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Pigs are a valuable human biomedical model and an important protein source
supporting global food security. The transcriptomes of peripheral blood immune cells
in pigs were defined at the bulk cell-type and single cell levels. First, eight cell types
were isolated in bulk from peripheral blood mononuclear cells (PBMCs) by cell sorting,
representing Myeloid, NK cells and specific populations of T and B-cells. Transcriptomes
for each bulk population of cells were generated by RNA-seq with 10,974 expressed
genes detected. Pairwise comparisons between cell types revealed specific expression,
while enrichment analysis identified 1,885 to 3,591 significantly enriched genes across
all 8 cell types. Gene Ontology analysis for the top 25% of significantly enriched genes
(SEG) showed high enrichment of biological processes related to the nature of each cell
type. Comparison of gene expression indicated highly significant correlations between
pig cells and corresponding human PBMC bulk RNA-seq data available in Haemopedia.
Second, higher resolution of distinct cell populations was obtained by single-cell
RNA-sequencing (scRNA-seq) of PBMC. Seven PBMC samples were partitioned and
sequenced that produced 28,810 single cell transcriptomes distributed across 36
clusters and classified into 13 general cell types including plasmacytoid dendritic cells
(DC), conventional DCs, monocytes, B-cell, conventional CD4 and CD8 αβ T-cells, NK
cells, and γδ T-cells. Signature gene sets from the human Haemopedia data were
assessed for relative enrichment in genes expressed in pig cells and integration of
pig scRNA-seq with a public human scRNA-seq dataset provided further validation
for similarity between human and pig data. The sorted porcine bulk RNAseq dataset
informed classification of scRNA-seq PBMC populations; specifically, an integration of
the datasets showed that the pig bulk RNAseq data helped define the CD4CD8 double-
positive T-cell populations in the scRNA-seq data. Overall, the data provides deep and
well-validated transcriptomic data from sorted PBMC populations and the first single-cell
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transcriptomic data for porcine PBMCs. This resource will be invaluable for annotation of
pig genes controlling immunogenetic traits as part of the porcine Functional Annotation
of Animal Genomes (FAANG) project, as well as further study of, and development of
new reagents for, porcine immunology.

Keywords: pig, immune cells, transcriptome, single-cell RNA-seq, bulkRNA-seq, FAANG

INTRODUCTION

A major goal of biological research is using genomic information
to predict complex phenotypes of individuals or individual
cells with specific genotypes. Predicting complex phenotypes is
an important component of broad Genome-to-Phenome (G2P)
understanding (Koltes et al., 2019), and investing in sequencing
of multiple animal genomes, including pigs (Sus scrofa), for
improved genome and cell functional annotation is key in solving
the G2P question (Andersson et al., 2015; Giuffra et al., 2019).
In addition to their major role in the world supply of dietary
protein, pigs have anatomic, physiologic, and genetic similarities
to humans and serve as biomedical models for human disease
and regenerative medicine (reviewed in Swindle et al., 2012;
Kobayashi et al., 2018). Thus, deep annotation of porcine genome
function would be a major milestone for addressing the G2P
question. A highly contiguous porcine genome assembly with
gene model-level annotation was recently published (Warr et al.,
2020). However, this annotation is based primarily on RNA
sequencing (RNA-seq) data from solid tissues, with few sample
types representative of immune cells, with the exception of
alveolar macrophages and dendritic cells (Auray et al., 2016).
Given the interaction of animal health and growth, any functional
annotation of the porcine genome will be incomplete without
deep analysis of expression patterns and regulatory elements
controlling the immune system.

The transcriptomes of circulating immune cells serve as a
window into porcine immune physiology and traits (Chaussabel
et al., 2010; Mach et al., 2013; Schroyen and Tuggle, 2015; Auray
et al., 2020). Blood RNA profiling has been used to understand
variation in porcine immune responses (Huang et al., 2011; Arceo
et al., 2013; Knetter et al., 2015; Munyaka et al., 2019) and genetic
control of gene expression (Maroilley et al., 2017). One goal of
such research is to develop gene signatures predictive of disease
states (Berry et al., 2010) and predict responses to immunizations

Abbreviations: AUC, area under the curve; ASC, antibody-secreting cell; B,
B-cell; bulkRNA-seq, bulk RNA sequencing; cDC, conventional dendritic cell;
DC, dendritic cell; DEGs, differentially expressed genes; DGE, differential gene
expression; Exp, experiment; FAANG, Functional Annotation of Animal Genomes;
FACS, Fluorescent activated cell sorting; G2P, Genome-to-Phenome; GO, gene
ontology; GSEA, gene set enrichment analysis/analyses; HBSS, Hank’s balanced
salt solution; HEGs, highly enriched genes; MACS, Magnetic activated cell sorting;
mDC/myDC, myeloid dendritic cell; n, negative; NK, natural killer; p, positive;
PBMC, peripheral blood mononuclear cell; PC, principal component; PCA,
principal component analysis; pDC, plasmacytoid dendritic cell; RF, random forest;
RIN, RNA integrity number; RNA-seq, RNA sequencing; scRNA-seq, single-cell
RNA sequencing; scREF-matrix, single-cell reference matrix; SEG, significantly
enriched genes; sPCA, supervised principal component analysis; SWC6, swine
workshop cluster 6.; T, T-cell.; TCR, T-cell receptor; TPM, transcripts per million;
t-SNE, t-distributed stochastic neighbor embedding; UMAP, uniform manifold
approximation and projection; UMI, unique molecular identifier; γδ, Gamma-
delta; αβ, alpha beta.

and/or infections (Chaussabel and Baldwin, 2014; Tsang et al.,
2014), as has been demonstrated in humans. Whole blood is easily
collected from live animals, but represents an extremely complex
mixture of cell types. Estimates of gene expression in mixed
samples are inherently inaccurate as cell composition differences
are difficult to adjust for, complicating the interpretation of
RNA differences across samples and treatments. Thus, starting
from whole blood transcriptomic data, it is nearly impossible
to link gene expression and regulation to a specific cell or
cell type. To determine direct regulatory interactions, we must
analyze specific cell populations and even individual cells. A cell
type-specific understanding of peripheral immune cell gene
expression patterns will thus enhance biological understanding
of porcine immunity, reveal targets for phenotyping, and provide
a comparison to other species.

Predominant immune cell populations in porcine peripheral
blood mononuclear cell (PBMC) preparations are comprised
mainly of monocytes, B-cells, and T-cells, with minor fractions
of dendritic cells (DCs), natural killer (NK) cells, and NKT-cells
also present. Porcine peripheral T-cell populations (reviewed in
Gerner et al., 2009, 2015) and DCs (Summerfield et al., 2015;
Auray et al., 2016) are readily described based on phenotype,
though deeper characterization of porcine immune cells could
improve identification of valuable reagent targets and biological
understanding of porcine immunity. T-cell populations are
commonly grouped as αβ or γδ T-cells according to T-cell
receptor (TCR) chain expression and further divided based on
CD2, CD4, CD8α, and/or CD8β expression. Pigs have a unique
CD2− γδ T-cell lineage contributing to higher percentages of
circulating γδ T-cells (Takamatsu et al., 2006) and unique αβ

T-cells expressing both CD4 and CD8α (Zuckermann, 1999).
Relatively little is known about different circulating B-cell
populations in pigs, as reagents for phenotyping are limited.

Various technical approaches can be used to enrich or isolate
specific cell populations, improving resolution of cell types for
deeper interrogation of gene expression. Flow cytometry is used
to characterize cells based on expression of cell type-specific
protein markers, and live cells can be sorted by magnetic-
and/or fluorescence-activated cell sorting (MACS/FACS) for
use in subsequent assays. MACS/FACS enrichment followed by
transcriptomic analysis can provide additional insight of gene
expression in specific cell types, but cells expressing the same
combination of markers are often still a heterogeneous mixture
(Sutermaster and Darling, 2019). Some major subtypes of porcine
immune cell populations can be labeled for cell sorting by existing
antibody reagents (Gerner et al., 2009), but some subtypes such as
B-cells lack these resources.

An exciting alternative to sorting specific cell types for
transcriptomic analysis is single-cell RNA-seq (scRNA-seq).
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Many scRNA-seq approaches do not require prior
phenotypic/functional information or antibody reagents
but instead rely on physical partitioning of cells to uniquely
tag transcripts from individual cells and sharpen resolution
of subsequent transcriptomic analysis to single cells (Liu and
Trapnell, 2016; Vieira Braga et al., 2016; Zheng et al., 2017).
scRNA-seq methods have been applied to human PBMCs (Zheng
et al., 2017) and provide more accurate and detailed analyses
of transcriptional landscapes that can identify new cell types
(Villani et al., 2017) when compared to other transcriptomic
approaches. There are limitations to scRNA-seq, with tradeoffs
in total genes detected per cell vs. total cells captured for analysis,
depending on the approach used (Wilson and Göttgens, 2018).

