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Time series analysis of temporal 
trends in hemorrhagic fever with 
renal syndrome morbidity rate in 
China from 2005 to 2019
Yongbin Wang1,3 ✉, Chunjie Xu2,3, Weidong Wu1, Jingchao Ren1, Yuchun Li1, Lihui Gui1 & 
Sanqiao Yao1

Hemorrhagic fever with renal syndrome (HFRS) is seriously endemic in China with 70%~90% of the 
notified cases worldwide and showing an epidemic tendency of upturn in recent years. Early detection 
for its future epidemic trends plays a pivotal role in combating this threat. In this scenario, our study 
investigates the suitability for application in analyzing and forecasting the epidemic tendencies based 
on the monthly HFRS morbidity data from 2005 through 2019 using the nonlinear model-based self-
exciting threshold autoregressive (SETAR) and logistic smooth transition autoregressive (LSTAR) 
methods. The experimental results manifested that the SETAR and LSTAR approaches presented 
smaller values among the performance measures in both two forecasting subsamples, when compared 
with the most extensively used seasonal autoregressive integrated moving average (SARIMA) method, 
and the former slightly outperformed the latter. Descriptive statistics showed an epidemic tendency 
of downturn with average annual percent change (AAPC) of −5.640% in overall HFRS, however, an 
upward trend with an AAPC = 1.213% was observed since 2016 and according to the forecasts using the 
SETAR, it would seemingly experience an outbreak of HFRS in China in December 2019. Remarkably, 
there were dual-peak patterns in HFRS incidence with a strong one occurring in November until January 
of the following year, additionally, a weak one in May and June annually. Therefore, the SETAR and 
LSTAR approaches may be a potential useful tool in analyzing the temporal behaviors of HFRS in China.

Hemorrhagic fever with renal syndrome (HFRS) is a rodent-borne contagious disease caused by several distinct 
families of Hantaviruses, which can lead to various degrees of fever, shock, congestion, bleeding, and acute renal 
failure1. Currently, this disease globally occurs in more than seventy countries, and an approximate 70%~90% 
notification was reported in China2, where HFRS is still considered a serious public health problem due to its 
highly endemic in 28 of 31 provinces, municipal districts and autonomous regions with about 20,000–50,000 
incident cases per year3–5, leading to a fatality rate of around 3%~10%6, despite many efforts, such as effective 
rodent control, vaccination, and environmental management, in reducing HFRS-related incidence over the past 
decades7. In China, the pathogenic agents of HFRS predominantly include Hantaan virus (HTNV) and Seoul 
virus (SEOV), though other viruses can be involved4,8,9. Since 1990s, under the intervention-driven strategies, the 
notified HFRS cases have begun to decline2, but its epidemic trends of HFRS seemingly show a recurring sign in 
recent years9–13. Therefore, to facilitate to offer a quantitative and explicit direction for the prevention and control 
of HFRS, a forecasting model with strong robustness and high accuracy to understand its epidemic trajectories 
is required.

At present, many forecasting methods that act as effective policy-supportive tools have widely been adopted 
to assess and analyze the temporal patterns of the incidence of contagious diseases, such as pertussis14, HFRS3, 
pulmonary tuberculosis15, influenza16, syphilis17, etc. Of them, the most commonly used model is the seasonal 
autoregressive integrated moving average (SARIMA) method that essentially belongs to a linear model3,17. 
However, what is most often encountered in practice is that the data-generating process is highly nonlinear, 
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especially for the morbidity series of infectious diseases because such data often include complicated traits of sea-
sonality, secular trend, cyclicity, and stochastic fluctuation15,18. At this time, the linear methods simulated to such 
complicated nonlinear data frequently fail to obtain satisfactory forecasting performance, whereas the nonlinear 
methods may do better in that they can better capture the underlying dynamic mechanism of the target series18,19. 
Currently, numerous nonlinear techniques have been recommended to evaluate and analyze the temporal pat-
terns of the incidence of contagious diseases, such as artificial neural networks (ANNS)19, support vector machine 
(SVM)20, autoregressive conditional heteroscedasticity (ARCH)21, Error-Trend-Seasonal (ETS) approaches22, etc. 
However, the popular non-linear regime-switching models such as self-exciting threshold autoregressive (SETAR) 
and logistic smooth transition autoregressive (LSTAR) specifications so far remain unexplored for the incidence 
time series forecasting of contagious diseases. Therefore, in the setting of the epidemic status of HFRS in China, 
the aim is to investigate their forecasting abilities of the SETAR and LSTAR approaches to the HFRS incidence 
data. Meanwhile, their predictive powers were compared with the SARIMA method to detect the best-performing 
one that can act as an effective policy-supportive tool for the prevention and control of HFRS.

