 is a bacterial

enzyme responsible for hydrolyzing beta-lactam bonds that occur in beta-lactam antibiotics

such as penicillin or amoxicillin. TEM-1 is well characterized both structurally and biochemi-

cally. And most importantly, the aforementioned study provides hundreds of examples of

mutations that are both deleterious and neutral/beneficial to function. This in turn helps to

mitigate bias in our study, and is the primary reason why we selected this system over human

benchmarks, which lack substantial information on functionally neutral/beneficial mutations.

The beta lactamase TEM-1 dataset used in this study consists of 990 single-point mutations.

Details of the functional assay performed on beta lactamase TEM-1 can be found in Jacquier

et al]. Briefly, for each of the 990 mutations, cell growth was monitored at several concentra-

tions of amoxicillin and the minimum concentration of amoxicillin required to inhibit cell

growth was recorded, herein referred to as the minimum inhibitory concentration (MIC). The

MIC measurement was converted to a MIC score via the following equation log2(MIC/500).

Predicting functionally disrupting mutations using physics-based modeling
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500 mg/L refers to the MIC measurement of the wildtype sequence. As a result, a MIC score

of 0 would represent activity on par with the wildtype enzyme. MIC scores less than 0 are

classified as deleterious in this paper. And MIC scores of 0 or greater are classified as neutral/

beneficial.

The amino acid distribution of the functionally deleterious mutations and functionally neu-

tral/beneficial mutations are shown in Fig 1. One benefit of this binary classification scheme is

that it allows us to compare the observed frequency of each amino acid in the deleterious set to

the mutation probabilities that would be expected by random selection from a binomial distri-

bution. This makes it easy to identify mutation types that are significantly enriched in the func-

tionally disrupting set.

Interestingly, three types of mutations appeared significantly (p< 0.01) more in the delete-

rious set than expected by random chance (Fig 1). These are mutations to cysteine, glycine,

and proline, with cysteine being the most prominent enriched. Cysteine appears in the delete-

rious set 32 times while only appearing in the neutral/beneficial set 3 times. That is greater

than a 10-fold enrichment in the deleterious set. Enrichment of cysteines in the deleterious set

is likely tied to cysteine’s ability to participate in disulfide bonds that prevent proper protein

folding. Prolines appear ~6.1 times more frequently in the deleterious set than in the neutral/

beneficial set. The enrichment of proline in the deleterious set may be tied to the fact that pro-

line occupies a unique dihedral space among natural occurring amino acids which can result

in a strained geometry when the proline mutation is inserted into a non-proline position.

Lastly, mutations to glycine are observed 2.4 times more frequently in the deleterious set versus

Fig 1. Frequency of appearance of amino acids in beta-lactamase dataset. The amino acid distribution is plotted for the functionally neutral/beneficial mutations

(left) and the functionally disrupting mutations (right). The blue bars in the plot show the number of mutations from that wildtype amino acid. And the orange bars

show the number of mutations to that amino acid. Functionally disrupting mutations that occur a statistical significant number of times (p< 0.01) are show in bold,

with an asterisk under the amino acid.

https://doi.org/10.1371/journal.pone.0214015.g001
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the neutral/beneficial set. The small volume of the glycine side chain (a single hydrogen atom)

likely creates large cavities in the core of a protein that in turn significantly destabilize the over-

all protein fold.

Evaluating models

Looking beyond the statistical trends in the data, we sought to assess the performance of differ-

ent models at classifying functionally deleterious amino acid mutations. To evaluate the mod-

els, we calculated a receiver operating characteristic (ROC) curve for each method. The area

under the curve (AUC) is then measured to determine how well model separate deleterious

mutations from the neutral/beneficial mutations. An AUC of 0.5 would represent a model that

randomly classifies mutations as deleterious. An AUC of 1.0 would represent a model that per-

fectly agrees with the classification assigned by experiment.