To deeply annotate the porcine genome for peripheral
mononuclear immune cell gene expression and further inform
phenotype and function of the heterogenous pool of immune
cells in PBMC preparations, two approaches were used to
isolate peripheral immune cells for RNA-seq. MACS followed
by FACS was used to enrich for eight PBMC populations using
population-specific cell surface markers, and RNA isolated from
enriched populations was used for bulk RNA-seq (bulkRNA-
seq) or a NanoString assay to evaluate gene expression. PBMCs
were also subjected to droplet-based partitioning for scRNA-
seq. Gene expression patterns of porcine immune cells using
different approaches were compared to each other and to
multiple human datasets. Complementary methods provided
an improved annotation and deeper understanding of porcine
PBMCs, as well as explicated datasets for further query by the
research community.

MATERIALS AND METHODS

Animals and PBMC Isolation
Four separate PBMC isolations were performed, with different
animals used in each experiment. Cells were used for bulkRNA-
seq, targeted RNA detection (NanoString), or scRNA-seq. PBMCs
from experiments were used as follows: Experiment A (ExpA)
for bulkRNA-seq of sorted populations from two ∼6-month-old
pigs (A1, A2); Experiment B (Exp B) for NanoString and scRNA-
seq from three ∼12-month-old pigs (B1, B2, B3); Experiment
C (ExpC) for scRNA-seq from three ∼12-month-old pigs (C1,
C2, C3); Experiment D (ExpD) for scRNA-seq from two ∼7-
week-old pigs (D1, D2). All pigs were crossbred, predominantly
Large White and Landrace heritage. All pigs from experiments
A, B, and C were male. In experiment D, animal D1 was female,
and animal D2 was male. All animal procedures were performed
in compliance with and approval by NADC Animal Care and
Use Committee. PBMCs were isolated, enumerated, and viability
assessed as previously described (Byrne et al., 2020).

Enrichment and Sorting Eight Leukocyte
Populations by MACS/FACS
Peripheral blood mononuclear cells were labeled with biotin
labeled anti-porcine CD3ε (PPT3, Washington State University
Monoclonal Antibody Center) for 15 min at 4◦C, mixing
continuously. Cells were washed with Hank’s Balanced Salt

Solution (HBSS), incubated with anti-biotin microbeads
(Miltenyi Biotec), placed on LS columns, and separated into
CD3ε+ and CD3ε− fractions according to manufacturer’s
directions (Miltenyi Biotec). CD3ε+ and CD3ε− fractions
were each fluorescently-sorted into four subpopulations
based on surface marker expression shown in Figure 1
and Table 1. For NanoString assays, B-cells were sorted as
CD3ε−CD172α−CD8α−; CD21 was not used for sorting. Each
fraction for FACS was confirmed CD3ε+ or CD3ε− by labeling
with anti-mouse IgG1-PE-Cy7 to detect anti-CD3ε antibody
used for MACS. Cells were sorted into supplemented HBSS using
a BD FACSAria II with 70 mm nozzle. After sorting, cells were
pelleted and enumerated as described above. Sorted cell purity
was >85% for each population. Cells were stained, sorted, and
further processed within 10 h of collection keeping cells on ice
between processing steps.

RNA Isolation for
BulkRNA-Seq/NanoString
BulkRNA-seq: after FACS, cells were pelleted, enumerated, and
immediately lysed in RLT Plus buffer. RNA extractions were
performed using the AllPrep DNA/RNA MiniKit (QIAGEN)
following manufacturer’s instructions. Eluted RNA was treated
with RNase-free DNase (QIAGEN). RNA quantity/integrity were
assessed with an Agilent 2200 TapeStation system (Agilent
Technologies). Samples used had RNA integrity numbers
(RINs) ≥ 7.9. From ExpA, only one RNA sample for
NK cells was used.

For NanoString assay: after FACS, cells were pelleted,
enumerated, and immediately stored in Trizol. RNA extraction
was performed using the Direct-zol RNA MicroPrep Kit (Zymo)
with on-column DNase treatment following manufacturer’s
instructions. RNA quantity and integrity were assessed as
described above, with RINs ≥ 6.9. RNA was preserved at −80◦C
until further use.

BulkRNA-Seq Library Preparation and Data Analysis
RNA was fragmented and 15 libraries prepared using the TruSeq
Stranded Total RNA Sample Preparation Kit (Illumina). Libraries
were diluted and pooled in approximately equimolar amounts.
Pooled libraries were sequenced in paired-end mode (2× 150-bp
reads) using an Illumina NextSeq 500 (300 cycle kit).

Preprocessing, Mapping, Alignment, Quality Control
Data processing was performed as previously reported (Herrera-
Uribe et al., 2020) using R v4.0.3. Sscrofa 11.1 genome and
annotation v11.1.97 were used. Counts per gene of each sample
in the two count tables were added together to get the final count
table. Given that different types of immune cells have different
transcriptome profiles (Hicks and Irizarry, 2015), YARN (Paulson
et al., 2017), a tissue type-aware RNA-seq data normalization
tool, was used to filter and normalize the count table. Genes with
extremely low expression levels (<4 counts in at least one cell
type) were filtered out using filterLowGenes(). The final count
table contained 12,261 genes across 15 samples, which was then
normalized using normalizeTissueAware(), which leverages the
smooth quantile normalization method (Hicks et al., 2018).
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FIGURE 1 | Representative plots for fluorescence-activated cell sorting (FACS) isolation of 8 leukocyte populations from pig peripheral blood mononuclear cells
(PBMCs). Porcine PBMCs were first subjected to magnetic-activated cell sorting (MACS) to enrich for CD3ε + and CD3ε– fractions. (A) Cells in CD3ε+ MACS fraction
were FACS gated on FSC vs. SSC, doublets removed (not shown), and CD3ε+ cells were isolated into 4 population: SWC6+ γδ T-cells (gate 1), and the SWC6− cells
sorted as CD4+CD8α− (gate 2), CD4+CD8α+ (gate 3), CD4−CD8α+ (gate 4) T-cells. (B) Cells in CD3ε− MACS fraction were FACS gated on FSC vs. SSC, doublets
removed (not shown), and CD3ε− cells were isolated into 4 populations: CD172α+ myeloid lineage leukocytes (gate 5), CD8α+CD172− NK cells (gate 6), and the
remaining CD8α− CD172α−, cells were isolated as CD21+ (gate 7) and CD21− (gate 8) B-cells. Table 1 outlines abbreviations and sort criteria for each population.

Data quality control was performed using DESeq2 (v1.24.0)
(Love et al., 2014) within RStudio s (v1.2.1335). Regularized
log-transformation was applied to the normalized count table

with the rld function. Then principal component analysis
(PCA) and sample similarity analyses were carried out and
visualized using plotPCA() and distancePlot(), respectively.
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Heatmaps to display enriched genes were created using pheatmap
(v1.0.12) within RStudio.

Cell Type-Enriched and Cell Type-Specific Gene
Identification
The normalized count table was used for differential gene
expression (DGE) analysis with DESeq2 by setting the
size factor for each sample to 1. A generalized linear
model was fitted for each gene in the count table, with
negative binomial response and log link function of the
effect of cell types and pig subjects. nbinomWaldTest() was
used to estimate and test the significance of regression
coefficients with the following explicit parameter settings:
betaPrior = FALSE,maxit = 50000,useOptim = TRUE,useT
= FALSE,useQR = TRUE. Cell type-enriched genes and cell
type-specific genes were identified using the results function
separately. A gene was labeled as cell-type enriched if the
expression level (averaged across replicates) in one cell type
was at least 2× higher than the average across all remaining
cell types and adjusted p-value < 0.05. A gene was labeled as
cell type-specific if the averaged expression level in one cell type
was at least 2× higher in pairwise comparison to the average
in each other cell type and adjusted p-value < 0.05 (Benjamini
and Hochberg, 1995). Heatmaps to display specific genes were
created as mentioned above.

For cross-species comparison, human hematopoietic cell
(Haemopedia) RNA-seq expression data (Hilton Laboratory
at the Walter and Eliza Hall Institute1) was used. Only
orthologous genes with one-to-one matches between human and
pig [orthologous gene list obtained from BioMart (Durinck et al.,
2009)] were compared. Orthologous gene transcript per million
(TPM) values from naive and memory B-cells, myeloid dendritic
cells (myDC), myeloid dendritic cells CD123 + (CD123PmDC),
plasmacytoid DC (pDC), monocytes, NK cells, CD4T and CD8T
cells from healthy donors were used (Choi et al., 2019). Spearman
rank correlation analyses was performed to identify correlation
between orthologous gene expression levels (absolute TPM) in
pig and human sorted populations. Significance level was set at

1https://www.haemosphere.org/datasets/show

p < 0.05 and level of Spearman’s rank correlation coefficient
(rho) was defined as low (<0.29), moderate (0.3–0.49), and strong
(0.5–1) correlation.

Gene Ontology (GO) Enrichment Analysis
Metascape analysis (Zhou et al., 2019) was performed for GO
analysis of the top 25% enriched genes and specific genes
identified as described above, with threshold p-value < 0.01.
Several terms were clustered into the most enriched GO term.
Term pairs with Kappa similarity score > 0.3 were displayed as
a network to show relationship among enriched terms. Terms
associated with more genes tended to have lower p-values. All
networks displayed were visualized using Cytoscape. All Ensembl
Gene IDs with detectable expression level in each cell type were
used as the background reference.