Materials and Methods
Data source.  In this time series analysis, the monthly new cases of HFRS from January 1, 2005 through 
September 31, 2019 were collected from the national notifiable infectious disease surveillance system (NNIDSS), 
and the population data were extracted from National Bureau of Statistics (http://www.stats.gov.cn/tjsj/ndsj/). In 
China (The geographical distribution of China is shown in Fig. 1), the clinically diagnosed or laboratory-con-
firmed HFRS cases based on the diagnostic criteria for notifiable infectious diseases must be registered on the 
NNIDSS within 24 hours. A case was confirmed based on the following diagnostic principles23: 1) Epidemiological 
exposure histories. A person has a history of living in the epidemic area or has a direct or indirect contact history 
with the infected rodents or their excreta (such as feces, saliva, and urine) and secretions within 2 months before 
the onset of this disease. 2) Clinical manifestations. A person is characterized by gastrointestinal symptoms (such 
as asthenia, nausea, vomiting, abdominal pain, and diarrhea) and manifestations of capillary damage (such as 
hyperemia, exudation, and hemorrhage), coupled with hypotension shock or renal damage. 3) Laboratory test. 
The person with at least one of the laboratory test results in addition to the above 1) and 2) can be confirmed: a 
positive result for the serum specific IgM antibody, or a 4-time increment for the serum specific IgG antibody in 
convalescent period than in acute period, or hantavirus RNA detected from the patients, or hantavirus isolated 
from the patients. We obtained all the data in an anonymous format, without access to any initial information 
identifying patients, and thus the ethical approval was not needed.

Building SARIMA model.  Owing to the seasonal variation of infectious diseases, the SARIMA approach 
was often built to simulate and forecast their epidemic levels5. This approach is composed of seasonal and 
non-seasonal parts and can be written as SARIMA(p, d, q)(P, D, Q)s, in which p, d, and q signify the non-seasonal 
autoregressive (AR) order, the non-seasonal differenced times, and the non-seasonal moving average (MA) order, 
respectively; P, D, and Q represent the seasonal AR (SAR) order, the seasonal differenced times, and the seasonal 
MA (SMA) order, respectively; S denotes the length of seasonal pattern (S = 12 in this work)5. The development 
of the SARIMA approach was followed by four procedures: Initially, we judged whether the HFRS morbidity 
series was stationary by plotting its sequence graph and performing an augmented Dickey-Fuller (ADF) test22,24. 
If a nonstationary series was shown, the transformed techniques including logarithm or square root, or/and dif-
ference were employed to make it stationary19. Secondly, the autocorrelation function (ACF) and partial autocor-
relation function (PACF) diagrams were applied to choose its plausible parameters of this model3. Subsequently, 
we determined the preferred SARIMA approach. Among the possible models, the one that presented the low-
est values of the Bayesian information criterion (BIC) and Akaike information criterion (AIC), together with 
the maximum value of the Log-likelihood was considered as the best-fitting22. Finally, we further conducted a 

Figure 1.  Geographical distribution of China (Created by ArcGIS 10.4.1). Note: The basic geographic 
information data of China were downloaded from the National Geomatics Center of China (Available at: http://
www.ngcc.cn/ngcc/. Accessed on 5 May, 2020).
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checking for its parameters and residuals of this optimal model. Once all parameters displayed statistical signifi-
cances (p < 0.05) and the residuals showed a white noise series under the Ljung-Box test (p > 0.05), meaning that 
this best-undertaking SARIMA model can be used to perform forecasting19. Otherwise, the above-mentioned 
modeling steps should be repeated until the best model was found.