Using AUC, we have benchmarked 5 different approaches for predicting mutations that are

deleterious to function (Fig 2). The first approach is FoldX. FoldX is an empirical force field

developed to predict changes in protein stability, and has been adapted for use in protein

design [21,22]. FoldX obtains an AUC of 0.67 on this dataset, which is the lowest AUC among

all the methods tested. Interestingly, a simple method such as the BLOSUM62 substitution

matrix, a tool designed for generating sequence alignments, outperforms FoldX, obtaining an

AUC of 0.71. This method works by predicting that the substitution of amino acids rarely

observed in related protein families will result in a deleterious mutation. Another simple

method, solvent accessibility, heretofore referred to as accessibility, also performs well on this

dataset, with an AUC of 0.71. This method works by predicting that mutations at buried

Fig 2. ROC curves for classifying functionally disrupting mutations on the beta lactamase dataset. This dataset is composed of 990 single-point mutations with

measured changes in their minimum inhibitory concentration (MIC). The five models include energy scores from FoldX, the solvent accessibility of a side chain, the

score from the BLOSUM62 substitution matrix, the Prime Stability score, and the Prime stability score with a 5Åminimization cutoff. The area under the curve (AUC)

for each ROC curve is shown on the right along with its 95% confidence interval (CI).

https://doi.org/10.1371/journal.pone.0214015.g002
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positions are more prone to be deleterious than mutations at solvent exposed positions. Lastly,

we have benchmarked Schrodinger’s MM-GB/SA tool for predicting relative changes in pro-

tein stability, Prime [18]. Similar to FoldX, Prime predicts that deleterious mutations occur

when significant increases in stability occur. Prime obtains the largest AUC, obtaining an

AUC of 0.75. Lastly, we have benchmarked a variant of Prime that allowed greater side chain

flexibility of neighboring residues by refining the side-chain of residues within 5 Å from the

mutated side chain. Unexpectedly, this degrades Prime’s performance, obtaining an AUC of

only 0.69.

Additionally, we have examined how well each of the terms in the Prime Stability energy

function perform individually. There are nine terms that are summed to calculate the Prime

Stability score. The first term captures the energetics of covalent interactions (Covalent), such

as bond angles and bond stretching. The second term models van der Waals interactions

(VDW), which captures induced dipole interactions between atoms. The third term is a cou-

lombic term (Coulomb), measuring electrostatic interactions. The fourth term is the general-

ized born term (Solv GB) which models the solvation and desolvation effects of amino acids.

The fifth term is a measure of hydrophobic interactions with water, which is referred to as the

Lipo term. The sixth term is a hydrogen bond term (Hbond). The seventh term is referred to

as Packing and measures the quality of π-π interactions. The eighth term is a measure of self-

interaction (Self Cont) of a side chain. This term captures side-chain hydrogen bonds with

backbone atoms. Residues such as asparagine, glutamine, and serine are examples of residues

that engage in this type of interaction. Lastly, the ninth term represents the unfolding energy

(Reference) for each amino acid. The total Prime Stability score outperforms all the individual

components of the Prime energy function (Fig 3). Showing that the sum of all terms is a supe-

rior predictor of functionally disrupting mutations than any individual term.

Fig 3. ROC curves for individual Prime terms on the beta lactamase dataset. The ROC curve for the Prime Stability energy function (black) and individual terms of

the Prime Stability energy function (gray). The table on the right list the corresponding area under the curve (AUC) values and the 95% confidence intervals for the

AUC values.

https://doi.org/10.1371/journal.pone.0214015.g003
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Dividing the dataset

To better understand the limitations and strengths of the five methods presented in Fig 1, we

attempted to divide the dataset using three approaches. The first approach divides the data set

on the basis of whether a mutation conserves or changes the net charge on the protein. The

second approach divides the data on the basis of whether a mutation substantially changes the

volume occupied by the residue (big->small or small->big). We classify a volume change “sig-

nificant” if it changes the volume of the sidechain by> = the volume of an alanine->valine

mutation. And lastly, we separate mutations that occur on the surface of the protein from

mutations that are buried in the protein, using the relative accessible surface area of the wild-

type side chain to determine if it is solvent exposed [23].

Mutations involving residues that are typically charged at neutral pH (D, E, R, K,) can be

challenging for several reasons. For instance, depending on the protein environment, charged

residues can occupy different protonation states, which can significantly alter their physio-

chemical properties. Additionally, positively charged residues, such as lysine and arginine,

contain a larger number of rotatable bonds relative to other amino acids, making prediction of

the side chain conformation for these positively charged residues challenging. Due to these

same types of challenges, other physics-based algorithms have also been documented to strug-

gle with predicting changes in stability for mutations that change the net charge of a protein

[24]. Thus, we evaluated whether the performance of Prime would improve upon removal of

mutations that change the net charge of the protein.

As seen in Fig 4A, Prime obtains an AUC of 0.75 on mutations changing the net charge of

the protein. Surprisingly, this performance is on par with Prime’s performance on the entire

dataset (AUC = 0.75) and very similar to the performance on the dataset involving mutations

conserving the net charge of the protein (AUC = 0.74, Fig 4B). Only the accessibility metric

showed substantial sensitivity to dividing the dataset in this way, obtaining an AUC of 0.66

on the entire conserve-charge set vs an AUC of 0.80 on mutations thought to change the net

charge of the protein.