NanoString Assay and Data Analysis
A total of 230 test genes with nine housekeeping genes, eight
positive and nine negative control genes were chosen for gene
expression quantification on the NanoString nCounter analysis
system (NanoString Technologies) using custom-made probes.
The custom designed CodeSet was selected from genes and
pathways associated with porcine blood, lung, lymph node,
endometrium, placenta or macrophage response to infection with
a porcine virus (Van Goor et al., 2020). RNA samples were diluted
to 25–100 ng/ul in RNase-free water, and 5 ul of each sample
was used in the assay using manufacturer’s instructions with the
nCounter Master kit.

The nCounter analysis system produces discrete count
data for each gene assayed within each sample. We used the
NanoString software nSolver Analysis Software (v3.0, NanoString
Technologies), following manufacturer’s instructions. The
nSolver corrected for background based on negative control
samples, performed within-sample normalization based
on positive control probes, and performed normalization
across samples using the median expression values of
housekeeping genes (GAPDH, HMBS, HPRT1, RPL32, RPL4,
SDHA, TBP, TOP2B, YWHAZ), providing confidence in our
normalization method.

TABLE 1 | Abbreviations and phenotype information of pig sorted immune cells.

Gatea Population Abbreviation Marker Clone Fluorophore Company (Catalog #)b FACS Sort Criteria

CD3ε + MACS Fraction

− − Anti mouse IgG1 RMG1-1 PE-Cy7 BioLegend(406614) −

1 SWC6gdT SWC6gdT MAC320 APC BD(561482) CD3ε+SWC6+

2 CD4T CD4 74-12-4 FITC BD(559585) CD3ε+SWC6−CD4+CD8α−

3 CD4CD8T CD4CD8α 74-12-4/76-2-11 FITC/PE BD(559585)/BD(559584) CD3ε+SWC6−CD4+CD8α+

4 CD8T CD8α 76-2-11 PE BD(559584) CD3ε+SWC6−CD4−CD8α+

CD3ε − MACS Fraction

5 Myeloid CD172 74-22-15A FITC BD(561498) CD3ε−CD172α+CD8α−

6 NK CD8α 76-2-11 PE BD(559584) CD3ε−CD172α−CD8α+

7 CD21pB CD21 BB6-11C9.6 AF647 Southern Biotech(4530-31) CD3ε−CD172α−CD8α−CD21+

8 CD21nB − − − − CD3ε−CD172α−CD8α−CD21−

aRefers to gate in Figure 1. bReagents listed in Materials and Methods.
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All statistical analyses were performed using the
statistical programming language R v3.5. Raw count
data were normalized using normalizationFactors() and
NanoStringDataNormalization() from NanoStringDiff (v1.1.2.0)
(Wang et al., 2016). One gene (ISG20) without detected
expression in any samples was removed. Hierarchical clustering
and PCA suggested there were substantial hidden variations
among the expression data. Surrogate variable analysis has been
shown to be a powerful method to detect and adjust for hidden
variations in high throughput gene expression data (Li et al.,
2014; Qian Liu, 2016), so surrogate variable analysis was applied
to remove further hidden variations in the gene expression data
using svaseq() from sva (v3.30.1) (Leek et al., 2012). A full model
with cell subpopulations and RINs as independent variables, and
a reduced model with RINs as the only independent variable
were used. Three surrogate variables were estimated and used to
adjust for the hidden variations.

Gene expression values were transformed to log2(TPM) using
voom() from limma (Law et al., 2014). Linear mixed effect models
were used to fit the transformed gene expression data by using
lmer()in lme4 (Bates et al., 2015). The model included fixed effect
for cell subpopulation, RIN, the three surrogate variables, and
random effect for each animal. One minus Spearman correlation
coefficient was used as distance measure for gene clustering, and
Euclidian distances was used for sample clustering.

Additionally, Spearman correlation analysis was performed
to assess the correlation between bulkRNA-seq and NanoString
results. The significant level was set at p < 0.05, and the level
of Spearman’s rank correlation coefficient (rho) was defined as
described above.

scRNA-Seq Library Preparation
Peripheral blood mononuclear cell isolation experiments were
performed at different times and samples sequenced in different
runs. For ExpB, 1 × 107 viable PBMCs per animal were
cryopreserved according to 10× Genomics Sample Preparation
Demonstrated Protocol, shipped on dry ice to University of
Minnesota’s Core Sequencing Facility, and thawed, partitioned,
and scRNA-seq libraries prepared. For ExpC/ExpD, freshly
isolated PBMCs were transported on ice to Iowa State University
Core Sequencing Facility for partitioning and library preparation.
Partitioning and library preparation were performed according
to Chromium Single Cell 3′ Reagent Kits v2 User Guide (10×
Genomics). For all experiments, 100 base paired-end reads were
sequenced on an Illumina HiSeq3000 at ISU Core Sequencing
Facility. One sample from ExpB was omitted from further
analyses due to poor sequence performance.

scRNA-Seq Data Analysis
Read Alignment/Gene Quantification
Raw read quality was checked with FASTQC2. Reads 2 (R2)
were corrected for errors using Rcorrector (Song and Florea,
2015), and 3′ polyA tails > 10 bases were trimmed. After
trimming, R2 > 25 bases were re-paired using BBMap3. Sus

2https://www.bioinformatics.babraham.ac.uk/projects/fastqc
3https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmap-guide/

scrofa genome Sscrofa 11.1 and annotation GTF (v11.1.97) from
Ensembl were used to build the reference genome index (Yates
et al., 2020). The annotation file was modified to include both
gene symbol (if available) and Ensembl ID as gene reference
(e.g., GZMA_ENSSSCG00000016903) using custom Perl scripts.
Processed paired-end reads were aligned and gene expression
count matrices generated using CellRanger (v4.0; 10×Genomics)
with default parameters. Only reads that were confidently
mapped (MAPQ = 255), non-PCR duplicates with valid barcodes,
and unique molecular identifiers (UMIs) were used to generate
gene expression count matrices. Reads with same cell barcodes,
same UMIs, and/or mapped to the same gene feature were
collapsed into a single read.

Quality Control/Filtering
All quality control/filtering steps were performed using R v3.6.2.
CellRanger output files were used to remove ambient RNA from
each sample with SoupX (Young and Behjati, 2020) function
autoEstCont(). Corrected non-integer gene count matrices were
outputted in CellRanger file format using DropletUtils (Lun
et al., 2019) function write10xCounts() and used for further
analyses. Non-expressed genes (sum zero across all samples) and
poor quality cells (>10% mitochondrial genes, < 500 genes,
or < 1,000 UMIs per cell) were removed using custom R scripts
and Seurat (Stuart et al., 2019). Filtered count matrices were
generated using write10xCounts() and used for further analyses.
High probability doublets were removed using Scrublet (Wolock
et al., 2019), specifying 0.07 expected doublet rate and doublet
score threshold of 0.25.

Integration, Visualization, and Clustering
Integration, visualization, and clustering were performed
with R v3.6.2 and Seurat v3.2.0. Post-quality control/filtering
gene counts/cells from each sample were loaded into a Seurat
object and transformed individually using SCTransform().
Data were integrated with SelectIntegrationFeatures(),
PrepSCTIntegration(), FindIntegrationAnchors(), and
IntegrateData() with default parameters. PCA was conducted
with RunPCA(), and the first 14 principal components (PCs)
were selected as significant based on <0.1% variation of
successive PCs. Significant PCs were used to generate two-
dimensional t-distributed stochastic neighbor embedding
(t-SNE) and uniform manifold approximation and projection
(UMAP) coordinates for visualization with RunTSNE() and
RunUMAP(), respectively, identify nearest neighbors and
clusters with FindNeighbors() and FindClusters() (clustering
resolution = 1.85), respectively, and perform hierarchical
clustering with BuildClusterTree(). Counts in the RNA assay
were further normalized and scaled using NormalizeData() and
ScaleData().

Differential Gene Expression (DGE) Analyses
Differential gene expression analyses were performed with R
v3.6.2 and Seurat v3.2.0. Normalized counts from the RNA
assay were used for DGE analyses. Differentially-expressed genes
(DEGs) between pairwise cluster combinations were calculated
using FindMarkers(). DEGs in one cluster relative to the
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average of all other cells in the dataset were calculated using
FindAllMarkers(). The default Wilcoxon Rank Sum test was used
for DGE analyses. Genes expressed in >20% of cells within one of
the cell populations being compared, with | logFC| > 0.25, and
adjusted p-value < 0.05 were considered DEGs.

Gene Set Enrichment Analyses (GSEA)
Enrichment of gene sets within our porcine scRNA-seq dataset
were performed using AUCell (v1.10.0) (Aibar et al., 2017).
Enriched genes in sorted porcine bulkRNA-seq populations were
identified as described in preceding methods. Log2FC values were
used to curate gene sets of genes enriched in the top 25, 20, 15,
10, 5, or 1% of bulkRNA-seq populations. Gene sets from human
bulkRNA-seq cell populations (Choi et al., 2019) were recovered
by performing a High Expression Search on the Haemosphere
website4, setting Dataset = Haemopedia-Human-RNASeq and
Sample group = celltype. Gene sets for CD4:+ T-cell; CD8: + T-
cell; Memory B-cell; Monocyte; Myeloid Dendritic Cell; Myeloid
Dendritic Cell CD123 + ; Naïve B-cell; Natural Killer Cell;
and Plasmacytoid Dendritic Cell options corresponded to CD4T,
CD8T, MemoryB, Monocyte, mDC, CD123PmDC, NaïveB, NK,
and pDC designations, respectively. Genes with high expression
scores >0.5 (lower enrichment level) or >1.0 (higher enrichment
level) were selected and filtered to include only one-to-one
gene orthologs as described in preceding methods. Human
gene identifiers were converted to corresponding porcine gene
identifiers or gene names used for scRNA-seq analyses.