Developing regime-switching models.  Due to the data-generating process that is often highly nonlinear, 
which results in an increasing interest in nonlinear techniques modeled to time series18. Of these techniques, the 
regime-switching methods are significantly popular because they are apt to evaluate and interpret, and capable of 
producing interesting nonlinearities and rich dynamics25,26. These models describe a class of nonlinear regression 
featuring piecewise linear specifications and regime switching, and are commonly divided into two categories 
based on the transition function27: it is called the SETAR method when using the first-order exponential func-
tion; another is called the LSTAR method that uses the logistic function. Both methods have the characteristics of 
asymmetric cycle27. Among them, the LSTAR method allows the expansion and contraction regimes to possess 
various dynamics, with a smooth transition from one to another. Instead, the SETAR method indicates that differ-
ent regimes have similar dynamics, whereas the pattern in the transition period may be varied when the process 
crosses the corresponding threshold27. The formula of a two-regime SETAR (2, p1, p2) method with delay d can 
be written as28.
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where p1 and p2 represent the autoregressive orders of these two submodels, respectively; d denotes the delay 
parameter; r is the threshold value. Further, this representation can be extended to three or more regimes.

The formula of a two-regime LSTAR (2, p1, p2) method with delay d can be defined as29.
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where the p1, p2, and r have the same meanings described in the SETAR method; G Z r th( , , )t  is the logistic 
function, its location and scale parameters are th and 1/r, respectively.

In this research, the preferred SETAR model was selected based on the pooled AIC = AIC (low regime model) 
+AIC (high regime model), a lower value frequently corresponded to the best-fitting model, but a close pooled 
AIC value was very competitive, which should also be tried. The optimal LSTAR model was chosen on the basis 
of the AIC and BIC values, in which the one that had lower values of both two indices was the best-undertaking.

Performance comparison.  We used four statistical measures of the mean absolute deviation (MAD), the 
mean absolute percentage error (MAPE), the root mean squared error (RMSE), and the mean error rate (MER) 
to evaluate the accuracy of the forecasts among methods. Typically, the method that presented the lowest value 
among the above-mentioned measures should be deemed as the optimal.
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where Yi stands for the original HFRS incidence values, Ŷi denotes the forecasts from the three models, Yi sig-
nifies the mean of the original values, N  represents the number of forecasts.

Statistical process.  In this study, we classified the observed series into training and testing subsets, 
among which the observed series between January 1, 2005 and December 31, 2018 (training subset) was used 
to fit the models, and then selecting the optimal models to forecast the rest of data (testing subset). Meanwhile, 
an additional training subset from January 1, 2005 and December 31, 2017 and testing subset from January 
1, 2018 to September 31, 2019 were provided to account for the models’ uncertainty. The SARIMA, SETAR, 
and LSTAR methods were erected using the statistical packages of “forecast,” “fUnitRoots,” “TSA,” “tsDyn” and 
“tseries” of R3.4.3 (R Development Core Team, Vienna, Austria). Additionally, we detected the nonlinearity of 
the HRFS morbidity series by applying a Brock-Dechert-Scheinkman (BDS) test to the errors of the optimal 
SARIMA approach30, and using a Lagrangian Multiplier (LM) test to examine whether there existed conditional 
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heteroskedastic behavior and volatility (ARCH effect) in the residual sequence yielded by these three models22. A 
two-sided p < 0.05 suggests a statistical significance.

Results
Statistical description.  Throughout the study period, the reported HFRS cases totaled 181,402, resulting 
in an annualized and monthly morbidity rates of 0.924 and 0.076 per 100,000 persons, respectively. The original 
incidence series and the decomposition of this series into trend, seasonal pattern, and irregular component are 
displayed in Fig. 2 and Supplementary Fig. S1, indicating that together HFRS incidence displayed a downward 
trend with average annual percent change (AAPC) of −5.640%, and yet the variation trend seemed to show a 
natural cyclical pattern with 3–5 years’ fluctuations: morbidity rate dramatically dropped from 1.704 to 0.690 
per 100,000 persons in the period 2005–2009, with AAPC = − 19.029%; then it climbed to 1.028 per 100,000 
persons in 2012, with AAPC = 9.037% relative to the level of 2009; immediately afterward the trend was decreas-
ing between 2012 and 2016 (1.028 to 0.671 per 100,000 population), with AAPC = − 2.793%; and then with an 
AAPC = 1.213% from 2016 to 2018. And the HFRS incidence series was strongly seasonal with a cycle of 12 
months, where a semi-annual seasonal pattern was observed, with a strong peak occurring from November to 
January of the following year and a weak one in May and June annually, while a trough was observed in August 
and September per year (Fig. 2 and Supplementary Fig. S2).

