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Abstract

The normal vestibulo-ocular reflex (VOR) generates almost perfectly compensatory smooth

eye movements during a ‘head-impulse’ rotation. An imperfect VOR gain provokes addi-

tional compensatory saccades to re-acquire an earth-fixed target. In the present study, we

investigated vestibular and visual contributions on saccade production. Eye position and

velocity during horizontal and vertical canal-plane head-impulses were recorded in the light

and dark from 16 controls, 22 subjects after complete surgical unilateral vestibular deaffer-

entation (UVD), eight subjects with idiopathic bilateral vestibular loss (BVL), and one subject

after complete bilateral vestibular deafferentation (BVD). When impulses were delivered in

the horizontal-canal plane, in complete darkness compared with light, first saccade fre-

quency mean(SEM) reduced from 96.6(1.3)–62.3(8.9) % in BVL but only 98.3(0.6)–92.0

(2.3) % in UVD; saccade amplitudes reduced from 7.0(0.5)–3.6(0.4) ˚ in BVL but were

unchanged 6.2(0.3)–5.5(0.6) ˚ in UVD. In the dark, saccade latencies were prolonged in

lesioned ears, from 168(8.4)–240(24.5) ms in BVL and 177(5.2)–196(5.7) ms in UVD; sac-

cades became less clustered. In BVD, saccades were not completely abolished in the dark,

but their amplitudes decreased from 7.3–3.0 ˚ and latencies became more variable. For

unlesioned ears (controls and unlesioned ears of UVD), saccade frequency also reduced in

the dark, but their small amplitudes slightly increased, while latency and clustering remained

unchanged. First and second saccade frequencies were 75.3(4.5) % and 20.3(4.1) %; with-

out visual fixation they dropped to 32.2(5.0) % and 3.8(1.2) %. The VOR gain was affected

by vision only in unlesioned ears of UVD; gains for the horizontal-plane rose slightly, and the
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vertical-planes reduced slightly. All head-impulse compensatory saccades have a visual

contribution, the magnitude of which depends on the symmetry of vestibular-function and

saccade latency: BVL is more profoundly affected by vision than UVD, and second sac-

cades more than first saccades. Saccades after UVD are probably triggered by contralateral

vestibular function.

Introduction

In health, the brain uses tonic vestibular activity to continuously stabilise gaze in anticipation

of perturbation [1, 2]. This vestibulo-ocular reflex (VOR) operates with such fidelity that, even

during a sudden, rapid, passive ‘head-impulse’ stimulus, gaze is smoothly maintained with an

almost equal and opposite eye response [3]. When the ipsilateral VOR pathway is disrupted, a

head-impulse stimulus generates an inadequate VOR such that gaze is pulled away from an

earth-fixed visual target [4]. This gaze error provokes the brain to generate refixation saccades

to compensate and re-acquire the gaze target [5–7]. The presence of a visible compensatory

saccade was identified as an indirect clinical sign of an insufficient VOR [4], occurring at early

latencies during the head-impulse (‘covert’ saccades) and later at normal visual saccade laten-

cies (‘overt’ saccades) [5][4]. The delivery of an impulse in the plane of each semicircular canal

(SCC) pair effectively (but incompletely) separates the individual SCC response [8], while the

VOR and saccades effectively separate activity of the ear and brain respectively [9, 10] Thus,

the quantitative head-impulse test represents the execution of a vestibular task and a visual

correction.

What is the origin of these corrective saccades? Unlike the relatively simple VOR arc, many

regions of the brain contribute to saccade characteristics, especially those involved with vision,

attention, and movement [11], and thus show a more variable and more complex relationship

with stimuli. For example, the reaction time (latency) of an individual saccade, as well as the

distribution of many saccades [12], demonstrates that the saccadic decision is influenced by

factors such as the task, cognitive state, and sensory modality [13, 14]; saccades to suddenly

appearing visual targets usually occur within 200 ms, yet while ‘express’ saccades as early as

~100 ms that can be learned [15] are still at latencies which far exceed synaptic delays, indicat-

ing a computational decision-making process [16–18].

The vestibular system has a close relationship with the saccadic system [10]. Vestibular

nuclei asymmetry, from visual and vestibular inputs [19], also triggers ‘quick-phase’ saccades

in precisely the opposite direction of ongoing smooth VOR drift [20, 21], while head-impulse

compensatory saccades are required in the same direction as the smooth VOR [4, 5, 22]. In

complete darkness, to imaginary targets compensatory saccades were found to be reduced in

frequency and amplitude after sub-total bilateral vestibular loss (BVL) [23]. While saccades

were abolished in subjects with complete BVL when tested in the dark [24], this effect of vision

was not complete for short-latency saccades after one subject with sub-total BVL, implying

any residual vestibular input may also contribute [25]. Cervical proprioception has also been

suggested as a potential trigger mechanism in BVL [25–27], but little high-velocity human

data exists.

In the present study, we sought to better understand the sensory mechanisms that trigger

compensatory saccades, what they compensate for, and whether there are differences in sac-

cades generated in specific canal planes. To this end, we investigated the effect of peripheral

vestibular function and visual input on compensatory saccade prevalence, amplitude, and
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latency in healthy and lesioned ears. We systemically examined these saccade parameters in

response to head impulses in the planes of all semicircular canals, in normal controls, and after

both unilateral and bilateral vestibular loss. The study also enabled us to compare first and sub-

sequent saccades in their response to visual deprivation.

Methods

Participants

Sixteen adult human subjects without a history of visual loss, audio-vestibular symptoms, a

known neurological disease, or recent neck or eye surgery, were recruited as the healthy nor-

mal control group (Table 1) from a subject pool previously published [12]. The presumed total

unilateral vestibular deafferentation (UVD) group consisted of 22 subjects who underwent

complete unilateral resection for vestibular schwannoma, confirmed through the complete

loss of cervical and ocular vestibular evoked myogenic potentials (c/oVEMPS) to air- and

bone-conducted stimuli [28], all tested more than six weeks after surgery when subjective

visual horizontal (SVH) had returned to within the normal range (2 ˚ [29]) and spontaneous

nystagmus in darkness was not visible. The bilateral vestibular loss (BVL) group consisted of

eight subjects with severe isolated idiopathic BVL [30], all with a vHIT VOR gain>2SD below

the normal range in all canal planes [12]. A single subject–previously reported [25]–was

recruited with complete surgical bilateral vestibular deafferentation (BVD), after four separate

surgeries for treatment of neuro-fibromatosis type 2 (NF2), who still had good vision and lived

independently.

Stimulus

The head impulse stimulus is a short duration (<200 ms), high acceleration (>2000 m/s2),

high peak head velocity (100–300 ˚/s), small amplitude (~10–15˚) head movement passively

delivered with variable timing and direction [31, 32].