We divided the dataset to separate big to small mutations from small to big mutations to

determine if the added flexibility of the side chain relaxation protocol in Prime would benefit

small to large mutations. Small to big mutations are defined as mutations whose side chain vol-

ume increases by more than the volume of an alanine to valine mutation (This was inversely

used for big to small mutations). Interestingly, the 5Å refinement protocol in Prime negatively

impacted performance for the small to big mutations, reducing the AUC of Prime from 0.78 to

0.69 (Fig 5). Also, and perhaps not unexpectedly, the added flexibility did not improve Prime’s

performance for the big to small mutations. This suggests that not perturbing the crystal

structure is beneficial relative to allowing minor alterations of the side chains of the structure.

This has previously been observed by Kellogg et al. when modifying the sampling protocol of

the Rosetta energy function [25]. It is also worth noting that the BLOSUM62 substitution

matrix struggled with the small to big mutations (AUC = 0.63) relative to the entire dataset

(AUC = 0.71).

It has been documented that positions at the surface of a protein are typically more tolerant

to mutation than mutations at buried positions in a protein [26]. As a result, we were inter-

ested in whether the performance of the models tested in this study would be sensitive to

whether a mutation appears at the surface of the protein or at a buried position (Fig 6). A posi-

tion is defined as buried if the percent of solvent exposure of the wildtype amino acid is < =

5%. A position is defined as solvent exposed if the percent of solvent exposure of the wildtype

residue is >20%. Predictably, the accessibility metric does not perform well at classifying func-

tionally disrupting mutations at buried positions, getting an AUC value close to random

Predicting functionally disrupting mutations using physics-based modeling
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(AUC = 0.47). In contrast, the BLOSUM62 matrix does exceptionally well at classifying muta-

tions as functionally disrupting at buried positions, resulting in an AUC of 0.84. Prime’s per-

formance on the buried set is very close to its performance on the entire dataset, resulting in

an AUC of 0.78 vs. an AUC of 0.75 on the entire dataset. Added flexibility in Prime did not

help Prime with buried mutations, resulting in an AUC of 0.73. Interestingly, all algorithms

significantly struggle with classifying disrupting mutations on the surface of the protein. The

AUCs range from 0.61 to 0.67.

Conclusion

The MM-GBSA method in Prime is able to outperform all other methods tested in this study

for predicting functionally disrupting mutations. And, perhaps more importantly, Prime

works more robustly across various divisions of the dataset than the other methods tested in

this study. The broad consistent performance of Prime likely reflects the fact that Prime is a

physics-based approach. Excluding surface exposed mutations, the AUC values of Prime range

from 0.74 to 0.80, which is a range of only 0.06. This is equal to the range of the 95% confi-

dence interval on the entire dataset (Fig 2). However, the AUC values for the BLOSUM62

matrix range from 0.63 to 0.84. This is a variation of 0.21, a value that is more than three times

larger than Prime’s variation. The range of AUC values obtained for the accessibility metric is

even larger in magnitude, ranging from 0.47 (a nearly random model) to 0.81. The scoring

function in FoldX, similar to Prime, uses physics-based terms. And thus, similar to Prime,

Fig 4. ROC curves separated by mutations that change in charge from mutations that conserve charge. (A) The charge-change dataset consisted of 369 mutations

(B) The conserve-charge dataset consists of 623 mutations that conserve the net charge of the protein. The tables on the right list the area under the curve (AUC) values

along with 95% confidence interval (CI) for the AUC values.

https://doi.org/10.1371/journal.pone.0214015.g004
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FoldX also achieves a consistent performance, with AUC values ranging from 0.67 to 0.72.

However, Prime is always able to outperform FoldX on all divisions of the dataset.

Beyond benchmarking Prime, we have attempted to improve Prime’s performance by

introducing flexibility in the protein side chains within 5 Å of the residue being mutated.

Intriguingly, this degrades performance across all divisions of the dataset, even for mutations

that significantly increase the volume of the side chain being mutated. Others have made simi-

lar observations when validating scoring functions for protein stability. As observed in Kellogg

et al., to properly introduce protein flexibility into the Rosetta energy function it is required

to allow backbone atoms of the protein to move in conjunction with side chain motion [25].