The best-performing SARIMA method.  Before modeling the training samples from January 1, 2005 
through December 31, 2018, the ADF test was applied to the data (ADF = − 3.621, p < 0.001), being indicative 
of a stationary series, which met the requirement of the SARIMA method establishment. However, it appeared 
that there was an unstable variance and mean in this series over time (Fig. 2B). Accordingly, the logarithmic 

Figure 2.  Time series decomposed plots of hemorrhagic fever with renal syndrome (HFRS) morbidity using 
the STL technique. The HFRS morbidity series was decomposed into three components. (A) The actual 
observed series; (B) Trend; (C) Seasonal variation; (D) Irregular component. As illustrated, there was a 
pronounced seasonal trait in the HFRS morbidity series.

https://doi.org/10.1038/s41598-020-66758-4
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and square root transformations were applied to the series to stabilize its variance, indicating a similar trend 
between these two series (Supplementary Fig. S3). After an attempt, it seemed that the logarithmic transformation 
was more suitable for the SARIMA model construction. Subsequently, the seasonal and nonseasonal differences 
were performed to reduce its trend and seasonality of this processed series (Supplementary Figs S4-S6). Now, 
the transformation and differencing have made the data achieve completely stationary. Based on the ACF and 
PACF plots of this stationary series, several possible SARIMA methods were chosen (Table 1). Further, the results 
from the goodness of fit tests intimated that the SARIMA(0,1,3)(0,1,1)12 tended to be the best-fitting model, as 
this model had the lowest values of AIC = − 851.561 and BIC = − 836.344, together with the maximum value 
of Log-likelihood=430.781, and the parameters of this model indicated a significant difference at the 5% level 
(Table 2). Moreover, a greater p-value than 0.05 under the Ljung-Box test meant that the residual series success-
fully accomplished white noise (Fig. 3). In addition, the LM test indicated that the ARCH effects existed in the 
original observed data were also eliminated (Table 3). This optimal model passed all required checking, and 
thus can be utilized to perform projections for the future (Table 4). Likewise, following the modeling steps, we 
conducted a sensitivity analysis using the additional training subset from January 1, 2005 to December 31, 2017 
to verify the model’s uncertainty. The obtained best-conducting SARIMA model and its goodness of fit testing 
results are summarized in Supplementary Tables S1-S3 and Fig. S7.

Model AIC BIC
Log-
Likelihood

SARIMA(0,1,3)(0,1,1)12 −851.561 −836.344 430.781

SARIMA(0,1,3)(1,1,0)12 −850.759 −835.542 430.380

SARIMA(0,1,3)(0,1,0)12 −841.185 −829.011 424.592

SARIMA(0,1,2)(0,1,1)12 −839.460 −827.287 423.730

SARIMA(1,1,1)(0,1,1)12 −840.981 −828.807 424.491

Table 1.  Comparisons of the goodness of fit test for the five candidate SARIMA models.

Parameter Estimates
Standard 
error t p-value

MA1 0.171 0.079 2.156 0.033

MA2 0.215 0.080 2.683 0.008

MA3 0.344 0.078 4.394 <0.001

SMA1 0.434 0.081 5.362 <0.001

Table 2.  Estimated parameters for the optimal SARIMA(0,1,3)(0,1,1)12 method and statistical test for them.

Figure 3.  Diagnostic checking for the residual sequence generated by the SARIMA(0,1,3)(0,1,1)12 method. (A) 
ACF diagram; (B) PACF diagram; (C) Ljung-Box testing results. All of the correlation coefficients fell into the 
95% uncertainty levels with the exception of the lag at 36. Accordingly, we believed that this preferred method 
can adequately model the HFRS series.
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The best-performing regime-switching methods.  The results of the BDS test are displayed in Table 5, 
all statistics revealed a p-value less than 0.05, being suggestive of a highly nonlinear mechanism of the data. 
Consequently, it is necessary to establish the model-based nonlinear SETAR and LSTAR methods fitted to the 
HFRS incidence series. In this work, we used the grid search to detect the appropriate parameters (d, p1, and 