Head impulses were performed in the plane of each canal pair [8, 33]. Impulses plane

sequence order was left and right lateral canals (horizontal), right anterior and left posterior

canals (RALP), then left anterior and right posterior canals (LARP). Impulses were performed

with a quasi-random side order, at variable peak head velocities and head amplitudes. The

operator’s hands were placed firmly on the top of the subject’s head during horizontal plane

impulses. The head was not re-centred after each impulse. Given that each impulse was of low

amplitude (~10–15˚) (Table 2), this allowed for delivery of two consecutive impulses in a given

direction in order to make the stimulus unpredictable such that not all impulses were alternat-

ing direction e.g. left-right-left-right but could have been e.g. left-left-right-left.

Table 1. The number of subjects of each case type, the number of canals tested and mean(SD) impulses for each subject, the number of subjects in each condition

test order. UVDc = unilateral vestibular deafferentation contral-lesional, UVDi = unilateral vestibular deafferentation ispi-lesional, BVL = bilateral vestibular loss,

BVD = bilateral vestibular deafferentation.

Canal Visual Condition Order

Case Subjects Lateral Anterior Posterior Light-Dark Dark-Light

Normal 16 32, (17(8.9)) 10, (7(6.5) 10, (12(10.6)) 8 8

UVDc 22 22, (22(10.6)) 21, (10(6.3)) 21, (13(8.8)) 14 8

UVDi 22 22, (32(8.7)) 21, (17(9.5)) 21, (22(10.2)) 14 8

BVL 8 16, (26(9.0)) 14, (17(11.6)) 14, (21(11.8)) 6 2

BVD 1 2, (41(13.9)) 2, (17(13.6)) 2, (25(7.7)) 1 0

https://doi.org/10.1371/journal.pone.0227406.t001

Multisensory catch-up saccades

PLOS ONE | https://doi.org/10.1371/journal.pone.0227406 January 15, 2020 3 / 26

https://doi.org/10.1371/journal.pone.0227406.t001
https://doi.org/10.1371/journal.pone.0227406


Data capture

The experiment was conducted in two small adjoining rooms, both of which could be made

completely dark by sliding doors, with light blocking strips and black curtains separating

them. In all experiments the subject sat on a chair with their eyes 150 cm from a 2 cm diameter

earth-fixed circular target on the wall positioned level with their eyes.

Three-dimensional head position and two-dimensional eye position was recorded at ~250

Hz by a video head impulse test (vHIT) system (USB goggles, Otometrics, Taastrup, Den-

mark). A laptop computer in the adjacent room captured data, including 120 fps video of the

eye. Prior to calibration, goggle fit to the face, nose and scalp was ensured to be snug as possi-

ble. Immediately after calibration and just prior to data collection in each axis, low velocity

head oscillations were performed within each plane to ensure eye tracking was low noise and

properly calibrated. One right-handed operator delivered the stimulus while another con-

trolled data collection in the adjacent room. The operator’s right-hand was placed on top of

the head during RALP and LARP impulses, with care taken to avoid pulling on the hair, skin,

or otherwise interfering with the goggles and elastic straps.

To facilitate the operator maintaining the subject’s correct gaze angle in light and darkness,

the goggle software generated a head angle position that was aligned to ~40 ˚ either side of cen-

ter, while gaze was maintained towards the central target. This provided real-time monitoring

of head and eye position to the operator, who relayed any required corrections throughout the

test.

Two lighting conditions were used: with the rooms lit by eight 60W incandescent light

bulbs (light, or ‘with fixation’) or the rooms completely darkened by all lights switched off and

the doors closed (dark, or ‘without fixation’) to prevent any light leaking (the camera recorded

only invisible infrared light). Prior to any test recording, all subjects were shown the target and

instructed for each test condition. During ‘with visual fixation’ test periods, subjects were

instructed to fixate on the target throughout the test. During ‘without visual fixation’ test peri-

ods, subjects were instructed to fixate on the imagined location of the same target. Subjects of

each group were pseudo-randomly tested in one of two visual condition orders; light then

dark, or dark then light.

Test recordings were performed at least 30 days elapsed since any other previous head-

impulses e.g. clinical examinations, to help minimize any potential learning. Some subjects

were not included in the study when the pupil size in darkness meant unreliable pupil tracking

due to eye lid and lashes artefact. During the experiment all subjects were well, attentive, and

reported no visual problems (besides small refractive errors). Head impulses were collected

within 3–4 minutes per canal pair, which all subjects tolerated and maintained alertness

throughout.

Table 2. The number of head impulses and mean(SD) of stimulus characteristics for each canal in each visual condition.

Canal Condition Number Amplitude (˚) Peak Velocity (˚/s) Peak Acceleration (˚/s2) Duration (ms) Bounce (%)

Lateral Light 2,968 13(3.8) 204(456) 3876(1015.4) 154(16.2) 33(16.6)

Dark 2,846 14(3.8) 205(44.8) 3704(1004.2) 163(16.4) 31(15.8)

Anterior Light 1,819 12(3.5) 174(38.8) 3418(1028.3) 157(24.8) 21(15.1)

Dark 1,382 12(3.0) 174(35.9) 3418(1077.4) 159(21.5) 22(13.8)

Posterior Light 2,023 11(3.5) 167(38.2) 3156(909.2) 152(26.2) 22(17.6)

Dark 1,677 11(3.1) 163(37.5) 3004(987.7) 157(23.4) 22(16.0)

https://doi.org/10.1371/journal.pone.0227406.t002
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Data analysis

Head and eye velocity data were processed offline using custom software (LabView v2012,

National Instruments, Austin, TX, US). Traces were processed concurrently with the high-

speed video to remove traces with artifacts from blinks, half-blinks, and other tracking errors

[34]. Head impulses were detected with a velocity profile described before [35]. Head impulse

onset is defined by the time axis intercept of the line tangential to the head velocity at the peak

acceleration. Laplacian of Gaussian filters are used to measure gradients to reduce the sensitiv-

ity to noise. Excessive, incomplete, or otherwise outlying head velocity traces were visually

identified for each subject’s canal and discarded manually.

The VOR gains were calculated using a previously reported robust ratio method of compar-

ing impulsive head and eye movements using the cumulative head and eye velocity ratio from

60 ms prior to peak acceleration to zero crossing [35]. That is, a position ratio.

We separated the saccades from the VOR using a regularization method that exploits their

differential properties, i.e. the smoothness of the VOR and the temporal characteristics of sac-

cades. First saccades were localized by selecting zero crossing times in the eye acceleration sig-

nal that exhibit a large jerk magnitude (i.e. sharp crests and valleys), using a method previously

described [12]. Each saccade was then modelled as the sum of two Gaussian functions (v̂sac)

which is designed to be representative of saccadic signals typically found in vHIT, which

included post-saccadic oscillations of the iris typically recorded in video methods that track

the pupil [36–38]. The parameters A, B, tpeak and σ were defined as those that minimize the

cost function J and were found using iterative gradient descent. J is designed such that only

high frequency components of the error signal are minimized (as mediated by high-pass filter

fHP); thereby preserving the residual low frequency slow phase signal. Saccade attributes ampli-

tude (˚), peak velocity (˚/s), and onset latency (ms) could then be determined numerically

from the v̂sac equation.

cvsac tð Þ ¼ Ae�
ðt� tpeakÞ

2

2s2 � Be�
ðft� tpeak � 2sÞÞ2

2s2

J ¼
Z

ðfHP�ðveye � cvsacÞÞ
2dt

Saccades were detected and fit automatically, however where the solution was incorrect due

to ambiguity in the data, the parameters were optimized by manual intervention to subjectively

maintain a consistent residual VOR with reference to the head motion.