Within each cell of the finalized scRNA-seq dataset, gene
expression was ranked from raw gene counts. Area under the
curve (AUC) scores were calculated from the top 5% of expressed
genes in a cell and the generated gene sets. Higher AUC scores
indicated a higher percentage of genes from a gene set were
found amongst the top expressed genes for a cell. For overlay of
AUC scores onto UMAP coordinates of the scRNA-seq dataset, a
threshold value was manually set for each gene set based on AUC
score distributions. For visualization by heatmap, AUC scores
were calculated for each cell, scaled relative to all other cells in
the dataset, and average scaled AUC scores were calculated for
each cluster. R v4.0.2 was used.

Deconvolution Analysis (CIBERSORTx)
To deconvolve cluster-specific cell subsets from bulkRNA-seq
of sorted populations, CIBERSORTx (Newman et al., 2019) was
used to derive a signature matrix from scRNA-seq data. 114 cells
were taken from each cluster using the Seurat subset() function
and labeled with corresponding cluster identities. Cluster-labeled
cells were used to obtain a single-cell reference matrix (scREF-
matrix) that was used as input and run on CIBERSORTx online
server using “Custom” option. Default values for replicates (5),
sampling (0.5), and fraction (0.0) were used. Additional options
for kappa (999), q-value (0.01), and No. Barcode Genes (300–
500) were kept at default values. CIBERSORTx scREF-matrix was
used to impute cell fractions from the bulkRNA-seq of sorted
cell population “mixtures.” The mixture file (TPM values) was
used as an input and run on CIBERSORTx online server using

4https://www.haemosphere.org/searches

the “Impute Cell Fractions” analysis with the “Custom” option
selected, and S-mode batch-correction was applied. Cell fractions
were run in relative mode to normalize results to 100%. The
number of permutations to test for significance were kept at
default (100). Resulting output provided estimated percentages
of what scRNA-seq clusters defined each bulkRNA-seq sorted
cell population.

Reference-Based Label Transfer/Mapping and de
novo Integration/Visualization
R v3.6.3 and Seurat v3.9.9.9010 were used for the analyses
described in this section. A CITE-seq dataset of human PBMCs
(Hao et al., 2020) was used to transfer cell type annotations
onto our porcine scRNA-seq dataset. Due to the cross-species
comparison, we distilled human reference and pig query datasets
to only include 1:1 orthologous gene, and human reference
dataset was re-normalized and integrated mirroring previous
methods (Hao et al., 2020). Each sample of the porcine query
dataset was separately normalized using SCTransform. Anchors
were found between the human reference and each pig query
sample using FindTransferAnchors. Identified anchors were used
to calculate mapping scores for each cell using MappingScore.
The mapping scores provided a 0–1 confidence value of how
well a porcine cell was represented by the human reference
dataset. Prediction scores were calculated using available level 2
cell types from the human reference dataset. Prediction scores
provided a 0–1 percentage value for an individual cell type
prediction, based on how many nearby human cells shared the
same cell type annotation that was predicted. Predicted cell
annotations were projected back onto original UMAP of the
porcine dataset. Cluster-averaged prediction and mapping scores
were also calculated.

In order to identify cells from the porcine dataset that were not
well represented by the human reference dataset the two datasets
were integrated to perform de novo visualization by merging the
two datasets and their respective sPCAs to create a new UMAP.
From two-dimensional de novo UMAP, porcine cells that did not
overlap with human cells were identified.

Cluster Subsetting
For deeper analyses of only subsets of clusters in the scRNA-
seq dataset, cells belonging to only selected clusters were
place in a new Seurat object using subset(). Genes with zero
overall expression in the new data subset were removed
using DietSeurat(), and counts were re-scaled with ScaleData().
Original cluster designations and PCs were left intact. UMAP/t-
SNE visualization, hierarchical clustering, and DGE analyses were
re-performed as described in the original analyses. Pairwise DGE
analyses were not re-performed. R v4.0.2 was used.

Random Forest (RF) Modeling
Random forest modeling was performed with R version 4.0.4. The
RF models provided an estimate of cluster similarity based on
error rates. The R packages caret5 and ranger6 were used to create

5https://cran.r-project.org/web/packages/caret/caret.pdf
6https://cran.r-project.org/web/packages/ranger/index.html
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RF models trained on cluster identities of cells. A normalized
count matrix was used as input data for RF models. Each cell
was labeled by its previously defined cluster. Two different types
of models were created: (1) pairwise models where training data
included only cells from two different clusters (ex. Clusters 0
and 3); (2) models where training data included cells from all
clusters of a specified dataset (ex. all γδ T-cell clusters). Each
model was trained on the cluster identity of each cell, with trees
created = 500, target node size = 1, variables = 14,386, variables
to sample at each split (Mtry) = 119. Each tree in the model is
grown from a bootstrap resampling process that calculates an
out-of-bag (OOB) error that provides an efficient and reasonable
approximation of the test error. Variable importance was used to
find genes or sets of genes that can be used to identify certain
types of cells or discriminate groups of cells from one another.
RF models are advantageous because they can provide ranked
lists of genes most important for discriminating cells between
different clusters. This method was used to identify groups of
important genes to supplement single DGE analyses. Variable
importance was assigned by measuring node impurity (Impurity)
and using permutations (Permutation). Features that reduced
error in predictive accuracy are ranked as more important. High
error rate in the model suggests cells from the groups being
compared are more similar to each other, whereas low error rate
suggests cells from each cluster are unique.

Gene Name Replacement
Several gene names/Ensembl IDs used for data analysis were
replaced in main text/figures for the following reasons: gene
symbol was not available in the annotation file but was available
under the gene description on Ensembl, gene symbol was
updated in future Ensembl releases, or multiple Ensembl IDs
corresponded to a single gene symbol. Affected genes included:
ABI3 = ENSSSCG00000035224, ABRACL = ENSSSCG0000000
4145, ANP32E = ENSSSCG00000035209, AP3S1 = ENSSSCG0000
0037595, AURKA = ENSSSCG00000007493, BANF1 = ENSSSCG0
0000012961, BUB1B = ENSSSCG00000004782, CBX3 = ENSSSC
G00000016711, CCDC12 = ENSSSCG00000011329, CCL23 = EN
SSSCG00000033457, CD163L1 = ENSSSCG00000034914, CDC2 =
ENSSSCG00000010214, CDNF = ENSSSCG00000039658, CE
P57 = ENSSSCG00000014969, CLIC1 = ENSSSCG00000039071,
CMC2 = ENSSSCG00000032060, CR2 = ENSSSCG00000028674,
CRIP1 = ENSSSCG00000037142, CRK = ENSSSCG00000038989,
DBF4 = ENSSSCG00000020870, DEK = ENSSSCG00000001075,
DHFR = ENSSSCG00000031117, EEF1A1 = ENSSSCG000000044
89, KIF23 = ENSSSCG00000004969, FAM72A = ENSSSCG00
000039370, FCGR3A = ENSSSCG00000036618, GBP1 = ENSSSC
G00000024973, GBP7 = ENSSSCG00000006919, GFER = ENSSS
CG00000008035, GGCT = ENSSSCG00000016679, GIMAP4 = EN
SSSCG00000027826, GINS1 = ENSSSCG00000034913, GTSE1 =
ENSSSCG00000000002, GZMA = ENSSSCG00000016903, H1-
2 = ENSSSCG00000037565, HMGB1 = ENSSSCG00000009327,
HMGB3 = ENSSSCG00000035908, HMGN1 = ENSSSCG00000
033733, HMGN5 = ENSSSCG00000032946, HNRNPA2B1 = ENS
SSCG00000036350, HNRNPAB = ENSSSCG00000014031, HO
PX = ENSSSCG00000008898, IDI1 = ENSSSCG00000029066,
IFITM1 = ENSSSCG00000014565, IGLL5 = ENSSSCG0000001

0077, JPT1 = ENSSSCG00000017213, KLRB1B = ENSSSCG0000
0034555, KLRC1 = ENSSSCG00000000640, KLRD1 = ENSSSCG0
0000026217, KNL1 = ENSSSCG00000039107, LSM4 = ENSSSC
G00000034314, LSM5 = ENSSSCG00000026064, MAGOHB =
ENSSSCG00000000635, MAL = ENSSSCG00000040098, MAN
2B1 = ENSSSCG00000013720, MDK = ENSSSCG00000013260,
MKI67 = ENSSSCG00000026302, MYL12A = ENSSSCG0000000
3691, NT5C3A = ENSSSCG00000022912, NUSAP1 = ENSSSC
G00000035544, NUTF2 = ENSSSCG00000030295, PPIA = ENS
SSCG00000016737, PRIM1 = ENSSSCG00000026055, PRKCH =
ENSSSCG00000005095, PTTG1 = ENSSSCG00000017032, RPL
14 = ENSSSCG00000011272, RPL22L1 = ENSSSCG00000036114,
RPL23A = ENSSSCG00000035080, RPL35A = ENSSSCG0000004
0273, RPS15A = ENSSSCG00000035768, RPS19 = ENSSSCG000
00003042, RPS27A = ENSSSCG00000034617, RPS3 = ENSSSCG
00000014855, RPS8 = ENSSSCG00000003930, RRM2 = ENSSSCG
00000031741, S100B = ENSSSCG00000026140, SEPHS1 = ENSS
SCG00000031659, SIRPA = ENSSSCG00000028461, SKA1 = EN
SSSCG00000004518, SLA-DQA1 = ENSSSCG00000001456, SLA-
DRA = ENSSSCG00000001453 (listed as HLA-DRA in the
gene annotation used), SLA-DRB1 = ENSSSCG00000001455,
SLPI = ENSSSCG00000022258, SNRPG = ENSSSCG00000024776,
SPIB = ENSSSCG00000034211, TACC3 = ENSSSCG00000008677,
TMSB15B = ENSSSCG00000012517, TMSB4X = ENSSSCG0000
0012119, TUBA1C = ENSSSCG00000000194, TXN = ENSSSCG
00000005453, WEE1 = ENSSSCG00000013411, WIPF1 = ENS
SSCG00000027348, YBX1 = ENSSSCG00000028485.