Lags

Observed value SARIMA model SETAR model LSTAR model

LM-test p-value LM-test p-value LM-test p-value LM-test p-value

1 74.744 <0.001 6.246 0.012 2.174 0.140 0.514 0.473

3 112.870 <0.001 7.245 0.064 2.496 0.476 0.662 0.882

6 130.200 <0.001 8.536 0.201 1.547 0.956 1.363 0.968

9 132.260 <0.001 8.987 0.439 5.342 0.804 5.803 0.759

12 213.890 <0.001 14.800 0.253 16.330 0.177 49.191 <0.001

15 217.380 <0.001 12.800 0.612 22.205 0.103 58.949 <0.001

18 215.910 <0.001 14.922 0.667 23.448 0.174 29.115 0.070

21 214.690 <0.001 15.580 0.793 19.559 0.549 21.089 0.454

24 208.850 <0.001 16.361 0.875 21.034 0.637 18.968 0.754

27 210.920 <0.001 17.004 0.931 0.637 0.735 21.876 0.744

30 210.640 <0.001 17.276 0.969 25.556 0.698 24.128 0.766

33 208.650 <0.001 17.783 0.986 30.500 0.592 26.961 0.761

36 208.330 <0.001 23.074 0.953 38.099 0.374 34.014 0.563

Table 3.  ARCH tests for the original series and residual series from the optimal three methods.

Month
Actual 
value

SARIMA 
model

SETAR 
model

LSTAR 
model

January 0.079 0.072 0.065 0.065

February 0.051 0.043 0.046 0.044

March 0.053 0.070 0.049 0.045

April 0.050 0.073 0.064 0.065

May 0.067 0.094 0.085 0.093

June 0.072 0.090 0.073 0.081

July 0.050 0.069 0.053 0.054

August 0.029 0.046 0.044 0.039

September 0.025 0.046 0.042 0.041

Table 4.  Comparisons between the actual values from January to September in 2019 and the forecasts from the 
optimal three methods.

Epsilon Dimension Statistic p-value

0.008 2 6.952 <0.001

0.008 3 7.844 <0.001

0.008 4 8.561 <0.001

0.008 5 9.194 <0.001

0.015 2 5.228 <0.001

0.015 3 5.350 <0.001

0.015 4 4.825 <0.001

0.015 5 4.351 <0.001

0.023 2 3.911 <0.001

0.023 3 4.208 <0.001

0.023 4 3.890 <0.001

0.023 5 3.539 <0.001

0.031 2 2.948 <0.001

0.031 3 3.247 0.001

0.031 4 3.135 0.002

0.031 5 2.600 0.009

Table 5.  Resulting BDS testing results for the residuals of the optimal SARIMA(0,1,3)(0,1,1)12 method.

https://doi.org/10.1038/s41598-020-66758-4


7Scientific Reports |         (2020) 10:9609  | https://doi.org/10.1038/s41598-020-66758-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

p2) for these two methods. After trying over and over again, we found that the nominal AIC was smallest when 
the delay parameter d = 2 (d = 1, 2, 3, 4, and 5 corresponded to the nominal AIC = − 756.0, −852.4, −798.5, 
−753.3, and −781.0, respectively), and as shown in Supplementary Table S4, suggesting that the pooled AIC 
had the lowest value of −754.045 when p1 and p2 were 3 and 5, respectively, in the SETAR method, and yet the 
p1 = 4 and p2 = 5 were competitive. Thus, an approximation of these possible parameters of the SETAR method 
to the HFRS incidence series was attempted, the comparative results are given in Table 6, and the mimic perfor-
mance measures of the SETAR(2,4,5) method provided smaller values than that of the SETAR(2,3,5) method. 
The results hinted that the SETAR(2,4,5) method seemed more suitable for our data (Supplementary Table S5), 
and the statistical checking results for the residuals from this method are shown in Table 3 and Fig. 4. Further, we 
tested the preferred three-regime SETAR method, which produced a poorer performance with MAPE = 21.820% 
than the best-fitting two-regime. Consequently, we selected the two-regime model as the optimal in our study. 
In the meantime, we could also get the best-fitting LSTAR(2,4,5) approach using the grid search (Table 6, 
Fig. 5 and Supplementary Tables S5-S6). Whereafter, the out-of-data forecasts can be made by using these two 
best-undertaking approaches (Table 4). Similarly, the preferred SETAR and LSTAR approaches used to account 
for the models’ uncertainty can be established based on the above-mentioned steps, and all results are listed in 
Supplementary Tables S7-S9 and Figs S8-S9.

