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Abstract: Two new neolignans jatrolignans, C (1) and D (2), a pair of epimers, were isolated from the
whole plants of Jatropha curcas L. (Euphorbiaceae). Their structures were determined with HRESIMS,
IR, and NMR data analysis, and electronic circular dichroism (ECD) experiments via a comparison
of the experimental and the calculated ECD spectra. Their antichlamydial activity was evaluated
in Chlamydia abortus. They both showed dose-dependent antichlamydial effects. Significant growth
inhibitory effects were observed at a minimum concentration of 40 µM.
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1. Introduction

Jatropha curcas L. has been used as a traditional medicine for the treatment of traumatic
injury, fracture, itchy skin, eczema, and acute gastroenteritis [1]. Its extracts and monomeric
compounds possess potential pharmacological activities, owing to the efficiency of clearing
heat and detoxication scattered stasis detumescence [1]. Chemical constituent investiga-
tions of the roots, stems, and leaves of J. curcas led to the identification of structurally
diverse diterpenoids [2], triterpenes [3], lignans [4], and coumarins [5], and many of these
compounds exhibited promising cytotoxicity [6], antitumor [7], antimicrobial [8], cyto-
pathic [9], anti-inflammatory [10], antioxidant [11], anticoagulant [12], insecticidal [13], and
molluscicidal [14] activities. As a part of our ongoing research program for the discovery
of potential pharmacological ingredients from natural products, we studied a methanol
extract from the dried whole plant of J. curcas; and in the process, two undescribed neolig-
nan epimers (compounds 1 and 2) were isolated. Structurally, 1 and 2 (Figure 1) possessed
the same planar structure, from which could be speculated a pair of epimers at either
C-7 or C-8. The relative configurations of 1 and 2 were determined by comparing their
coupling constants between H-7 and H-8, and the absolute configurations were deduced
from the ECD spectra of 1 and 2. We, herein, report the details of the isolation and structural
elucidation of 1 and 2, as well as their antichlamydial activity.
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hibited 25 carbon signals, which were classified as two carbonyl carbons, six quaternary 
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Figure 1. Structures of compounds 1, 2.

2. Results and Discussion
2.1. Structure Elucidation

Compound 1 was obtained as an amorphous powder, and it possessed a molecular
formula of C25H30O9 on the basis of 13C NMR and HRESIMS data (m/z 497.1783, [M + Na]+)
(calcd for C25H30O9Na, m/z 497.1782), which indicated 9 degrees of hydrogen deficiency. Its
IR spectrum showed absorption bands consistent with the presence of hydroxy (3452 cm−1),
carbonyl (1736 cm−1), alkenyl (1457 cm−1), and aromatic ring (799 cm−1) functionalities [15].
The 1H NMR spectrum of 1 (Table 1) showed the typical spin systems of two sets of 1,2,4-
substituted aromatic ring, in which the characteristic signals were observed at 6.91 (d,
J = 1.6 Hz, H-2), 6.87 (d, J = 8.2 Hz, H-5), and 6.86 (dd, J = 8.2, 1.6 Hz, H-6); 6.85 (d, J = 1.6 Hz,
H-2′), δH 6.67 (d, J = 8.3 Hz, H-5′), and 6.81 (dd, J = 8.3, 1.6 Hz, H-6′). In addition, a pair of
trans double bond protons at δH 6.54 (d, J = 15.9 Hz, H-7′) and 6.14 (dt, J = 15.9, 6.6 Hz, H-8′),
and three methoxy groups at δH 3.78 (s, 3-OCH3), 3.28 (s, 7-OCH3), and 3.84 (s, 3′-OCH3)
were also observed. The 13C NMR (Table 1) and HSQC data of compound 1 exhibited 25
carbon signals, which were classified as two carbonyl carbons, six quaternary carbons (six
sp2 hybridized carbons), ten methines (eight sp2 hybridized carbons and two oxygenated
carbons), two methylenes, and five methyls. They were assigned as two 1,2,4-substituted
benzene rings, two double bond carbons, three methoxyl groups (δC 57.3, 56.1, 55.9), two
oxymethylene carbons (δC 65.3, 63.8), two oxymethine carbons (δC 82.6, 82.1), and two acetyl
groups (δC 21.2, 171.0 and δC 21.0, 171.0).