Only saccades after 50ms were included in this analysis since earlier micro-saccades are

probably due to the visual fixation task [39]. Unless otherwise noted, all saccade characteristics

reported in this study were limited to the compensatory “catch-up” direction i.e. eye move-

ment in the same direction as the smooth VOR and opposite to the head movement. The

grand total of clean traces was 12,715 (28(8) impulses/canal/subject), that included 6,561 first,

3,097 second, and 813 third compensatory saccades.

The visual error prior to each saccade was also calculated. Integration to determine the

position signal introduces a positional drift due to several sources of error e.g. sample noise,

goggle slip, sensor velocity drift, calibration, and requires the assumption that gaze is on the

target prior to and following the head impulse, as maintained by compensatory eye move-

ments. Nevertheless, a positional signal was approximated by assuming a proportion of sensor

drift and eye signal scaling, which was normalized to provide a consistent visual error signal

correlated in time at the onset of each saccade.

Multisensory catch-up saccades
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Statistical analysis

Statistical analysis was performed using statistical analysis software R (v3.5.1) [40] and pack-

ages [40–48]. Due to the nature of the head-impulse test and data cleaning process, subjects

did not have the same number of head-impulses and saccades. Therefore, analyses within the

framework of generalized estimating equations (GEE) assuming exchangeable correlation, was

used to investigate main and interaction effects on dependent variables: for saccade amplitude,

onset latency, latency cluster, and VOR gain we used linear regression, while for saccade fre-

quency we used binomial logistic regression probability (expressed as a percentage (%)). Sac-

cade clustering was determined using standard deviation (SD) of the onset latency for each

canal in each condition. GEE accounts for the correlation in observations due to having multi-

ple observations per subject and provides a robust population level estimate [49]. Comparison

significance was set to 0.05 (95% CI).

Post-hoc analyses were based on paired comparisons of estimated marginal means (EMM),

unless otherwise stated. The pseudo coefficient of determination (R2) between two continuous

variables was determined from generalized linear mixed models (GLMM), with random inter-

cepts for subjects [50, 51]. The conditional r2 provides a goodness of fit based on fixed and ran-

dom effects while marginal r2 provides a goodness of fit based on fixed effects only [52]. To

better isolate the effect of vision in the models of saccade characteristics and VOR gain, the y-

intercept was measured at a VOR gain of 1.0.

Of the lesion groups with more than one subject (Normal, UVD and BVL), the ears of

UVD subjects were separated into the normal contralesional (UVDcontra) and abnormal ipsile-

sional (UVDipsi). Thus, the independent variables for saccade data were the case groups (Nor-

mal, UVDcontra, UVDipsi, BVL), the lighting conditions (Light, Dark), condition test order

(Light-Dark, Dark-Light), and the saccade Sequence (First, Second, Third). For VOR gain

analysis, only case groups and lighting conditions were used, as well as peak head velocity that

was split into Low (120–200 ˚/s) and High (200–300 ˚/s) groups.

Study ethics

This study was carried out with approval by the Sydney Local Health District—Royal Prince

Alfred Zone (protocol number: X13-0425) Human Research Ethics Committee. All subjects

freely gave written informed consent in accordance with the Declaration of Helsinki and later

amendments.

Results

Fig 1 illustrates the effects of visual fixation on refixation saccades of lesioned and unlesioned

ears of single subjects. As also illustrated in Figs 2–6, only minor changes were evident in the

small saccades recorded from unlesioned ears where saccade frequency decreased slightly, and

amplitude increased slightly as visual fixation was removed. Unilaterally deafferented ears also

demonstrated only modest effects of visual deprivation, with a reduced saccade frequency and

increased latency for all canals and reduced saccade amplitude for the PC only. In contrast, the

bilaterally lesioned ears (BVL) demonstrated a decrease in the saccade frequency and ampli-

tude as well as an increase in latency and dispersion. In complete bilateral vestibular deafferen-

tation (BVD), when visual fixation was removed, saccades reduced in frequency but were not

completely abolished, their amplitudes decreased dramatically, and latencies became more var-

iable. Subjects with bilateral vestibular loss (BVL) demonstrated more dramatic effects of

vision on all saccade metrics (frequency, amplitude, latency) compared to the affected ear of

unilateral vestibular loss (UVDipsi).
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Fig 1. Examples of head and eye velocity traces for each case group in each canal of the right ear. Traces with a

yellow background were recorded in the light with a visual target while those with a dark background were recorded in

darkness while subjects imagined the same target. For Normal ears, without visual fixation, saccades became less

frequent but later and larger in amplitude. For UVDcontra ears, saccades also became later and less frequent. For

UVDipsi ears, saccade amplitudes became smaller in the posterior canal (PC) only, but remained unchanged in

frequency and latency in the lateral canal (LC) and anterior canal (AC), while the second saccades became later,

Multisensory catch-up saccades
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1.1 Normal controls

In normal subjects, amplitudes of the first saccade were minuscule with fixation (LC: 1.4

(0.27)˚; AC: 1.6(0.32)˚; PC: 2.1(0.30)˚) and were slightly larger without fixation dfs = 6; F-

ratio = 4.72; p< 0.0001) (Fig 2, Table 3). Saccade frequency reduced in the dark (dfs = 3; F-

ratio = 22.6; p< 0.001). When visual fixation was removed, saccades from the LC and AC

were delayed, but saccades from the PC were unchanged (Figs 4 and 5, Table 3, dfs = 6; F-

ratio = 8.0; p< 0.0001). Saccades were less clustered when vision was denied (dfs = 1; F-

ratio = 29.8; p< 0.001, Fig 6, Table 3). The VOR gains were 0.93(0.01), 0.81(0.03), 0.74(0.3)

for the LC, AC, and PC. A significant three-way analysis (dfs = 6; F-ratio = 3.748; p = 0.001)

revealed that although the LC remained unaffected by the lack of vision (p = 0.612), both verti-

cal canal gains reduced slightly (p< 0.038) (Fig 7).

smaller in amplitude, and less clustered. For BVL, in the dark, the first saccade showed a reduction in amplitude and

frequency, while the second saccades were virtually absent. For BVD, saccade amplitudes were dramatically reduced

for all canals, while their average latency increased, and clustering decreased. UVDc = unilateral vestibular

deafferention contralesion, UVDi = unilateral vestibular deafferention ipsilesion, BVL = bilateral vestibular loss.