Measuring for forecasting accuracy.  The comparative results of the out-of-sample forecasting are pre-
sented in Table 7. As can be seen from the data, the SETAR and LSTAR approaches visibly provided smaller values 
among the measures of MAE, MAPE, RMSE, and MER in both two forecasting sets, and the SETAR approach was 
slightly superior to the LSTAR method in view of the above four indices. Looking at Fig. 6, compared with the 
SARIMA model, also indicating that the SETAR and LSTAR methods could better capture the dynamic depend-
ent structure of the data. In the light of these results, we thus constructed the SETAR model depending on the 
entire HFRS incidence data to undertake a projection into June 2021, and the 95% predictive intervals were 
resorted to simulation with 5,000 sizes (Fig. 7). According to the predictive results, it appeared that there would be 
a likelihood of HFRS outbreak in December 2019 since its forecast in this month was out of the 95% uncertainty 
intervals.

Model MAE MAPE RMSE MER

SETAR(2,3,5) 0.0135 0.1998 0.0179 0.1787

SETAR(2,4,5) 0.0134 0.1974 0.0178 0.1781

LSTAR(2,2,5) 0.0130 0.1840 0.0185 0.1728

LSTAR(2,4,5) 0.0129 0.1804 0.0184 0.1708

Table 6.  Comparisons of the mimic results from the plausible SETAR and LSTAR methods.

Figure 4.  Diagnostic testing plots for the residual series from the best-fitting SETAR(2,4,5) method. (A) ACF 
diagram; (B) PACF diagram; (C) Ljung-Box testing results. None of the correlation coefficients were out of 
the 95% uncertainty limits except for the significant spikes at 12 and 24 in the ACF and at 12 in the PACF. 
Sometimes, it is also reasonable because the high-order correlations may readily exceed the 95% uncertainty 
limits by chance.
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Discussion
Recently, the recurring risk of HFRS has been an increasing concern in China9–13. Forecasting based on high 
accuracy models may provide a useful aid in the development of a preventive and control system, as well as the 
reallocation of the limited resources. In this study, we established SETAR method and LSTAR approach to analyze 
and forecast the temporal tendencies of HFRS, moreover, the predictive abilities of the frequent use of SARIMA 
method and above used methods were compared. The time series analysis results demonstrated a valuable esti-
mation for the 9-data-ahead (short-term) and the 21-data-ahead (long-term) predictions using the SETAR and 
LSTAR approaches, which provided more accurate and robust predictions for the HFRS morbidity series relative 
to the SARIMA approach, additionally, the SETAR model seemed to slightly overmatch the LSTAR model in the 
predictive power. Furthermore, given the MAPE value that is often used to measure the accuracy of a prediction31, 
suggesting no significant deterioration in the long-term prediction performance in comparison to that in the 
short-term predictions (the MAPE values were 0.2388 vs. 0.2412 in the SETAR method and 0.2406 vs. 0.2604 in 
the LSTAR method). Our investigation meant that the predictive performances of these two methods maintained 
robustness, and they can be recommended as a useful tool in understanding and predicting the epidemic patterns 
of HFRS, which will be of fundamental importance for the prevention and control of this disease. What’s more, 
we observed that the SARIMA method showed an unacceptable level of accuracy with the predictive period 
increased, which further confirmed that the SARIMA approach is suited to evaluate the short-term temporal 
levels of a time series16.

The SARIMA method assumes that there exists certain linear link between the future epidemic trajectories 
of the target time series and the changing state of its historical data32, thus, it has been emerged as the most pop-
ular model to perform a forecast for the future by considering the overall trends and seasonal pattern of a time 

Figure 5.  Statistical test plots for the residual series from the best-fitting LSTAR(2,4,5) method. (A) ACF 
diagram; (B) PACF diagram; (C) Ljung-Box testing results. No correlation coefficient other than the lags at 12 
and 24 in the ACF and at 12 in the PACF lay outside the 95% uncertainty intervals.

Model MAE MAPE RMSE MER

9-step-ahead forecasts

SARIMA 0.0174 0.3873 0.0185 0.3298

SETAR 0.0101 0.2412 0.0119 0.1912

LSRAR 0.0121 0.2604 0.0136 0.2290

Percentage reductions (%)

SETAR vs. SARIMA 41.9540 37.7227 35.6757 42.0255

LSRAR vs. SARIMA 30.4598 32.7653 26.4865 30.5640

21-step-ahead forecasts

SARIMA 0.0303 0.6062 0.3482 0.4585

SETAR 0.0152 0.2388 0.0246 0.2296

LSRAR 0.0163 0.2406 0.0236 0.2466

Percentage reductions (%)