RESULTS

BulkRNA-Seq Revealed Common and
Distinct Transcriptomes in Circulating
Immune Cells
Eight immune cell populations (Table 1) were sorted by cell-
surface marker phenotypes for transcriptomic profiling by
bulkRNA-seq (Figure 1) using primarily criteria previously
outlined (Gerner et al., 2009), with some modifications. Our
protocol utilized an antibody reactive to swine workshop cluster 6
(SWC6) protein to identify γδ T-cells, but the antibody only labels
CD2− γδ T-cells (Yang and Parkhouse, 1996; Davis et al., 1998;
Stepanova and Sinkora, 2013; Sedlak et al., 2014). CD2+ γδ T-cells
were likely sorted into the CD3ε+CD4−CD8α− fraction that
was not retained or the CD8T (CD3ε+CD4−CD8α+) population
(Davis et al., 1998; Stepanova and Sinkora, 2013; Sedlak et al.,
2014). A pan-B-cell marker for pigs is not currently available,
so B-cells are often characterized through a series of negative
gates. Cells in the CD3ε− fraction were considered B-cells
if they also lacked expression of CD172α and CD8α. B-cells
characterized in this manner were further terminally sorted into
B-cell populations with or without CD21 (complement receptor
2) expression (CD21pB and CD21nB, respectively; Figure 1, gates
7 and 8 respectively). We acknowledge that the CD21nB gate
likely contained other circulating cell types that were not sorted
through positive gating approaches.
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Transcriptomic profiles of sorted cell populations were
constructed by bulk RNA-seq, and relationships among porcine
immune cell transcriptomes were assessed and visualized
through dimensionality reduction and hierarchical clustering
(Figures 2A,B and Supplementary File 1). Specifically, T-cell
populations (SWC6gdT, CD4T, CD4CD8T, CD8T), B-cell
populations (CD21pB, CD21nB), myeloid leukocyte populations
(Myeloid), and a single NK cell population (NK) were well
separated from each other (Figure 2A) by PCA. Replicates
of specific sorted cell populations clustered most closely
together, while within T-cell populations or B-cell populations,
considerable transcriptional similarity was observed (Figure 2B).

The total number of expressed genes in each sorted
population was similar (Supplementary File 1). Significantly
enriched genes (SEGs) with expression significantly different
and at least 2× greater than the average of all other cell
populations (see Methods) were identified for each sorted
population (Supplementary File 2). Notably, around 11–23%
of SEGs are not fully annotated (no symbol/gene name) in the
Sscrofa 11.1 genome and annotation v11.1.97. However, there
is evidence of 1:1 orthology within Ensembl for 5–14% of these
unannotated genes (Table 2). The SWC6gdT population had
the highest number of SEGs (3,591), while the NK population
had the fewest (1,885) (Table 2). SEG lists were queried for
corresponding protein targets used to sort cells, if known, to
confirm enrichment of expression of genes corresponding to
protein phenotypes (Figure 2C). Expression of SIRPA∗ (encoding
CD172α) had the highest fold-change in the Myeloid population,
and CR2 (encoding CD21, ENSSSCG00000028674), was highest
in the CD21pB population, as would be predicted based on
protein phenotypes. The two CD4+ T-cell populations (CD4T
and CD4CD8T) had the highest fold-change for CD4. The
CD8T population had the highest fold-change for CD8A, with
CD4CD8T and NK populations also having near a log2FC
enrichment value of 5, in line with these populations also
expressing CD8α. The SWC6gdT population had the highest
fold-change for TRDC, though CD8T and CD21nB populations
also had enrichment for TRDC. As noted previously, it’s unlikely
our sorting for γδ T-cells based on SWC6 captured all γδ

T-cells, thus some γδ T-cells may be represented in other sorted
populations. Thus, the CD8T population is likely comprised not
only CD8α+ αβ T-cells, but also potentially SWC6− γδ T-cells
expressing CD8α.

A subset of SEGs (25% highest log2FC values) for each sorted
population, referred to as highly enriched genes (HEGs) that
distinguish different circulating pig immune cell populations,
were used for data visualization and GO analysis. The log2FC
values for HEGs were clustered and visualized in Figure 3
(four CD3ε− populations) and Supplementary Figure 2 (four
CD3ε+ populations). GO analyses using HEG lists for each
cell population indicated enrichment for biological processes
characteristic of each respective cell population, depicted as
networks of similar terms (Figures 3E–H, Supplementary File
3, and Supplementary Figures 2E–H). Terms for Myeloid
HEGs included Myeloid leukocyte activation and response to
bacterium (Figure 3E), and terms for NK HEGs included
positive regulation of cell killing and natural killer cell

FIGURE 2 | Transcriptional expression patterns of immune cells are distinct
and cluster more by progenitors. (A) Principal component analysis of
transformed RNA-seq reads counts for whole transcriptomes. Axis indicate
component scores. (B) Heat map depicting hierarchical clustering of
sample-to-sample distance. Gene expression for whole transcriptomes were
used to calculate sample to sample Euclidean distance (color scale) for
hierarchical clustering. (C) Heatmap showing cell-type enriched gene values
(Log2FC) between sorted immune cells. Gene coding proteins that were used
for cell sorting were display.

mediated cytotoxicity (Figure 3F). Many terms enriched for
CD21pB HEGs overlapped with those for CD21nB HEGs,
as 38% of HEGs were shared between these populations
(Figures 3C,D). Thus, top GO terms for B-cells, including
adaptive immune response and B-cell proliferation were present
in both populations (Figures 3D,G). However, some GO
terms were unique to either B-cell population. GO related
to B-cell activation, such as positive regulation of B-cell
activation/proliferation processes associated with B-cell receptor
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signaling, were identified exclusively for CD21pB HEGs. For
CD21nB HEGs, processes associated with humoral immunity
and red blood cell processes such as coagulation or platelet
activation were noted, which could indicate contamination of
different cell types given the non-specific cell sorting approach
used for CD21nB cells (Figure 1). For all sorted T-cell
populations (CD8T, CD4T, CD4CD8T and SWC6gdT), HEG
lists showed overlap (Supplementary Figures 2A–D). GO terms
included T-cell activation, T-cell receptor signaling pathway,
cytokine-cytokine receptor interaction and biological processes
related to cytotoxicity activity (Supplementary Figures 2E,F).
Overall, GO exploration of HEGs for sorted populations
provided evidence that sorted immune cells represented expected
immune cell functions.

The TPM values of expressed genes in sorted porcine
cells were compared with orthologous human genes
expressed in sorted human naïve hematopoietic cells from
the Haemopedia (Choi et al., 2019) in order to identify
cell-specific transcriptome similarities across species.
Gene expression correlations assessed by Spearman’s rank
correlation indicated highly significant and moderately
strong correlations (rho = 0.30–0.43, p < 2.2e−16) between
porcine and anticipated corresponding human immune cell
populations (Supplementary Figure 3 and Supplementary
File 4). A closer evaluation of genes reported as canonical
cell markers for different mouse and human peripheral
immune cell populations and expression of those genes
in each of the sorted porcine populations revealed several
commonalities. Specifically, genes such as EBF1, CD19,
MS4A1, CD79B, PAX5, HLA-DOB (in CD21nB, CD21pB);
CD28 (in CD8T, CD4T, CD4CD8T); CD5 (in CD8T, CD4T,
CD4CD8T, SWC6gdT); GZMA, GNLY, CCL5, KLRK1,
KLRB1, CD244 (in NK, CD8T); and VLDLR, NLRP3,
CD14, STEAP4, CD163, DEFB1 (in Myeloid) for human cells
showed specific enrichment in respective porcine populations
(Supplementary Figure 4). Thus, additional query confirmed
sorted porcine immune cell populations were equivalent to
human counterparts in many ways.

TABLE 2 | Cell type-enriched and cell type specific genes identified in pig
sorted immune cells.