https://doi.org/10.1371/journal.pone.0227406.g001

Fig 2. The effect of visual condition on saccade amplitudes of healthy and lesioned ears. When visual fixation is removed (dark) the first saccade

amplitude of the BVL group reduced in all canal planes. In contrast, the affected ear of UVD (UVDipsi) did not demonstrate as great a saccade amplitude

reduction. The second saccade showed less dramatic effects than the first. Saccades from unlesioned ears (Normal, UVDcontra) became slightly larger in

dark. UVDc = unilateral vestibular deafferention contralesion, UVDi = unilateral vestibular deafferention ipsilesion, BVL = bilateral vestibular loss. The

bars represent the estimated marginal mean(CI). Asterisks indicate a significant difference between visual conditions (�: p< 0.05, ��: p< 0.01, ���:

p< 0.0001).

https://doi.org/10.1371/journal.pone.0227406.g002
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1.2 Healthy ears of UVD subjects

In healthy UVD ears, the first saccade amplitudes were small (LC: 2.0(0.26) ˚; AC: 1.7(0.28) ˚;

PC: 2.9(0.26) ˚). Only the LC saccades increased in amplitude without fixation (dfs = 6; F-

ratio = 4.72; p = 0.0001; Fig 2, Table 3). In the dark, saccades were less common from all canals

(dfs = 3; F-ratio = 6.21; p = 0.0003, Fig 3, Table 3). Saccade latency from the LC and AC

increased without visual fixation but the PC was unchanged (dfs = 6; F-ratio = 8.0; p< 0.001;

Fig 4, Table 3). Saccade clustering was unaffected by vision (dfs = 1; F-ratio = 29.8; p = 0.928)

(Table 3).

The VOR gain (LC: 0.87(0.02); AC: 0.84(0.03); PC: 0.73(0.03)) was affected by the lack of

vision, (dfs = 6; F-ratio = 3.748; p = 0.001) rising slightly (0.05) for the horizontal canal plane

of UVD and reducing slightly for both vertical canals (AC: 0.08; PC: 0.05) (Fig 7).

1.3 UVD ears

For lesioned UVD ears, when vision was present, saccade amplitudes were 2.5–4 fold larger

(dfs = 6; F-ratio = 4.72; p< 0.0001) than in healthy ears (LC: 6.2(0.30) ˚; AC: 3.1(0.31) ˚; PC:

Fig 3. The effect of visual condition on saccade frequency in healthy and lesioned ears. The estimated marginal mean(CI) of the probability of a

saccade, represented here as frequency, shows that all case groups were affected by the lack of visual fixation. However, for the first and second saccade of

the lateral canal (LC), UVDipsi was less affected than BVL, but was usually similarly affected in the anterior and posterior canals (AC, PC). UVDc =

unilateral vestibular deafferention contralesion, UVDi = unilateral vestibular deafferention ipsilesion, BVL = bilateral vestibular loss. Asterisks indicate a

significant difference between visual conditions (�: p< 0.05, ��: p< 0.01, ���: p< 0.0001).

https://doi.org/10.1371/journal.pone.0227406.g003
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4.7(0.39) ˚) (Fig 2, Table 3). In the dark, LC and AC saccade amplitudes remained unchanged;

only saccades from the PC became smaller (p = 0.008). Saccades from all canals were less com-

mon in the absence of visual fixation (dfs = 3; F-ratio = 22.6; p = 0.003) (Fig 3, Table 3). The

LC was the least affected and reduced only by 17.6%, while the % reduction of saccade fre-

quency for the vertical canals was more than double that of the LC. In UVD ears, first refixa-

tion saccade latencies from the LC occurred earlier than normal ears (dfs = 6; F-ratio = 8.0;

p< 0.001). Without visual fixation, latencies for the LC were only slightly increased (+19.6 ms;

p< 0.0001), while the vertical canals increased by more than double the LC (p< 0.023)

(Table 3, Fig 4). Saccade clustering was significantly affected by vision, with an increase of sac-

cade dispersal in the dark (dfs = 1; F-ratio = 29.8; p< 0.001).

The VOR gains were 0.36(0.02), 0.47(0.02), 0.25(0.02) from the LC, AC, and PC with fixa-

tion (Fig 7). All were unaffected by vision (dfs = 6; F-ratio = 3.748; p = 0.093).

Fig 4. The effect of visual condition on saccade latency on healthy and lesioned ears. The estimated marginal mean(CI) of saccade latency shows a

prolonged onset without visual fixation in most cases groups. Lesioned ears (BVL, UVDipsi) were at a similar latency with visual fixation, earlier than

unlesioned ears (Normal, UVDcontra), and were delayed similarly without visual fixation. UVDc = unilateral vestibular deafferention contralesion,

UVDi = unilateral vestibular deafferention ipsilesion, BVL = bilateral vestibular loss. Asterisks indicate a significant difference between visual conditions

(�: p< 0.05, ��: p< 0.01, ���: p< 0.0001).

https://doi.org/10.1371/journal.pone.0227406.g004
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1.4 Bilateral vestibular loss

For BVL ears, when visual fixation was present, saccade amplitudes from all canals were 2.5–5

fold larger than from healthy ears (LC: 7.0(0.54); AC: 4.0(0.89); PC: 5.9(0.61); dfs = 6; F-

ratio = 4.72; p = 0.008) (Fig 2, Table 3). Saccade amplitudes from all canals were dramatically

reduced, halving when vision was denied (LC: 3.8(0.37); AC: 2.1(0.35); PC: 2.4(0.39);

p = 0.033).

With visual fixation, saccade frequency was similar to lesioned UVD ears LC: 97(1.3) %;

AC: 84(7.2) %; PC: 85(5.2) %; p> 0.063) and in darkness reduced dramatically from all three

Fig 5. The influence of visual fixation on the number of saccades: First saccades are affected to a lesser degree than the second saccade. The

white background shows the number of saccades observed with visual fixation, while the dark background shows the number of saccades without

visual fixation. In lesioned ears (UVDipsi, BVL, BVD) the number of first and second saccades decreases in the dark. Since the number of impulses

recorded from the vertical (AC, PC) and lateral canals (LC) were dissimilar (Table 1), the findings for these two groups should not be compared.

UVDc = unilateral vestibular deafferention contralesion, UVDi = unilateral vestibular deafferention ipsilesion, BVL = bilateral vestibular loss,

BVD = bilateral vestibular deafferentation.

https://doi.org/10.1371/journal.pone.0227406.g005
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canals (LC: -57%, AC: -51%, PC: -46%; dfs = 3; F-ratio = 22.6; p< 0.0001; Fig 3). With visual

fixation, first saccade latency for all canal planes was similar to the lesioned ear of UVD

(p> 0.348) and increased by similar amount in the dark (p> 0.09) (Fig 4, Table 3). Saccade

clustering also decreased in the dark (dfs = 1; F-ratio = 29.8; p = 0.0034) to be similar to the

lesioned ear of UVD (p = 0.999).