The 1H-1H COSY correlations of 1 between H-7/H-8/H2-9 and H-5/H-6, as well
as the HMBC (Figure 2) correlations from H-7 to C-1/C-2/C-6/C-8/C-9/OCH3, H-2 to
C-1/C-3/C-6/C-7, H-5 to C-1/C-3/C-6, H-6 to C-1/C-3/C-5, H-8 to C-7/C-9 and H2-9
to C-7/C-8/OAC, indicated the presence of a guaiacyl glycerol moiety in C-1 [16]; the
1H−1H COSY correlations between H-7′/H-8′/H2-9′ and H-5′/H-6′, as well as the HMBC
correlations from H-2′ to C-1′/C-3′/C-4′/C-6′/C-7′, H-5′ to C-1′/C-3′/C-4′/C-6′, H-6′

to C-2′/C-4′/C-7′, H-7′ to C-1′/C-2′/C-6′/C-9′, H-8′ to C-1′/C-9′ and H2-9′ to C-7′/C-
8′/OAc, indicated the presence of a coniferyl alcohol moiety in C-1′. Two phenylpropanoid
units in 1 were connected through an ether bond by the HMBC correlation from H-8 to
C-4′, which indicated 1 as being a neolignan structural type of 8-4′ [17]. The positions of
the two methoxy groups were determined at C-3 and C-3′, respectively, due to the HMBC
correlations of 3-OCH3 (δ 3.78)/C-3 (δ 150.9) and 3′-OCH3 (δ 3.84)/C-3′ (δ146.7). Thus, the
substitution patterns of two 1,2,4-substituted aromatic rings were confirmed.
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Table 1. The 1H (600 MHz) and 13C NMR (150 MHz) data for 1, 2 in CDCl3.

1 2

Position δC δH (J Hz) δC δH (J Hz) HMBC

1 130.0 s 129.5 s
2 110.0 d 6.91 d (1.6) 109.6 d 6.93 d (1.5) H-2/C-1,3,6,7
3 150.9 s 150.7 s
4 145.6 s 145.7 s
5 114.1 d 6.87 d (8.2) 114.1 d 6.88 d (8.5) H-5/C-1,3,6
6 121.1 d 6.86 dd (8.2, 1.6) 120.8 d 6.84 dd (8.5, 1.5) H-6/C-1,3,5
7 82.6 d 4.39 d (8.8) 83.2 d 4.42 d (5.8) H-7/C-1,2,6,8,9/OCH3
8 82.0 d 4.46 m 81.6 d 4.50 ddd (6.1,5.8,4.0) H-8/C-7,9,4′

9 63.8 t 4.42 m 63.8 t 4.05 dd (11.8, 6.1) H2-9/C-7,8,OAC
4.42 m 4.22 dd (11.8, 4.0)

1′ 131.2 s 130.9 s
2′ 110.2 d 6.85 d (1.6) 109.9 d 6.86 d (1.5) H-2′/C-1′,3′,4′,5′,6′,7′

3′ 146.7 s 146.8 s
4′ 148.1 s 148.6 s
5′ 118.4 d 6.67 d (8.3) 117.8 d 6.91 d (8.5) H-5′/C-1′,3′,4′,6′

6′ 119.9 d 6.81 dd (8.3, 1.6) 119.8 d 6.88 dd (8.5, 1.5) H-6′/C-2′,4′,7′

7′ 134.2 d 6.54 d (15.9) 134.2 d 6.58 d (15.7) H-7′/C-1′,2′,6′, 9′

8′ 121.9 d 6.14 dt (15.9, 6.6) 121.7 d 6.16 dt (15.7, 6.6) H-8′/C-1′, 9′

9′ 65.3 t 4.69 dd (6.6, 1.3) 65.2 t 4.71 d (6.6) H2-9′/C-7′,8′,OAc
4.69 dd (6.6, 1.3) 4.71 d (6.6)

7-OCH3 57.3 q 3.28 (s) 57.1 q 3.28 (s) CH3/C-7
3-OCH3 55.9 q 3.78 (s) 55.8 q 3.84 (s) CH3/C-3
3′-OCH3 56.1 q 3.84 (s) 56.0 q 3.87 (s) CH3/C-3′