Therefore, future studies using molecular-dynamics based methods such as free energy pertur-

bation [27,28], which allow for complete protein flexibility, should also be benchmarked to

determine how well these approaches can predict functionally disrupting mutations based on

changes in protein stability.

When discussing the generality of Prime at predicting mutations that will disrupt function

it is also paramount to discuss its shortcomings. Prime struggles on surface exposed positions,

obtaining an AUC only of 0.65 (Fig 6). However, it is worth pointing out that when Prime pre-

dicts that a surface mutation does destabilize the protein (and thus disrupts function), the pre-

diction is likely correct, as shown by the high precision and specificity scores in Fig 7 using

two separate cutoff values for Prime. Prime’s limitation is that when it predicts that a mutation

does not disrupt stability (and function) this may or may not be correct, as reflected by the low

sensitivity values for two different Prime cutoffs.

Fig 5. ROC curves separated by mutations that decrease in volume from mutations that increase in volume. (A) The big->small dataset consists of 126 mutations

that decrease the net volume of the side chain (see Methods). (B) The small->big dataset consists of 141 mutations that increase the volume of the mutated side chain

(see Methods). The tables on the right list the area under the curve (AUC) values along with corresponding 95% confidence interval (CI) for the AUCs.

https://doi.org/10.1371/journal.pone.0214015.g005
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The main challenge for mutations on the surface is that these mutations have several mech-

anisms for disrupting function. For instance, cysteine mutations on the surface may engage in

disulfide bridges that prevent the protein from performing its function. And this may be why

mutations to cysteine are 10 times more likely to result in functional disruption than to be neu-

tral/beneficial. Additionally, mutations at the surface of a protein can interfere with crucial

protein-protein interactions or protein-substrate interactions, which cannot be predicted from

a crystal structure of just a protein monomer. However, in the case of beta-lactamase, we can

use the crystal structure of beta lactamase in complex with an acylation transition state analog

to approximate changes in binding affinity to the natural substrate. To do this while still

accounting for changes in protein stability we took the maximum Prime score between the

predicted change in stability and the predicted change in affinity for each mutation. The para-

digm of this approach is that if a mutation is predicted to have a minor change in stability but

is predicted to significantly destabilize substrate binding affinity the mutation would still be

classified as functionally disrupting and vice versa. Unfortunately, this did not significantly

improve the results, changing the AUC value from 0.74 to 0.75 (Fig 8). As a result, it appears

that for this dataset, loss of affinity to substrate plays a nominal role.

Beyond the challenge of surface mutations, there are additional factors impeding the pre-

diction of functionally disrupting mutations via protein stability predictions. For example,

molecular chaperons have been shown to guide the folding of a protein whose unfolded state

is actually lower in energy than its folded state [29]. This is done through kinetically trapping

the protein in the folded state. And fascinatingly, these chaperones have been known to act

Fig 6. ROC curves separated by mutations that are buried in the protein from solvent exposed mutations. (A) The buried dataset consists of 292 mutations that

are buried in the core of beta lactamase (< = 5% solvent exposed). (B) The solvent exposed dataset consists of 367 mutations that are solvent exposed (>20% solvent

exposed). The tables on the right list the area under the curve (AUC) values along with corresponding 95% confidence interval (CI) for the AUCs.

https://doi.org/10.1371/journal.pone.0214015.g006
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heterogeneously on genetic variants of a protein causing the connection between protein sta-

bility and function to be further blurred [30].

Another significant limitation to applying Prime to predict functionally disrupting muta-

tions is the ability to obtain an accurate structure of the protein target of interest. In this study,

the 1BTL crystal structure provided a promising starting point to build a structure-based

model of the beta-lactamase protein, only requiring hydrogen atoms to be added and opti-

mized. However, despite the large size of the protein databank, the majority of proteins have

not been crystalized [31]. Homology modeling provides a path to extend the protein databank

for proteins closely related in sequence to those that have already been crystallized, and future

studies should look into how well Prime will predict functionally disrupting mutations using

homology models.

Finally, using a single-layer neural network, we integrated the best performing predictors

on the entire beta lactamase dataset, which are accessibility, BLOSUM62, and Prime Max,

into a single machine learning (ML) model. We trained the ML model by randomly sampling

half the 990 single-point mutations, and testing on the remaining half. Interestingly, the

model obtains an AUC of 0.84 (Fig 8). It is not clear if the ML model will generalize beyond

the beta-lactamase dataset. However, it demonstrates the ability to unify the models under a

single score. And such an approach may assist with integrating models that capture other

Fig 7. Two confusion matrices classifying functionally disrupting mutations on the surface using the Prime stability score. The left matrix uses a Prime energy

cutoff of 10 prime energy units to classify functionally disrupting mutations from neutral/beneficial mutations. The matrix on the right uses a Prime energy cutoff of 20

prime energy units. The precision, sensitivity, and specificity are shown below the matrices.

https://doi.org/10.1371/journal.pone.0214015.g007
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mechanisms for disrupting function outside of protein stability—such as those described

above. Lastly, despite the limitations described, accurate models of protein stability do capture

a significant amount of the functionally disrupting mutations in the beta-lactamase dataset.