Fig 6. The effect of visual condition on saccade clustering in healthy and lesioned ears. The estimated marginal

mean(CI) of saccade onset latency clustering, calculated using standard deviation, shows that the first saccade of

lesioned ears (UVDipsi, BVL) were more clustered than unlesioned ears (Normal, UVDcontra). However, without visual

fixation the clustering was similar for all case groups. UVDc = unilateral vestibular deafferention contralesion,

UVDi = unilateral vestibular deafferention ipsilesion, BVL = bilateral vestibular loss. Asterisks indicate a significant

difference between visual conditions (�: p< 0.05, ��: p< 0.01, ���: p< 0.0001).

https://doi.org/10.1371/journal.pone.0227406.g006
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Table 3. Saccade characteristics in light and dark. The values are the estimated marginal mean and standard error of the mean(SEM), while the contrast provides the p-

value comparison between light and dark conditions. Values are based on four-way interaction models. Clustering refers to the unitless standard deviation (SD) of the

latency for each saccade from each canal type. UVDc = unilateral vestibular loss, contralesional; UVDi = unilateral vestibular loss, ipsilesional; BVL = bilateral vestibular

loss.

First Second

Parameter Case Condition Lateral Anterior Posterior Lateral Anterior Posterior

Frequency (%) Normal Light 46.9±5.85 15.3±9.11 26.1±15.76 6.9±1.97 1.5±1.12 2.9±2.43

Dark 22.4±5.38 3.1±2.67 15.5±18.76 2.4±0.89 0.3±0.25 1.5±2.18

Contrast < 0.001 0.134 0.379 0.001 0.226 0.381

UVDc Light 82±3.91 29.2±5.65 52.9±7.73 27.5±5.4 3.3±1.06 8.6±2.41

Dark 34.8±7.15 8.8±3.74 19.9±6.55 4.3±1.56 0.8±0.42 2±0.92

Contrast < 0.001 < 0.001 < 0.001 < 0.001 0.002 0.001

UVDi Light 98.3±0.61 88.4±3.58 93.4±2.44 83.2±4.43 38.9±7.57 54±8.52

Dark 92±2.28 43.1±7.42 64±6.26 49±6.64 6±2.06 12.9±3.7

Contrast 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

BVL Light 96.6±1.26 83.8±7.24 84.9±5.20 70.5±7.46 30.2±9.99 31.9±8.37

Dark 62.3±8.86 26.3±10.22 39.6±8.84 12.1±4.38 2.9±1.54 5.2±2.27

Contrast < 0.001 < 0.001 < 0.001 < 0.001 0.004 < 0.001

Amplitude (˚) Normal Light 1.4±0.27 1.6±0.32 2.1±0.3 1.2±0.31 1.3±0.29 1.9±0.51

Dark 2.1±0.28 2.3±0.28 3.2±0.36 2.4±0.34 1.9±0.27 2.5±0.29

Contrast < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.204

UVDc Light 2.0±0.26 1.7±0.28 2.9±0.26 1.6±0.29 1.6±0.37 1.6±0.31

Dark 2.5±0.34 2.0±0.22 3.0±0.33 2.5±0.31 2.0±0.26 2.5±0.67

Contrast 0.019 0.149 0.632 < 0.001 0.44 0.106

UVDi Light 6.2±0.30 3.1±0.37 4.7±0.39 4.0±0.37 2.8±0.31 3.5±0.29

Dark 5.5±0.56 3.1±0.31 3.8±0.39 4.0±0.44 2.9±0.28 3.2±0.38

Contrast 0.128 0.892 0.008 0.881 0.683 0.525

BVL Light 7.0±0.54 4.0±0.89 5.9±0.61 4.5±0.51 2.5±0.34 3.0±0.33

Dark 3.8±0.37 2.1±0.35 2.4±0.39 3.2±0.48 2±0.44 2.3±0.58

Contrast < 0.001 0.033 < 0.001 0.091 0.03 0.155

Latency (ms) Normal Light 232±10.7 264±20.9 248±13.5 379±14.3 383±18.8 376±7.5

Dark 332±12.5 315±18.2 266±10.1 327±20.5 439±8.1 373±10.3

Contrast < 0.001 0.036 0.204 0.055 0.002 0.602

UVDc Light 224±12.2 312±14.0 228±18.0 379±14.3 421±7.5 376±21.8

Dark 311±14.0 349±16.2 276±30 332±37.7 379±40.4 336±6.7

Contrast < 0.001 0.042 0.079 0.221 0.31 0.057

UVDi Light 177±5.2 203±8.7 162±7.1 225±13.4 276±19.8 306±15.2

Dark 196±5.7 252±18.6 223±10.4 298±11.5 348±17.9 328±14.5

Contrast 0.001 0.023 < 0.001 < 0.001 0.003 0.224

BVL Light 168±8.4 187±15.1 184±22 274±13.2 276±25.6 300±14.6

Dark 240±24.5 287±15.4 227±18 354±26.9 407±27 346±15.1

Contrast 0.003 < 0.001 0.178 0.006 < 0.001 0.001

Clustering Normal Light 77±4.8 81±6.2 82±5.1 55±9 59±9.5 60±8.9

Dark 102±6.8 106±7.5 107±7.3 74±6.7 78±7.7 79±7.2

Contrast 0.001 0.001 0.001 0.083 0.083 0.083

UVDc Light 83±5.8 87±7.1 88±6.5 67±6.2 71±7 72±6.1

Dark 84±11.2 88±11.2 89±11.1 55±8.0 59±8.2 60±8.2

Contrast 0.982 0.982 0.982 0.205 0.205 0.205

UVDi Light 54±5.0 58±6.2 59±5.2 62±4.0 66±4.7 67±3.7

Dark 92±5.2 96±6.2 96±5.0 88±6.0 93±7.0 94±5.3

Contrast < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

BVL Light 51±10.4 55±11.2 56±9.9 66±7.5 70±7.8 71±6.0

Dark 102±9.4 106±9.2 107±9.9 78±6.4 82±6.2 83±5.6

Contrast 0.004 0.004 0.004 0.058 0.058 0.058

https://doi.org/10.1371/journal.pone.0227406.t003
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The VOR gains for each canal in light was LC: 0.16(0.04), AC: 0.31(0.05), and PC: 0.15

(0.03) (Fig 7). Only the AC decreased slightly (-0.06) without fixation dfs = 6; F-ratio = 3.748;

p = 0.0032), as the others were unchanged.