9-OAc 21.0 q, 171.0 s 2.01 (s) 20.8 q, 170.7 s 1.97 (s) CH3/C=O
9′-OAc 21.2 q, 171.0 s 2.09 (s) 21.0 q, 170.9 s 2.10 (s) CH3/C=O
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The vicinal coupling constant of H-7/H-8 can be used to assign erythro versus threo
relative configurations [18,19]. The open-china erythro isomer generally had smaller cou-
pling constants than the open-china threo isomer in non-hydrogen bonding solvent. The
coupling constant (8.8 Hz) of H-7/H-8 indicated a threo sterostructure for compound 1.

The absolute configuration of 1 was proposed as depicted, based on the calculated
ECD curve, which agreed well with the experimental ECD data (Figure 3), allowing the
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absolute configuration of 1 to be defined as 7S and 8S. Hence, the structure of 1 was
designated and named jatrolignan C [20].
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Compound 2 was also obtained as an amorphous powder. The molecular formula
was established as C25H30O9 (9 degrees of unsaturation) from its HRESIMS (m/z 497.1785,
[M + Na]+) (calcd for C25H30O9Na, m/z 497.1782). Its IR spectrum showed absorption
bands consistent with the presence of hydroxy (3436 cm−1), carbonyl (1738 cm−1), alkenyl
(1453 cm−1), and aromatic ring (767 cm−1) functionalities. The 1H and 13C NMR signals
(Table 1) of 2 were almost identical to those of 1. The discriminating coupling constants of
H-7, H-8 and H2-9 indicated the relative stereochemistry of 2 was different from 1, thus
2 was suggested to be the epimer of 1 at C-7 or C-8 and erythro sterostructure, which was
confirmed by the ECD spectra (Figure 3), indicating that 2 gave an exactly opposite Cotton
effect at 220 nm compared with that of 1. The absolute configuration of 2 was proposed
as depicted, based on the calculated ECD curve, where the calculated values of 7R and 8S
matched the experimental ECD curve (Figure 3), allowing the absolute configuration of 2
to be defined as 7R, 8S. Hence, the structure of 2 was designated and named jatrolignan D.

To determine whether compounds 1 and 2 were natural or artificial products, the
MeOH extract of J. curcas was subjected to an MCI gel column with MeOH/H2O (80%),
applied to Sephadex LH-20 (MeOH), and then compared to the isolated compounds 1 and
2 using HPLC. The HPLC (Supporting information) showed that the preliminary extract
contained compounds 1 and 2, indicating that the both 1 and 2 are a metabolites of the
plant.
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2.2. The Antichlamydial Activity of Compounds

Chlamydial infections in humans and animals are global health issues. Although
chlamydial infections within the human population are currently manageable with the
existing conventional therapies (antibiotics treatment), the extended exposure of Chlamydia
to antibiotics provides greater opportunity for the development of antibiotic resistance in
chlamydial species. Natural products show significant potential for treating chlamydial
infections, which is expected to produce new antichlamydial treatment modalities. Neolig-
nans have shown multiple activities, such as anticarcinoma, antioxidation, and anti-HIV
effects. In order to find the new medicinal potential of neolignans, the antichlamydial
activity of two novel neolignans, compounds 1 and 2, from the medicinal herb Jatropha
curcas L. was evaluated in this study, which might reveal a new potential antichlamyidal
agent for drug development.