Cell type Enriched
genes
(SEG)

Top 25%
SEG

Number of
genes without
gene name in
the top 25%

SEG list

Number of
top 25% SEG
without gene

name that
have

orthologs in
human

Specific
genes

SWC6gdT 3591 898 141 15 8

CD8T 3318 830 150 19 2

CD4CD8T 2271 568 85 7 0

CD4T 2606 533 95 13 0

NK 1855 464 100 9 29

Myeloid 3440 860 102 15 397

CD21pB 2383 596 124 9 5

CD21nB 2456 614 146 7 0

High Homogeneity Amongst Sorted
T-Cell and B-Cell Populations and
Transcriptomic Distinctions in Myeloid
and NK Populations
Pairwise DGE analyses between the cell populations identified
genes with transcript abundance at least 2× higher in one
population than in all other populations (adjusted p-value < 0.05,
see Methods) which we define as cell type-specific. Consistent
with PCA (Figure 2A), more cell type-specific genes were
identified in the Myeloid population than in NK, T or B-cells.
In total, we identified 2, 5, 8, 29, and 397 cell type-specific genes
for CD8T, CD21pB, SWC6gdT, NK, and Myeloid populations,
respectively (Table 2 and Supplementary Figure 5). GO analyses
using cell type-specific genes for the Myeloid population resulted
in enrichment of terms such as Myeloid leukocyte, cytokine-
cytokine receptor interaction, and pattern recognition receptor
activity (Supplementary Figure 5 and Supplementary File 3).
Next, we determined if the cell type-specific genes identified were
present in the list of HEGs for each population. In total, 2, 2, 5,
14, and 271 cell type-specific genes were identified in respective
HEG lists for CD8T, CD21pB, SWC6gdT, NK, and Myeloid
populations, respectively (Table 3), indicating the most highly-
enriched cell type-specific genes were present in NK and Myeloid
populations. Cell type-specific genes could not be identified
for the remaining three sorted populations (CD4T, CD4CD8T,
and CD21nB) using the criteria described above, indicating
between-population transcriptional heterogeneity even for these
enriched populations.

We then explored immune cell transcriptomic patterns to
identify genes that could expand our knowledge of pathways
active in specific cell populations, as well as predict new genes
suitable to use for molecular analyses in immunology studies.
Of interest, we found a remarkably high number of HEGs in
our Myeloid population (Table 3), including immune-related
genes involved in TLR signaling (CD14, CD36, TLR2/3/4/8/9,
NOD2) and cytokine activity (CSF1R, CSF2RA, CSF3R, IFNGR1,
IL1B, IL1RAP, CXCR2, CCL21, CCL23, TNFRSF1B, IL1R2,
TNFSF13, TNFSF13B, TNFRSF21, CXCL16, CCR2). In NK cells
fewer specific genes were detected than the Myeloid population
(Table 3), with genes such as OTOP2, OTOP3, OSPBL3, LY6D,
RET related to cytotoxic activity, a typical characteristic of NK
cells (Rusmini et al., 2013; Rusmini et al., 2014; Belizário et al.,
2018; Costanzo et al., 2018; Tu et al., 2018; Upadhyay, 2019),
although their function in porcine NK cells is unexplored. In
CD21pB cells, the gene for CD21 (CR2*) used for sorting the
B-cell populations was predicted to be a HEG. The SWC6gdT
population showed specific expression of AVCR2A, which is a
Th17 cell specific gene in mice (Ihn et al., 2011) and regulates
the proliferation of γδ T-cells in murine skin (Antsiferova et al.,
2011). The CD8T population specifically expressed TMIGD2
(a CD28 family member) and JAML, which encode T-cell
transmembrane proteins (Zhu et al., 2013; Alvarez et al., 2015;
Krueger et al., 2017).

*Refer to gene name replacement in Materials and Methods section
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FIGURE 3 | Top 25% highly enriched genes in CD3− sorted cells. Heatmap showing in decreasing order the top 25% of highly enriched genes in (A) myeloid,
(B) NK, (C) CD21pB, and (D) CD21nB-cells. Ontology enrichment clusters of the top 25% highly enriched genes of (E) myeloid, (F) NK, (G) CD21pB, and
(H) CD21nB cells. The most statistically significant term within similar term cluster was chosen to represent the cluster. Term color is given by cluster ID and the size
of the terms is given by –log10 p-value. The stronger the similarity among terms, the thicker the edges between them.
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TABLE 3 | Specific highly enriched genes in myeloid, NK, CD21pB, SWC6gdT, and CD4CD8T-cells.

Group Total
genes

Gene names

Specific Myeloid + Top
25% myeloid

271 SLC18A1, ENSSSCG00000025687, KLHL13, PAK1, C1RL, MITF, SIRPB2, ENSSSCG00000014997, HNMT, C5AR1, A2M,
TEK, SEL1L3, TSPAN13, ENSSSCG00000035960, ENSSSCG00000039214, ENSSSCG00000003226, APOE, CHST15,
DNM1, GAS2L1, SERPING1, COL18A1, CDS1, ENSSSCG00000016184, CRHBP, KCNE3, NCAM1, ABHD12,
ENSSSCG00000001850, ENSSSCG00000023479, ASAH1, FN1, ENSSSCG00000003554, ENSSSCG00000038429, GAA,
ECE1, SLC46A2, UBTD1,CEBPD, CTSB, ENSSSCG00000031640, ENSSSCG00000037466, PLAC9, CCDC60, DOPEY2,
TALDO1, ADAMTSL4, ENSSSCG00000034555, STK3, ENSSSCG00000021675, FAM129B, SIGLEC1, SULF2, TRPM2, MGP,
CMKLR1, TNFRSF19, DOCK4, ENSSSCG00000027991, ULBP1, SLC11A1, SFXN3, TNFSF13, ENSSSCG00000013380,
CD68, KCNQ1, RPS6KA2, CD14, MCF2L, ENSSSCG00000037541, ENSSSCG00000015839, PAM, SERPINB8, TSPAN12,
F13A1, SASH1, C9orf72, PLCB4, SH3PXD2B, BLVRA, CXCL2, ADAM28, GPBAR1, CHI3L2, SNX9, LGALS3, SLC2A6,
ENSSSCG00000035675, EHD4, ENSSSCG00000039758, UNC13A, ENSSSCG00000038418, C2, PLA2G7, FUCA1,
ENSSSCG00000037426, ENSSSCG00000025271, ABCA9, RASGRP4, SLC7A7, VCAN, SLC39A8, ADAP2, SMIM5, DAGLA,
RAB11FIP5, ZNF768, ENSSSCG00000007644, CTNND1, ENSSSCG00000022258, ENSSSCG00000017754, STXBP1,
ENSSSCG00000027665, MANSC1, RND2, IGSF6, BMX, NLRP12, TPST1, NOD2, TREM1, SEMA6B, JDP2, FAM111B,
CIDEB, ENSSSCG00000033457, MMP19, SGK3, CTTNBP2NL, MAPK4, PLAUR, INSIG1, RNASE4, FLVCR2, SCARF1,
BCL2L14, ENSSSCG00000026196, MCTP1, WLS, ENSSSCG00000017920, PLOD1, CHPT1, PRCP,
ENSSSCG00000013842, SH2D6, CA13, PLCB2, CAPN3, PRAM1, ENSSSCG00000038616, ALOX5, GPNMB, ACVRL1,
SMIM3, GPR137B, LAMP1, NR1H3, ARL11, ITGB4, CYSLTR2, CCSER1, NCF2, GPCPD1, PDXK, NACC2, FOLR1, ADGRL2,
MERTK, OLFM1, PLXNC1, ECM1, LRRC25, IFIT2, CORO1B, ASAP3, SLC43A3, STEAP4, CAMKK1, CTSS, TMEM47, TTLL7,
AKR7A2, ENSSSCG00000036342, VIM, TLR8, LIN7A, MPP1, TBXAS1, LIPA, DRAM1, MRC2, TGM3, HEXB, GALM, EREG,
JPH4, ANG, QPCT, PPT1, ARRDC4, RAB31, ABHD17C, NFAM1, TLR3, LTB4R, HSD3B7, VDR, ENSSSCG00000010497,
CD163, OSCAR, DSC3, LRP6, ENSSSCG00000031951, ENSSSCG00000028635, PSAP, SCPEP1, EPB41L2, ZDHHC9,
IL1R2, EXPH5, ENSSSCG00000023264, IFIT5, AGPAT2, NKD2, GUCY1B1, GLUL, COL14A1, TNFRSF1B, SLC16A3, GRN,
ENSSSCG00000013100, CEBPA, OLFML2B, TLR4, XG, CCL21, ATF6, SLC49A3, HFE, ACVR1B, IFNGR1,
ENSSSCG00000022925, SERPINB10, TCF7L2, ENSSSCG00000008769, ENSSSCG00000016093, UNC93B1, TIMP2,
RAMP2, F11R, LGALS8, ENSSSCG00000032723, CFP, ZNF385A, CLIC2, TDRD1, HIP1, ENSSSCG00000026653, GSDMD,
CSF1R, NAGK, GAB1, PGD, ENSSSCG00000034639, LRPAP1, DAPK1, ENSSSCG00000039956, GPAT3, GALNTL5,
ENSSSCG00000029414

Specific NK + Top 25%
NK

14 OTOP2, B3GNT7, OSBPL3, NR4A3, IGF2BP2, OTOP3, ENSSSCG00000010703, LY6D, RET, TUBB6,
ENSSSCG00000033385, ENSSSCG00000036743, PTH1R, SUSD1

Specific CD21pB + Top
25% CD21pB

2 GP2, CR2

Specific SWC6gdT +
Top 25% SWC6gdT

5 TMEM87B, ACVR2A, ENSSSCG00000028443, SLC4A4, CASS4

Specific CD8T + Top
25% CD8T

2 TMIGD2, JAML

Finally, we compared pair-wise transcriptome differences
between our porcine sorted CD4T and CD8T populations
(Supplementary File 2) with the comparable populations from
a previous study (Foissac et al., 2019). Even though the sorting
approaches were different, 85% of the genes more highly
expressed in CD4T compared to CD8T, respectively, were
detected by Foissac and colleagues in their respective CD4+ to
CD8+ comparison. Similar overlap was found (87%) for the genes
more abundant in the “CD8 + high” list, while little overlap
was found in the inverse comparisons (2.5 and 1%), strongly
indicating these cell type gene expression patterns were similar
between studies. However, given the lack of identification of cell-
type specific genes for CD4T and CD8T populations, shared gene
expression patterns may not be surprising.