In the single subject with complete BVD, first saccade amplitudes from the LC were 7.3(SD

2.62) ˚ with visual fixation and almost halved to 3.1(0.94) ˚ without visual fixation, while the

AC and PC plane saccades reduced even further (Fig 1, Table 4). Saccade frequency also

reduced when visual fixation was removed (LC: -10%; AC 56%; PC: 20%), but surprisingly sac-

cades were not completely eliminated. Saccade latencies with and without vision in the LC

were 165(SD 17) ms and 168(SD 70), with dispersal increasing from 17(SD 1.2) to 66(SD 13),

Fig 7. The effect of visual fixation on VOR gain. The estimated marginal mean(CI) of ears from Normal and

UVDcontra ears showed small changes, but lesioned ears (UVDipsi, BVL) were unaffected. UVDc = unilateral vestibular

deafferention contralesion, UVDi = unilateral vestibular deafferention ipsilesion, BVL = bilateral vestibular loss.

Asterisks indicate a significant difference between visual conditions (�: p< 0.05, ��: p< 0.01, ���: p< 0.0001).

https://doi.org/10.1371/journal.pone.0227406.g007
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with the AC and PC planes following a similar but more pronounced changes. The VOR gain

values were already very low and changed by less than 0.02(SD 0.02) in the dark.

1.5 How do individual canals differ in their saccade metrics?

A significant three-way interaction (dfs = 6; F-ratio = 4.72; p = 0.0001) found that in the

lesioned ears (UVDipsi, BVL), regardless of visual condition, the first saccades of LC impulses

showed the largest amplitudes (p< 0.02), while AC impulses were not different (p< 0.052)

(Fig 2). For unlesioned ears (normal, UVDcontra), the PC impulses demonstrated a trend to

produce the largest saccade amplitudes (p< 0.055). Overall, compensatory saccades were

most frequent in LC impulses, followed by the PC, then the AC (p< 0.001) (Fig 3, Table 3).

The latency of saccades was typically earliest in the LC, PC, then AC, with the mean difference

across case groups -3(39.2) ms in light and +14(44.3) ms in darkness.

1.6 How do early and late saccades differ?

Covert and overt saccades. From all case groups and in both visual conditions saccades

that occurred during the head impulse (“covert”) saccade amplitudes were always larger in

amplitude than saccades that occurred after the head impulse (“overt”) (dfs = 1; F-ratio =

81.94; p< 0.001).

First and second saccades. In normal controls, when there was visual fixation, we found

no difference in the amplitude of the first and second saccade (dfs = 3; F-ratio = 16.97;

p> 0.13).

With visual fixation, all canals of BVL and the LC and PC of both lesioned and unlesioned

UVD ears had significantly larger first saccades compared with second saccades (dfs = 1; F-

ratio = 151.68; p< 0.03).

We examined the influence of saccade number on the effect of vision for each case group

by a three-way comparison (dfs = 3, F = 17.99, p< 0.0001). For normal subjects, the effect of

vision on the saccade frequency was mean(SEM) 12.7(4.86) % smaller (p = 0.0092) and on

latency was 62(30.62) ms less (p = 0.0413) for the second saccade compared with the first,

while the effect on amplitude and clustering was similar (p> 0.35). For unlesioned UVD ears,

the effect on latency was 73(26.40) ms less (p = 0.0055) and on clustering was 49.0(21.79) less
(p = 0.0247) for the second saccade, while frequency and amplitude were similar (p> 0.061).

For lesioned UVD ears, the effect of vision on frequency was 27.5(7.82) % more (p = 0.004)

and on amplitude was 1.1(0.47) ˚ more (p = 0.0193) for the second saccade, while latency and

Table 4. The mean(SD) of saccade and the VOR gain characteristics in one subject with complete BVD. Canals of the same type are combined from both ears. NA

indicates an insufficient number of saccades to determine metric. Clustering refers to the standard deviation of saccade latency.

First Saccade Second Saccade

Parameter Condition Lateral Anterior Posterior Lateral Anterior Posterior

Frequency (%) Light 100±0 98±2 100±0 96±5 64±22 65±39

Dark 90±7 42±1 80±25 28±0 4±NA 18±7

Amplitude (˚) Light 7.3±2.62 6.6±2.35 6.7±2.06 2.3±1.17 1.5±0.97 0.6±0.24

Dark 3.1±0.94 1.1±0.89 1.2±0.7 1.7±0.63 0.6±NA 0.7±0.33

Latency (ms) Light 165±17 190±67.4 205±79.6 362±70.7 424±79.2 414±76.6

Dark 168±70.2 236±102.3 281±118.6 472±68.9 547±NA 477±112.7

Clustering Light 17±1.2 51±39.8 60±47 69±10.1 72±7.2 39±NA

Dark 66±13.3 104±16.7 96±18.7 69±0 NA 122±NA

VOR Gain Light -0.03±0.026 0.00±0.082 -0.01±0.029

Dark -0.01±0.024 -0.01±0.073 -0.01±0.031

https://doi.org/10.1371/journal.pone.0227406.t004
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clustering were similar (p> 0.077). For BVL subjects, the effect of vision on frequency was

36.1(6.00) % more (p< 0.0001), on amplitude was 1.8(0.314) ˚ less (p< 0.0001), and on clus-

tering was 44.5(15.60) less (p = 0.0043) for the second saccade, while the effect on latency was

similar (p = 0.82).

1.7 Are anti-compensatory saccades also affected by vision?

Anti-compensatory saccades occurred slightly more often when the order of the visual condi-

tion was light-dark compared to dark-light (Fig 1) (+3.9(1.70) %, dfs = 1; F-ratio = 0.2;

p = 0.037). The frequency of compensatory saccades was unaffected by the condition order

(p = 0.5).

1.8 Does vision affect the VOR gain?

As shown as Fig 7 and described earlier for each case group, only minor changes in the VOR

gain were observed between visual conditions. Significant factors (p< 0.047) affecting the

VOR gain included the case group (dfs = 3; F-ratio = 494.5), the canal group (df = 2; F-

ratio = 47.55), and the visual condition (df = 1; F-ratio = 3.9). Subject age group (df = 2; F-

ratio = 1.79), sex (df = 1; F-ratio = 0.66), and the condition test order (df = 1; F-ratio = 0.106)

was not significant (p> 0.17).

1.9 Are there differences in abducting and adducting saccade parameters?

Adducting and abducting horizontal saccades of the right eye, to right UVD and left UVD

lesions respectively, were of similar amplitude (df = 1; F-ratio = 0.066), frequency (df = 1; F-

ratio = 1.47), and latency (df = 1; F-ratio = 2.454) in and between visual conditions (p> 0.11).

The VOR gain was likewise unaffected (dfs = 2; F-ratio = 0.164; p = 0.8483).

1.10 The relationship between VOR gain on saccade metrics

Amplitude. Saccade amplitude showed a strongly correlated negative relationship (condi-

tional r2 = -0.80, marginal r2 = -0.17) with the VOR gain (Fig 8): saccade amplitudes increased

as VOR gain reduced, with a significant interaction of visual condition and saccade number

(p< 0.0001). Comparing visual conditions, all saccades showed a higher intercept at 1.0 with-

out visual fixation (p< 0.001), but only the first and second saccade showed a steeper slope in

the light compared with the dark (p< 0.001). Comparing saccade numbers, with visual fixa-

tion all saccades showed a similar intercept at 1.0 (p> 0.165), while the first saccade showed a

steeper slope than the second and third saccade (p< 0.0001). Without visual fixation the inter-

cept of first saccade was more than the third saccades (p < 0.0254), and all saccades showed a

similar slope (p> 0.100).