Chlamydia spp. are a group of obligated intracellular bacteria associated with major
diseases in humans and animals. In this study, the antibacterial activities were investigated
in Chlamydia abortus, an important zoonotic chlamydial pathogen. Compounds 1 and
2 showed a similar antichlamydial effect on Chlamydia abortus, in a dose-dependent
manner. As shown in Figure 4A, with the increasing concentration of compound 1, the
intracellular chlamydial inclusions were smaller in size and less in number. At the highest
concentration of 80µM, inclusions were few and tiny, analogous to the positive control
tetracycline (final concentration, 5µM). A similar effect of compound 2 on chlamydial
inclusions of Chlamydia abortus was also observed. The inclusion formation ratio was
significantly reduced in cell cultures treated with compounds 1 and 2 at a concentration of
40 µM or more (Figure 4B,C).
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Figure 4. Dose-dependent antichlamydial effects of compounds 1 and 2. Chlamydia abortus strain GN6
cultured in McCoy cells were treated with various concentrations of compound 1 or 2. Tetracycline
(final concentration of 5µM) was used as a positive control. The chlamydial inclusions were visualized
by immunofluorescent staining, and the inclusion formation ratio was utilized to represent the
antichlamydial activities. (A) Chlamydia abortus inclusions were smaller in size and less in number
in cell cultures treated with compound 1. (B) A significant reduction of the inclusion formation
ratio of Chlamydia abortus in cell cultures treated with compound 1. (C) A significant reduction of
the inclusion formation ratio of Chlamydia abortus in cell cultures treated with compound 2. ns, no
significant difference; p < 0.01, significant difference.

3. Experimental Section
3.1. General Experimental Procedures

Optical rotation was performed on an A RUDOLPH AUTOPOL IV polarimeter
(Rudolph Research Analytical, Madison, WI, USA). The UV spectra were recorded on
a Shimadzu UV-260 spectrophotometer (Shimadzu Corporation, Tokyo, Japan). The IR
spectra were obtained from a Bruker TENSOR27 spectrometer (Rudolph Research Ana-
lytical, Karlsruhe, Baden-Württemberg, Germany). The HRESIMS data were obtained on
a Thermo Scientific LTQ-Orbitrap Elite-ETD MS spectrometer (Thermo Fisher Scientific,
Waltham, MA, USA). Electronic circular dichroism (ECD, JASCO Corporation, Hachioji-shi,
Tokyo, Japan) curves were recorded with an Olis DSM-1000 spectrometer using MeOH as
solvent. 1H, 13C, and 2D NMR spectra were run on a Bruker AVANCE III-500/NEO-600
spectrometer (Rudolph Research Analytical, Madison, WI, USA), at room temperature.
The 1H chemical shifts (δH) and 13C chemical shifts (δC) were measured in ppm, relative
to CDCl3. Semipreparative HPLC was performed on a Shimadzu LC-10AVP liquid chro-
matograph, with a YMC-pack C18 (ODS) column (10 × 250 mm, 10 µm, Tokyo, Japan).
Column chromatography (CC) was performed on Silica gel (200–300 mesh; Qingdao Marine
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Chemical Co., Qingdao, China), GE Sephadex LH-20 (GE Healthcare Bio-Sciences, Uppsala,
Sweden), and MCI gel CHP 20P (75–150 µm, Mitsubishi Chemical Corp., Tokyo, Japan)
and ODS (50 µm, YMC). Silica gel GF254 plates (Qingdao Haiyang Chemical Group Corp.,
Qingdao, China) were used for TLC.

3.2. Plant Materials

Whole plants of Jatropha curcas L. were collected in October 2018 from Hainan Province,
China, and identified by Associate Researcher Dao-Geng Yu of the Chinese Academy of
Tropical Agricultural Science, with a voucher specimen (No. JA20181012) being deposited
in the State Key Laboratory of Applied Organic Chemistry, Lanzhou University.

3.3. Extraction and Isolation

Air-dried whole plants of Jatropha curcas L. (3.0 kg) were extracted with MeOH
(3 × 50 L) at room temperature. The solvent was evaporated to produce a residue (99 g)
that was suspended in H2O and sequentially partitioned with petroleum ether, EtOAc,
and n-BuOH to yield petroleum ether-, EtOAc-, n-BuOH-, and H2O-soluble fractions, re-
spectively. The EtOAc- and n-BuOH-soluble fractions were separated on a macroporous
resin column (MeOH/H2O, 0:100, 30:70, 50:50, 80:20, and 100:0, v/v) to yield five fractions
(Fr. A−Fr. E), respectively. Fr. D (20 g) were subjected to MCI column chromatography
and eluted with a gradient system of MeOH/H2O (from 0:100 to 100:0) to yield ten sub-
fractions (Fr. D1–10). Fr. D5–8 were separated by column chromatography over silica gel
(CH2Cl2/MeOH, from 100:0 to 0:100) to yield 20 fractions (Fr. D. A1–20). Fr. D. A3–5 (3.7 g)
was applied to Sephadex LH-20 (MeOH) columns to yield 15 fractions (Fr. D. A. B1–15). Fr.
D. A. B8 (96 mg) was chromatographically separated using reversed-phase semipreparative
HPLC (C2H3N/H2O, 6/4, v/v, flow rate, 2.0 mL/min) to afford compounds 1 (3.2 mg)
(tR = 26 min) and 2 (2.8 mg) (tR = 24 min).