NanoString Assay Validated
BulkRNA-Seq
RNA abundance of each gene target (Supplementary File 5) in
each sample was used to perform a hierarchical clustering analysis
(Supplementary Figure 6). Similar to relationships observed
in the bulkRNA-seq dataset, biological replicates clustered

most closely together. T-cell populations (SWC6gdT, CD4T,
CD4CD8T, CD8T) were more similar to each other than to other
populations, with the exception of NK cells. RNA abundance
for the genes encoding the marker proteins used for sorting
cell populations confirmed cell identity in NanoString assays
(Supplementary Figure 7). RNA abundance for each tested
gene and cell population is included in Supplementary File
5. To validate gene expression levels calculated by bulkRNA-
seq, a Spearman rank correlation analysis was performed
between expression values determined by bulkRNA-seq and
NanoString (Supplementary Figure 8). Highly significant and
strong correlation (rho = 0.62–0.88, p-value < 2.2e−16) was
observed for all sorted cell types (Supplementary File 4). Overall,
gene expression estimates in the bulkRNA-seq dataset were
confirmed by using the NanoString assay.

Defining the Transcriptomic Landscape
of Porcine PBMCs at Single-Cell
Resolution
Single-cells from PBMCs of seven conventional pigs
were partitioned, sequenced, clustered, and visualized
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(Supplementary File 6). In total, the final dataset included 28,810
cells, and each cell was assigned to one of 36 transcriptionally
distinct clusters, with 9,176–12,683 genes detected within
each cluster (Figure 4A, Supplementary Figures 9A–C; and
Supplementary File 6). For identification of general cell types
in each cluster, expression levels of genes known to be active in
distinct porcine immune cell populations were mapped across
single-cell clusters (Figures 4B,C). The 36 clusters were deduced
to 13 general cell types (Figure 4D) as described below.

Monocyte clusters (13, 19, 20, 25, 27) expressed CSF1R and
genes associated with microbial recognition (CD14, CD163,
NLRP3, TLR4), reported as highly expressed by porcine
monocytes (Auray et al., 2016). DC clusters (30, 32) expressed
porcine pan-DC marker FLT3 and were further classified as
conventional DCs (cDCs; cluster 30) by elevated expression
of FCER1A and MHCII-encoding genes (SLA-DRB1∗, SLA-
DRA∗) and pDCs (cluster 32) by elevated expression of TCF4,
XBP1, CLEC12A, CD93, IRF8, CD4, and CD8B (Auray et al.,
2016). Co-stimulatory gene CD86 was expressed by all monocyte
and DC clusters as reported (Auray et al., 2016). SIRPA∗,
encoding CD172α is expressed by porcine monocytes/DCs
(Piriou-Guzylack and Salmon, 2008; Auray et al., 2016) and
used to sort myeloid leukocytes for bulkRNA-seq above, was
minimally expressed in DC clusters.

B-cell clusters (2, 7, 8, 10, 11, 15, 16, 23, 26, 33) expressed
CD79A, CD19, and PAX5 (Faldyna et al., 2007; Piriou-Guzylack
and Salmon, 2008; Bordet et al., 2019). Antibody-secreting cells
(ASCs; cluster 29) expressed IRF4 and PRDM, genes ascribed
to immunoglobulin secretion (Shi et al., 2015; Liu et al., 2020).
Detection of CR2∗, the gene encoding CD21 protein, was very
low in any cluster.

Expression of CD3E, which encodes pan-T-cell CD3ε protein,
identified T-cell clusters (0, 3, 4, 5, 6, 9, 12, 14, 17, 18, 21,
22, 24, 28, 31) (Gerner et al., 2009). Cluster 1 cells largely
lacked CD3E, CD5, and CD6 expression, while expressing CD2,
CD8A, PRF1, NK receptor-encoding genes KLRB1 (CD161) and
KLRK1 (NKG2D), and NK receptor signaling adaptor molecules
HCST (DAP10) and TYROBP (DAP12), corresponding to a
NK cell designation (Denyer et al., 2006; Piriou-Guzylack and
Salmon, 2008; Gerner et al., 2009; Toka et al., 2009). γδ T-cells
were identified by TRDC expression, encoding the γδTCR δ

chain, and were subdivided into two major subtypes based
on presence/absence of CD2 expression (Piriou-Guzylack and
Salmon, 2008; Gerner et al., 2009; Stepanova and Sinkora, 2013;
Sedlak et al., 2014). Clusters 6 and 21 were identified as CD2−
γδ T-cells and clusters 24 and 31 as CD2+ γδ T-cells. Clusters
expressing CD3E but not TRDC were considered αβ T-cells and
were further subdivided based on CD4 expression (0, 3, 4, 28
classified as CD4+ αβ T-cells) or CD8A and CD8B expression (9,
12, 14, 18, 22 classified as CD8αβ+ αβ T-cells) (Piriou-Guzylack
and Salmon, 2008; Gerner et al., 2009). Clusters 5 and 17 were
more difficult to fully classify and likely represented a mixture
of cells, with some but not all cells expressing CD3E. Cells in
clusters 5 and 17 largely lacked expression of CD5, CD6, TRDC,
CD4, and CD8B but did largely express CD2, CD8A, KLRB1, and
KLRK1 and were therefore characterized as a mixture of CD8α+

αβ T- and NK cells.

Cells in cluster 34 could not be characterized well enough
to broadly classify as myeloid, B, T, or NK lineage leukocytes
based on the porcine cell markers described and remained
unclassified. Cluster 35 expressed HBM and AHSP, indicating
erythrocytes. Clusters 34 and 35 were still included in further
scRNA-seq analyses; however, results pertaining to these clusters
were not discussed.

Gene Signatures of BulkRNA-Seq
Populations Had Limitations in Resolving
Single-Cell Identities
Gene set enrichment analyses (GSEA) using SEG lists defined
at different levels of enrichment for each sorted bulkRNA-
seq population (Supplementary File 3, see Materials and
Methods) was performed to identify which scRNA-seq
clusters were likely represented (Figures 5A,B, Supplementary
Figure 10A, and Supplementary File 8). Some gene sets had high
relative enrichment in anticipated corresponding scRNA-seq
clusters, such as Myeloid gene sets to monocyte/DC clusters,
CD21nB/CD21pB gene sets to B-cell clusters, and SWC6gdT
gene sets to CD2− γδ T-cell clusters. Interestingly, highest relative
enrichment (2.51) for the top 1% of CD21nB SEGs was noted for
ASCs in cluster 29, followed by erythrocytes in cluster 35 (1.68).
Within sorted NK and T-cell populations, some gene sets showed
high relative enrichment for their anticipated corresponding
clusters in the scRNA-seq dataset. We also noted off-target
relative enrichment for gene sets in clusters not anticipated to be
included in specific sorted cell populations. Cluster 28 had lower
relative enrichment for CD4T and CD4CD8T SEG lists at top
5–25% SEG levels (−0.02 to 0.73) than did several non-CD4+
αβ T-cell clusters. Similar phenomena were observed for CD8T
top 5–25% SEG lists, whereby clusters 1, 24, and 31 had higher
relative enrichment for CD8T SEG lists (0.69 to 1.56) than did
clusters 14 or 18 (−0.04 to 0.95 relative enrichment) that were
anticipated to be included in the CD8T population. Clusters 24
and/or 31 showed off-target relative enrichment for all T/NK
gene sets to various degrees, though these cells would not be
expected to make up a sizeable portion of any of those sorted
cell populations.