SETAR vs. SARIMA 49.8350 60.6071 92.9351 49.9237

LSRAR vs. SARIMA 46.2046 60.3101 93.2223 46.2159

Table 7.  Comparisons of the forecasting performances among the selected three methods.
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series with seasonality or non-seasonality16,32. For example, Cong et al. built a SARIMA(1,0,0)(0,1,1)12 method 
to forecast the epidemic patterns of influenza incidence in China16. Fu et al. developed a SARIMA(0,0,2)(0,1,1)12 
method to conduct a forecast for the incidence series of hand-foot-mouth disease in Zhejiang Province33. Albeit 
this method frequently provides a good approximation to the target time series, it suffers from weaknesses in 
handling nonlinear patterns and which is only suitable for undertaking short-term forecasting16,17. All in all, this 
is in agreement with our findings. In the real world, the development and occurrence of diseases are associated 

Figure 6.  The multi-step-ahead predictions using the selected optimal three methods. (A) 9-data ahead 
forecasting; (B) 21-data ahead forecasting. As a whole, the SETAR and LSTAR approaches can better capture the 
epidemic trends of HFRS morbidity.

Figure 7.  The predictive results from October 2019 to June 2021 and their 95% uncertainty bounds using the 
SETAR(2,3,5) method fitted to the entire data. As shown, the estimated value in December 2019 was outside the 
95% uncertainty bounds, it seemed to show the possibility of an outbreak.
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with many drivers, which make the relationship between the observations show nonlinear modes. Therefore, it 
is necessary to test the data-generating mechanism prior to establishing a model for the target time series. In this 
study, the BDS test was applied to the residuals produced by the SARIMA method to detect nonlinearity of the 
HFRS incidence series, suggesting a notable nonlinear tendency. In this context, nonlinear methods are seem-
ingly appropriate. To our best knowledge, the model-based nonlinear SETAR and LSTAR approaches were the 
first time employed to predict HFRS incidence in the forecasting domain of infectious diseases, and our experi-
mental results also demonstrated their usefulness in the prediction for the HFRS morbidity series. However, for 
one thing, considering the different types of non-linear modes in data-generating process18, further investigations 
are required to evaluate the suitability for forecasting other infectious diseases; for another, other nonlinear statis-
tical models (including ANNS19, ARCH21, SVM20, etc.) have also been established to study the temporal behaviors 
of infectious diseases. Collectively, further comparisons between our used methods and the above discussed 
models are also required in order to find the most accurate one that captures the nonlinear relationship. Besides, 
also notice that mathematical epidemiology has played an important role in the understanding of infectious dis-
ease transmission in human populations in the past decades34. Among which, the mechanistic models based on 
time series (such as susceptible exposed infectious recovered (SEIR) model or SIR model) have widely been used 
to model the transmission dynamics of contagious diseases such as measles35, coronavirus disease 201936, dengue 
fever37, HFRS2, etc, in that the SEIR or SIR model can easily explain inhomogeneous mixing in a phenomenologi-
cal manner by considering the nonlinear dependence of contact rates between susceptible population and hosts38, 
and thus can be used to assess the key parameters of infectious processes and clarify the potential processes driv-
ing the transmission dynamics of infectious diseases39. However, the SEIR or SIR is a deterministic model with 
the assumption that the infectious persons are independently and randomly mixing with all other persons2. As 
mentioned above, in practice, the transmission of contagious diseases is limited and affected by varying indeter-
minate divers (e.g., climatic variability, seasonal variation, variations in pathogens, or government policy)2,40,41. 
Under such circumstances that the morbidity data are often inclined to show uncertainty and nonlinearity32, 
the SEIR or SIR model may obtain unsatisfactory forecasting results. At this time, our used regime-switching 
methods may be more suitable and more convincing, because these nonlinear models assign multiple potential 
drivers and comprehensive effects of uncertainty factors that may drive the disease occurrence and development 
to a univariate time series, and then performing prediction by identifying the potential relationships between the 
future state of the incidence series and the past and present internal rules of the historical series. Moreover, the 
regime-switching methods with the advantages of low-cost data collection and extensive application in practice 
are easy to develop (based only on intrinsic variables) and can obtain relatively satisfactory predictive accuracy 
as evidenced by our experiment results. Despite these advantages of the regime-switching models, much work is 
still required to compare the real forecasting effects between mechanistic models and regime-switching models.