Materials and methods

Preparing 1BTL and 1AXB crystal structures

Schrodinger’s Protein Preparation Wizard (PrepWizard) was used to prepare all PDB struc-

tures for Prime [32]. The PrepWizard assigns bond orders, predicts protonation states, sam-

ples Asn/Gln/His flip states, removes select crystallographic waters, optimizes the H-bond

network, and minimizes the structure. Default values were used for all parameters except the

-propka_pH flag, which was set to pH 7.2. The following command line was used:

$SCHRODINGER/utilities/prepwizard -fillsidechains -propka_pH
<pH> -NOJOBID <Input.pdb> <Output.mae>

Running Residue Scanning

The Residue Scanning functionality in BioLuminate (18) version 18–3 was used to By default,

For this work, the default sampling protocol was used via the following command line:

$SCHRODINGER/run $SCHRODINGER/mmshare- v32017/python/
scripts/residue_scanning_backend.py jobname $jobname -fast—
res_file <Resfile_name> -receptor_asl <Chain_name> -refine_mut
prime_residue -dist 0.00 <Input_file.mae> -NJOBS 1 –NOJOBID

Fig 8. ROC curves using 495 mutations randomly sampled from the beta lactamase dataset. Prime Max refers to the maximum prime energy between the

predicted change in stability and predicted change in affinity. The machine learning (ML) model refers to a single layer neural network trained on the other 495

mutations not included in this dataset. The area under the curve (AUC) values along with the corresponding 95% confidence intervals are shown in the table on the

right.

https://doi.org/10.1371/journal.pone.0214015.g008
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Due to limitations of the Residue Scanning application, mutations breaking covalent bonds

in the structure were given a Prime score of 1000.0.

Splitting the beta-lactamase dataset

As described, the beta-lactamase dataset has been divided using three approaches. The first

approach separates the mutations that change the net charge of the protein from those that

conserve the net charge of the protein. For generating the dataset of net-charge-changing

mutations, mutations involving lysine, arginine, aspartic acid, and glutamic acid are used. If

residues are mutated to or from these amino acids they are considered to change the net charge

of the protein, unless the mutation remains positive (i.e. a lysine to an arginine or an arginine

to a lysine) or remains negative (i.e. an aspartic acid to a glutamic acid or a glutamic acid to an

aspartic acid). Mutations are considered to conserve the net charge of a protein if they do not

involve lysine, arginine, aspartic acid, or a glutamic acid. With the exception being for muta-

tions between lysine and arginine or between glutamic acid and aspartic acid.

To split the dataset by mutations that significantly increase (small->big) or decrease (big-

>small) in volume, we use van der Waals volumes reported by Darby and Creighton (1993)

[33]. Changes in volume larger than an alanine to valine mutation (37Å3) are considered to be

a significant change in volume, and vice versa for mutations decreasing in volume. More strin-

gent filters were considered, however, these resulted in unreliably small datasets.

Lastly, to classify mutations as buried or solvent exposed, the relative solvent accessible sur-

face area is calculated for each position in the wildtype structure. This was done by dividing

the solvent accessibility (Accessibility) metric by the maximum solvent accessible surface area

of that amino acid in a tri-peptide according to Miller et al. (1987) [23]. Relative solvent acces-

sible surface areas< = 0.05 were classified as buried. And relative solvent accessible surface

areas >0.20 were considered solvent exposed. Glycine residues were excluded from this

analysis.

MIC score, FoldX, Accessibility, and BLOSUM62

The values for the MIC score, FoldX, Accessibility, and BLOSUM62 were obtained from Jac-

quier et al. [20].

Calculating the area under the curve (AUC) and the machine learning (ML)

model

R version 3.3.0 was used the calculate the receiver operating characteristic curves (ROC). R

was used to calculate the area under the curve, the 95% confidence intervals train a neural net-

work [34]. Specifically the pROC package and the nnet package in R were used [35,36].

Supporting information

S1 Table. Model scores for each mutation.
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