3.3.1. Jatrolignan C (1)

An amorphous powder; [α]25.6
D −2.0(C 0.5.CH2Cl2); UV (MeOH) λmax (log ε): 266.0,

220.0 and 214.0 nm; IR (KBr) νmax 2961, 1736, 1603, 1511, 1457, 1370, 1260, 1092, 1028, 965,
and 799 cm−1; HRESIMS (m/z 497.1783, [M + Na]+) (calcd for C25H30O9Na, m/z 497.1782);
1H NMR (600 MHz, CDCl3) and 13C NMR data (125 MHz, CDCl3), see Table 1.

3.3.2. Jatrolignan D (2)

An amorphous powder; [α]25.6
D −2.91 (c 0.8, CHCl3); UV (MeOH) λmax (log ε): 266

220.0 and 214 nm; IR (KBr) νmax 2937, 1737, 1601, 1511, 1453, 1368, 1236, 1098, 1033, 964,
and 787 cm−1; HRESIMS (m/z 497.1785, [M + Na]+) (calcd for C25H30O9Na, m/z 497.1782);
1H NMR (600 MHz, CDCl3) and 13C NMR data (125 MHz, CDCl3), see Table 1.

3.4. ECD Calculation

The ECD calculations of 1 and 2 were carried out using previous methods. A detailed
description of this section is provided in the Supplementary Materials.

3.5. Chlamydia Strains and Cell Line

The zoonotic intracellular bacterium Chlamydia abortus strain GN6 used in this study
was cultured in the mouse embryonic fibroblast cell line McCoy, as described previously
(PMID: 33065117).

3.6. Antichlamydial Activity Screening

To test the antichlamyidal activity, a concentration of 0 µM (0.5% DMSO as vehicle)
to 80 µM of each compound was added in the medium. Tetracycline of 5µM final con-
centration was used as a positive control. The Chlamyida inocula were incubated with 1
× 106 McCoy cells per well in a 6-well plate. After centrifugation, inocula were replaced
with chlmaydial growth medium (RPMI-1640 medium supplemented with 5% fetal bovine
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serum (FBS), 100 U/mL of kanamycine, 100 µg/mL of streptomycin, and 1 µg/mL of
cycloheximide) with 0 µM to 80 µM of the tested compound added, and then incubated in a
5% CO2 incubator at 37 ◦C for 48 h. Afterwards, the chlamydial inclusions were visualized
by immunofluorescence staining, using a Chlamydia abortus specific mouse anti-MOMP
monoclonal antibody as the primary antibody. The inclusion formation ratio (expressed as
the number of inclusions/number of cells × 100%) was calculated in the cell cultures [21].

4. Conclusions

Jatrolignans C and D, two new neolignan epimers were isolated from the whole plants
of Euphorbiaceae Jatropha curcas L. The absolute configurations of Jatrolignans C and D were
accurately elucidated by means of spectroscopic techniques, especially an extensive NMR
data analysis and ECD calculation. They exhibited weak antichlamydial activity compared
to tetracycline, which was used as a positive control. To the best of our knowledge, this
is the first report to evaluate the antichlamydial activity of neolignans. As components
of Jatropha curcas L, more detailed chemical and biological investigations of the plant
metabolites are required to determine their contribution to supporting and enhancing the
application of herbal medicines.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27113540/s1, Figure S1–S16: 1D and 2D NMR spectra,
HRESIMS, IR spectra of compounds 1 and 2; Figure S17–S19: The experimental and calculated UV
spectrum of compounds 1 and 2, HPLC spectra of the MeOH extract and compounds 1 and 2; Table
S1–S3: Gibbs free energies and Boltzmann populations of compounds 1 and 2, ECD-Measurement
Information; Computational Details [22–34].
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