Our research manifested a downward trend in HFRS morbidity in the whole study period, which is similar to 
that observed in some countries in Asia42. This may mainly be attributed to the government’s continued efforts 
such as the implementation of a series of rodents’ control measures, the improvement of living standards, the 
increased urbanization and farm mechanization, and the development of the targeted vaccine and so forth7. 
Under these efforts, some achievements have been attained, but we observed that the epidemic trend started to 
rise since 2016, which is seemingly not until December 2019 that such an increase will reach the climax with the 
highest incidence of 0.191 per 100,000 people according to our predictions using the SETAR method, and there 
may be a risk of outbreak. Regarding the substantial increase in HRFS morbidity, one plausible explanation may 
be related to the effects of climatic change which has posed a serious threat on the global scale1,43. HFRS has been 
identified as a climate-sensitive disease because weather variability has a direct or indirect impact on the rodent 
population dynamics, such as reproductive rates and incubation period, crop output that serves as the foremost 
food sources for rodents, and viral exposure opportunities in predisposed population1,11,43; another main reason 
may emanate from the fact that periodic outbreak is among the most important epidemiological characteristics 
of HFRS44. Previous work has reported a natural cyclical pattern in HFRS morbidity with around 7–12 years44,45, 
this phenomenon was also observed in our work, despite with a periodic outbreak being 3–5 years. Besides, new 
Hantavirus subtypes may also be associated with this sudden increase since a recent study has shown that the 
emergence of new Seoul viruses raises new challenges to fight against HFRS11. Also, investigations into other 
plausible causes still go on.

Understanding the seasonal distribution of infectious diseases is of great significance for the analysis and 
estimation of the diseases’ transmission patterns. Our analytical results exhibited a strong seasonality in HFRS 
morbidity with a dual-peak pattern, where a strong peak was observed in November until January in the next 
year and a weak one in May and June per year. The observation fits well with that reported in most areas of China, 
such as Qingdao11, Zibo46, Zhejiang47, Changsha45, Heilongjiang4, Shenyang7, Hubei44, Liaoning and Anhui43, 
and also concurs well in Korea48, but inconsistent with that reported in Guangzhou (which peaked in February 
until May)12. Such a significant difference in seasonal behaviors is predominantly responsive to climatic and 
demographic factors in the northern hemisphere city, Guangzhou, and its climate is characterized by a wet of 
high temperatures and a high humidity index, which is significantly different from other areas in China12. In 
China, the double peak activities in HRFS morbidity may be mainly reeling from its etiologic factors and climatic 
factors2,10,11,44. Earlier work has found that the HTNV-related HFRS infections are reported all through the year, 
yet most of them occur in fall and winter whereas the SEOV-related cases are typically observed in spring, and 
these two pathogenic agents are predominantly spread by A. agrarius and R. norvegicus rodents, respectively10,44. 
Significantly, climatic drivers, such as temperature, relative humidity, precipitation, etc., can affect hosts’ repro-
duction and thus causing the transmission of HFRS2,11,44. For instance, the relationship between temperature and 
relative humidity and HFRS epidemic exhibits a U-shaped curve11, which is in agreement with the peak activities 
present in winter and summer in HFRS incidence.
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This study focused on an investigation into the suitability for application in analyzing and forecasting the 
epidemic trends in HFRS morbidity using the SETAR and LSTAR methods and has shown their usefulness. 
Nevertheless, several potential shortfalls need to be considered. Firstly, the under-reporting and under-diagnosis 
may still be inevitable, in spite of the well-monitored data quality regarding infectious diseases in China, Secondly, 
we only collected the monthly and yearly HFRS cases absent from some detailed information (such as age, sex, 
and occupation) due to their unavailability, which precludes further stratified or sensitivity analysis that accounts 
for the models’ uncertainty. Thirdly, whether these methods are applicable to study HFRS epidemic in other areas 
needs to be further verified. Finally, in application, these methods entail to be updated with the newly aggregated 
data in order to maintain their high prediction accuracies.

In conclusion, our findings suggested that the SETAR and LSTAR methods showed superiorities in track-
ing the temporal patterns than the most commonly adopted SARIMA approach, moreover, they can undertake 
long-term forecasting, which can function as a useful tool in offering an advanced warning for the epidemio-
logical characteristics of HRFS, and therefore formulating a long-term targeted prevention and control plans in 
response to this threat of HRFS. Additionally, China is still afflicted with the risk of HFRS outbreak under the 
present control and prevention strategies. Consequently, more effective control measures are warranted.

Data availability
All data were presented in our analytical results or please contact the first author or the corresponding author on 
reasonable request.
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