Frequency. Saccade frequency also showed a negative relationship (conditional r2 = -0.69,

marginal r2 = -0.61) with the VOR gain (Fig 8); saccade frequency increased as the VOR gain

reduced, with a significant interaction of visual condition and saccade number (p = 0.0165).

Comparing visual conditions, all saccades showed a lower intercept without visual fixation

(p< 0.045). The first saccade showed a similar slope with and without visual fixation

(p = 0.542), while the second and third saccades showed a steeper slope with visual fixation

(p< 0.003). Comparing the saccade number, with visual fixation the first saccade showed a

higher intercept at 1.0 compared to the second and third saccade (p< 0.008), while without

visual fixation the first saccade was greater than the third saccade only (p = 0.001). All saccades

showed a similar slope within each visual condition (p> 0.0213), except with visual fixation

the slope of the second saccade was steeper than the first saccade (p = 0.0273).
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Latency. Saccade onset latency showed a strongly correlated positive relationship (condi-

tional r2 = 0.79, marginal r2 = 0.24) with the VOR gain (Fig 8); saccade latency decreased as

VOR gain reduced, with a significant interaction of visual condition and saccade number

(p = 0.003). Comparing visual conditions, the first saccade showed a lower intercept at 1.0

with visual fixation (p< 0.0001) but similar slope between visual conditions (p = 0.933), while

the second showed a lower intercept (p = 0.0078) but shallower slope (p< 0.0001) without

visual fixation (Fig 8). Comparing the saccade number, with visual fixation the order of inter-

cepts at 1.0 order was first, second, then the third saccade (p< 0.0134). The first and second

showed similar slopes (p = 0.231), while the third was shallower (p< 0.0011). Without visual

Fig 8. Saccade characteristics varied as a function of the VOR gain and visual condition. The colored lines show the

estimated marginal mean(SEM) for each visual condition and individual points represent the mean of each individual

subject’s canals. A) The first saccade amplitudes became increasingly affected by the loss of visual fixation as the VOR gain

reduced, however, later saccades were less affected. B.) All saccades were less common without visual fixation, especially as

the VOR gain reduced. The ribbon is non-linear due to calculation using binomial logistic regression. C.) The first saccade

latency became earlier with decreasing VOR gain and was delayed without visual fixation. Latency of the second and third

saccades were less affected by the reduction in VOR gain and the loss of visual fixation. D.) Clustering of the first saccade

increased as the VOR gain reduced, however, without visual fixation clustering decreased and showed little relationship

with the VOR gain. Asterisks indicate a significant difference in the slope between visual conditions (�: p< 0.05, ��:

p< 0.01, ���: p< 0.0001).

https://doi.org/10.1371/journal.pone.0227406.g008
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fixation, the intercepts of all saccades at 1.0 were similar (p> 0.103), while the first saccade

was steeper than the second and third saccade (p< 0.0007).

Clustering. Saccade latency SD also showed a positive relationship (conditional r2 = 0.77,

marginal r2 = 0.12) with the VOR gain (Fig 8); thus, saccade clustering increased as the

VOR gain reduced, with a significant interaction of visual condition and saccade number

(p = 0.0093). Comparing visual conditions, all saccades showed a similar intercept at 1.0

(p> 0.372), but while the first saccade showed a steeper positive slope with visual fixation

(p< 0.0003) the second saccade showed a slightly negative slope without visual fixation

(p< 0.0378). The third saccade was similar between visual conditions (p> 0.372). Comparing

the saccade number, with visual fixation the intercept at 1.0 of the first saccade was greater

than second saccade (p = 0.0053) but showed a much steeper slope than the second and third

saccade (p< 0.0001). The second and third saccade showed similar intercepts and slopes

(p> 0.638). Without visual fixation, the second saccade showed a slightly lower intercept at

1.0 than the first saccade (p = 0.0373), but all saccades showed a similar slope (p> 0.193).

1.11 Saccade visual position error

The VOR gain. The visual position error of saccades in the light showed a strongly corre-

lated negative relationship with the VOR gain (conditional r2 = 0.8471, marginal r2 = -0.431):

as the VOR gain reduced the visual error increased. The first saccade showed significantly

faster rate of increase in visual error than compared to later saccades (slope = 6.79(upper–

lower CI: 10.94–2.64); p< 0.0459), while the second and third saccades were similar

(slope = 2.77(6.92– -1.38); slope = 0.92(5.08– -3.25); p = 0.359).

Saccade amplitude. The visual position error of saccades in the light showed a very

strongly correlated positive relationship with the amplitude of the subsequent saccade (condi-

tional r2 = 0.975, marginal r2 = 0.047): as visual position error increased, the saccade amplitude

also increased. Each saccade in the sequence (first: slope = 5.17(upper–lower CI: 17.90– -7.55),

second: slope = 3.50(16.22– -9.66), third: slope = 2.75(15.50– -10.00)) showed similar rates of

increase in amplitudes for the same visual error (p> 0.7031).

Discussion

In this study, we investigated the effect of vision on the VOR gain and compensatory saccades

in subjects with and without vestibular function. Bilaterally lesioned ears demonstrated the

greatest changes in response to darkness, with a reduction in saccade amplitude, frequency,

and clustering, and an increased latency. These results demonstrate that vision universally con-

tributes to refixation saccades, however, the extent of this contribution is strongly dependent

on residual vestibular function.

The presence of the VOR and saccades to maintain a gaze target (real or imaginary) can be

thought of as compensatory velocity and position changes respectively [7, 22]. After the unilat-

eral loss of the compensatory velocity response in UVDipsi, we found subjects showed a new

compensatory position response that depended on the velocity signal from the intact UVDcontra

ear. While a single intact ear (UVDipsi) was insufficient to generate a velocity change it was suf-

ficient to generate a position change (Figs 1, 2 and 7), perhaps coordinated by separate velocity

and position estimates [53]. After UVD the frequency and amplitude of the first saccade–often

triggered during the head motion (‘covert saccades’) i.e. with dynamic vestibular input–

showed little changes without vision (Figs 1 and 2). Thus, we could consider them an even

more specific sign of ipsilateral vestibular loss than the more visually sensitive second and

third saccades–usually triggered after the head comes to a stop (‘overt saccades’) i.e. without

dynamic vestibular input [5, 25]. In summary, the first saccade could be thought as
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representing the vestibular velocity error while later saccades as representing the earlier sac-

cade’s visual position error/s.

In contrast, after the bilateral loss of the compensatory velocity reflex in BVL, we found that

subjects relied heavily in visual input–possibly either a position or velocity signal [54]–to gen-

erate the required position change, especially after the head stopped moving (Fig 1). Previous

studies of compensatory saccades and posture after BVL also found an increased dependence

on vision for position corrections [7, 22, 23, 55]. Surprisingly, we found that in the horizontal

plane a single bilaterally deafferented (BVD) subject could still regularly generate early sac-

cades without visual fixation (Fig 1), supporting a proprioceptive trigger [26], although these

saccades were much smaller in amplitude and scattered in latency. Saccades were more

affected in the vertical planes (Fig 1). Like BVD, saccades after BVL show a much greater

dependence on visual fixation (Fig 3) [23]. The early latency, large amplitude, very frequent

saccades generated by complete BVD with vision and complete UVD (UVDipsi) without vision

demonstrates that: for early saccades, residual vestibular input is just as adequate as visual

input, and that early saccade triggering has sensory flexibility. The origin of early compensa-

tory saccades therefore appears to be multi-sensory, dependent at least on any vestibular and

visual inputs, a flexibility that highlights a key advantage over the VOR [26, 56].

As reported by numerous previous investigators [5, 7, 22, 23, 25, 57–61], we found that as

the VOR loss increased compensatory saccade characteristics generally followed a similar pat-

tern: the amplitude, frequency, and clustering increased while the latency became earlier (Fig

8). The rate of these changes to the reduction in VOR gain depended on both the visual condi-

tion and saccade number. Almost all characteristics of the first saccade strongly depended on

vestibular function alone, as amplitudes and frequency increased, and latency decreased as the

VOR gain reduced (Fig 8). However, in dark clustering remained unchanged by VOR gain

loss, thus was related only to the visual condition. The presence of visual fixation enhanced

saccade amplitude, frequency, and clustering, and decreased onset latency. The second saccade

also showed dependence on both vestibular and visual function, however, this effect was

weaker. Visual fixation increased saccade frequency, while amplitude, latency, and clustering

showed a smaller effect. The third saccade showed the weakest dependence on both vestibular

function and visual condition, with only frequency being affected by vision. Thus, the

sequence of saccades differentially reflected an underlying multisensory dependence on vestib-

ular function and visual conditions.

Comparing the effect of vision on the saccade number, we found that towards normal ears

(normal and unlesioned UVD) the effect on the second saccade was generally similar or less

compared to the first saccade. However, towards lesioned ears (lesioned UVD and BVL) the

effect of vision on the second saccade was generally similar or more pronounced compared to

the first saccade. Smaller effects reflect the already smaller amplitude, less frequent, and

decreased clustering of the second saccade. This pattern probably reflects the underlying func-

tion of the second saccade to correct for the earlier first saccade, thus, after vestibular loss

depends more on vision for the positional error signal.

Some studies have reported that the trial by trial variability in saccade latency (clustering)

is related to vestibular compensation and rehabilitation [58, 59, 62]. We found that saccade

clustering is strongly related to visual input but only weakly related to vestibular input (Fig 8),

signifying that saccade clustering better represents visual substitution than vestibular

compensation.

Without visual fixation normal subjects showed saccades that were small in amplitude, less

frequent, and at longer latency compared to lesioned subjects. These saccade characteristics

must change after vestibular loss to accomplish the goal to keep a stable gaze fixation, thereby

proxy reflect the loss of VOR [4]. However, the negative effects of vision were significantly less
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in the earliest saccades to UVDipsi compared to BVL, such that these most likely represent a

form of saccadic motor learning to a vestibular stimulus [53]. Sensori-motor learning of both

the VOR and saccades requires time and exposure to errors [63, 64], suggesting that saccades

characteristics could be of value in determining the age of a lesion e.g. useful when seeking to

separate old and new vestibular lesions in sequential vestibular insults [65], as well as tracking

vestibular rehabilitation intervention [57, 66, 67] and generally probing cognitive factors [68,

69] involved in compensating for the loss of a congenital reflex arc.

Previous studies have shown that saccades can rapidly become earlier in latency and larger

in amplitude after unilateral and bilateral vestibular lesions [5, 25, 57, 58, 60, 70]. The rapid

temporal clustering and reduction of overall saccade latency over time after vestibular loss

indicates a simplification or reinforcement of the new stimulus-response relationship i.e.

becoming more ‘reflexive’ [71, 72]. Even to passive impulsive head movements, subtle changes

in visual fixation can modulate the VOR gain by a small degree [54, 71, 73], over multiple time-

scales [74], supplemented by the appearance of saccades. With different time scales of sensori-

motor learning and forgetting in the VOR and saccadic systems, each provides different

quantitative insight into the individual’s synthesis of the loss and their learning history [6].

This data builds on numerous previous reports [6, 22] and hypotheses [25, 56] that saccades

have the capability to become a ‘conditioned-reflex’ or a ‘pseudo-reflex’ i.e. a response paired

to a novel stimulus. A newly conditioned reflex, being conditional in nature [71], represents a

more complex, temporary, learnt, and thus flexible relationship between stimulus and

response, in contrast to the simpler, permanent, congenital, and thus less flexible reflex path-

ways [1, 75]. The VOR is truly reflexive, but while the saccadic system is not reflexive–indeed,

can be modelled as a computational decision process [13, 14, 76]–still shows a close physiologi-

cal relationship with the vestibular system [10, 20, 77] e.g. nystagmus during head rotations

[78].

After VOR loss short latency compensatory saccades can improve visual acuity [79–82], so

the VOR and saccades provide complimentary and differential roles in gaze by generating

compensatory velocity and position changes respectively [7, 53]. The neuro-physiology of sac-

cade modification after loss of the VOR could be explained by saccade motor learning para-

digms, in man [83, 84] and monkey [85, 86], by which saccade characteristics are modulated

over time by visual error feedback loops through the super colliculus and cerebellum [87–92].

In summary, the present study demonstrates that even healthy controls and the intact ears

in UVD generate small refixation saccades. In lesioned ears, after the loss of the VOR, compen-

satory saccades provide a complimentary mechanism to reduce gaze error. Saccade frequency

in healthy and lesioned ears is influenced by vision, decreasing when vision is denied. In

lesioned ears, the effect of vision on saccade amplitude depends on the symmetry of the loss.

After unilateral vestibular loss the remaining healthy ear can provide adequate input to trigger

early compensatory saccades, however, bilateral vestibular loss results in saccades with a much

greater dependence on vision. These observations could be extended when serially assessing

the VOR after vestibular loss and may provide guidance and insight for quantification of ves-

tibular rehabilitation.

Supporting information

S1 Table. Summary of subject data. The table follows tidy data principles, with each column

a variable and each row an observation. Each numeric variable shows the mean±SD. SacNum-

ber refers to the first and second saccade after the head impulse onset. SCC indicates the semi-

circular canal. NaN values indicate insufficient data to determine a value.
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57. Matiñó-Soler E, Rey-Martinez J, Trinidad-Ruiz G, Batuecas-Caletrio A, Pérez Fernández N. A new
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