Further comparison of porcine bulk and scRNA-seq data
by CIBERSORTx deconvolution analysis largely supported
our single-cell cluster designations by predicting which
clusters proportionally represented the bulk RNA-seq data
(Supplementary Figure 10B and Supplementary File 7).
Several clusters with poor AUCell enrichment for anticipated
bulkRNA-seq gene sets in Figures 5A,B, such as cluster 28,
were predicted to constitute considerable proportions of their
anticipated cell populations by CIBERSORTx deconvolution
analysis. Additionally, clusters that demonstrated off-target
enrichment by AUCell analysis, such as clusters 1, 9, 22, 24, and
31, were not predicted to be largely present in those off-target
populations using CIBERSORTx. However, CIBERSORTx failed
to predict many single-cell clusters to have notable abundances
in any bulkRNA-seq populations, such as clusters 8, 19, 26,
32, and 34 having <3.33% predicted abundance for any one
bulkRNA-seq sample.
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FIGURE 4 | Classification of porcine PBMC scRNA-seq clusters based on known cell type-specific gene expression. (A) Two-dimensional UMAP visualization of
28,810 single cells from porcine PBMCs classified into 36 designated clusters. Each point represents a single cell. Color of the point corresponds to transcriptional
cluster a cell belongs to. Cells more transcriptionally similar to each other belong to the same cluster. (B) Visualization of selected cell type-specific gene expression
overlaid onto two-dimensional UMAP coordinates of single cells. Each point represents a single cell. Color of the point corresponds to relative expression of a
specified gene (bottom left of each UMAP plot) within a cell. Gray corresponds to little/no gene expression, while navy corresponds to increased gene expression.
(C) Dot Plot visualization of selected cell type-specific gene expression for each single-cell cluster shown in A. Clusters are listed on the x-axis, while selected genes
are listed on the y-axis. The size of a dot corresponds to the percent of cells in a cluster that expressed the gene. The color of a dot corresponds to the average
relative expression level for the gene in the cells expressing the gene within a cluster. Color bar below the x-axis corresponds to porcine cell type each cluster was
classified as. (D) Two-dimensional UMAP visualization of single cells from porcine PBMCs classified into major porcine cell types. Each point represents a single cell.
Color of the cell corresponds to porcine cell type the respective cluster was designated as based on gene expression patterns for the cluster it belonged to in (C).
Seven PBMC samples used for scRNA-seq analysis were derived from each of three separate experiments (experiment B, n = 2; experiment C, n = 3; experiment D,
n = 2). Between 3,042 and 6,518 cells were derived from each PBMC sample. *Refer to ‘Gene name replacement’ methods.

Additional GSEA comparing gene sets derived from public
bulkRNA-seq data of sorted human PBMC populations with
porcine single-cell gene expression profiles informed cluster
identity as it relates to human immune cells (Figure 5C,
Supplementary Figures 10C,D, and Supplementary File 9).

High relative enrichment for human monocyte gene sets in
porcine monocyte populations, human CD123PmDC gene sets
in porcine cDCs, and human pDC gene sets in porcine pDCs
was observed, in general consensus with gene expression profiles
of anticipated corresponding porcine single-cell clusters. NaiveB
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FIGURE 5 | Enrichment of gene signatures from bulkRNA-seq in porcine single-cell clusters. (A) Gene set enrichment scores calculated by AUCell analysis of
enriched gene sets from the top 25% of SEGs in pig bulkRNA-seq sorted populations overlaid onto cells of the porcine scRNA-seq dataset visualized in
two-dimensional UMAP plot. Each point represents a single cell. The color of the point corresponds to the AUC score calculated for each respective cell. Higher
AUC scores correspond to a greater percentage of cells from a gene set being detected in the top 5% of expressed genes in a cell. A threshold for AUC score
detection within each gene set was set as shown in Supplementary Figure 10A and is indicated by a horizontal line on the gradient fill scale for each plot.
(B) Relative average gene set enrichment scores of scRNA-seq clusters calculated by AUCell analysis of enriched gene sets from porcine bulkRNA-seq sorted data.
Scores are relative to other cells within a single gene set comparison (across a row of the heatmap) and are not calculated relative to scores across different gene

(Continued)
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FIGURE 5 | Continued
sets (across columns in the heatmap). Gene sets were created from the top 1, 5, 10, 15, 20, or 25% of SEGs from sorted populations, as determined by highest
log2FC values in the porcine bulkRNA-seq data. The number of genes included from the bulkRNA-seq dataset and the number and percent of genes detected in the
scRNA-seq dataset is listed on the right of the heatmap. A color bar under scRNA-seq cluster IDs indicates the cell type classification, as according to Figure 4D.
(C) Relative average gene set enrichment scores of scRNA-seq clusters calculated by AUCell analysis of enriched gene sets from human bulkRNA-seq sorted data.
Scores are relative to other cells within a single gene set comparison (across a row of the heatmap) and are not calculated relative to scores across different gene
sets (across columns in the heatmap). Gene sets were created from genes with high expression scores >0.5 or >1 for each respective sorted population of cells,
with a greater high expression score indicating greater enrichment. The number of genes included from the bulkRNA-seq dataset and the number and percent of
genes detected in the scRNA-seq dataset is listed on the right of the heatmap. A color bar under scRNA-seq cluster IDs indicates the cell type classification, as
according to Figure 4D.

cell gene signatures had positive relative enrichment in all porcine
B-cell clusters except cluster 33 at both the 0.5 and 1.0 resolution
level, while the MemoryB cell signature had highest relative
enrichment scores for B and ASC clusters at the 0.5 level, with
little relative enrichment at the 1.0 level (likely due to a limited
number of genes in the gene set). Human T/NK gene sets
had off-target enrichment very similar to patterns observed in
GSEA with porcine gene sets. Overall, GSEA between human
bulkRNA-seq gene signatures and gene expression profiles of
porcine scRNA-seq data supported many of the same findings
when comparing between porcine bulkRNA-seq gene sets and
gene expression profiles of porcine scRNA-seq data. Results
indicated limitations of gene profiles obtained from sorted
bulkRNA-seq populations in accurately describing/accounting
for transcriptional heterogeneity resolved by scRNA-seq.

Integration of Porcine and Human
scRNA-seq Datasets to Further Annotate
Porcine Cells
We examined porcine single-cell identities by comparing the
porcine scRNA-seq data to a highly annotated scRNA-seq dataset
of human PBMCs, providing a higher level of resolution than
available with bulkRNA-seq. Transfer of more highly specified
human cell type labels onto porcine cells could reveal the
most likely human counterparts for these porcine populations.
Mapping scores were further calculated to determine how well
porcine cells were truly represented by the human dataset
(Figure 6A, Supplementary Figures 11A,B, and Supplementary
File 10).

Many porcine clusters had >95% of cells mapping to a
specific human cell type, with average mapping scores >0.9,
including monocyte, pDC, cDC, and ASC clusters, suggesting
high congruency between pig and human for these cell types
(Figure 6B). All porcine B-cell clusters, omitting cluster 33,
mapped primarily to human B-cell clusters, but average mapping
scores were slightly lower (0.80–0.87), indicating less ideal
representation in the human data. In addition, every porcine
B-cell cluster had overlap with all three human B-cell types
(Figure 6A). Of the porcine CD4+ αβ T-cells, most cluster 0 cells
were predicted as human CD4 naïve cells, clusters 3 and 4 cells
as human CD4 T central memory (TCM) cells, and cluster 28
cells as human CD4 proliferating cells. From porcine CD8αβ+

αβ T-cells, clusters 14 and 18 were largely assigned as human
replicating cell types, while 90% of cluster 9 cells were predicted
as human CD8 T effector memory (TEM) cells. Highest cluster

12 predictions were mainly to human CD4/CD8 naïve T-cells,
and cluster 22 cells predicted to match a range of human cell
populations, with the largest percentage predicted as human
CD8 TEMs. Porcine CD8α+ αβ T/NK and NK clusters had
predictions split primarily across human CD8 TEM and NK
designations. Porcine CD2+ γδ T-cell clusters 24 and 31 had 74
and 98%, respectively, of cells predicted as human CD8 TEM,
NK, or γδ T-cells. Porcine CD2− γδ T-cell clusters 6 and 21
had the majority of cells predicted as human CD4 TCM, innate
lymphoid cell (ILC), or γδ T-cells, though the average mapping
scores were lower for those assigned as CD4 TCM (0.73–0.74)
or gdT (0.74–0.78) than those assigned as ILCs (0.82–0.83)
(Supplementary File 10). Overall, cross-species comparison to
a well-annotated human scRNA-seq dataset helped elucidate
porcine cell type identities at a higher resolution than porcine
or human bulkRNA-seq datasets (Figure 5), though some
discordance was clearly still present.

Several porcine clusters had low mapping scores to a
human cell type, indicating the porcine cells may not be
well represented by the human reference dataset (Figure 6B
and Supplementary File 10). Therefore, de novo visualization
was performed on the combined human and porcine data,
to identify cells in the pig dataset not well represented in
the human data (Figures 6C,D). Porcine clusters could be
identified that had low similarity to human cells, and vice
versa (Figure 6C). Specifically, porcine clusters 6, 16, 21, and
33 weakly overlapped human cells in the two-dimensional de
novo visualization (compare 6C and 6D) and had lower average
mapping scores to any human cell type (Figure 6B). Further
inspection revealed clusters 6 and 21 to be CD2− γδ T-cells
(identified in Figures 4B,D) and their limited representation in
human dataset is discussed further below. In contrast, clusters
16 and 33 were B-cells, and to further understand their limited
representation compared to other porcine B-cells, clusters 16
and 33 were compared by pairwise comparisons to all remaining
B-cell clusters (2, 7, 8, 10, 11, 15, 23, 26; Supplementary
File 6). Pairwise comparisons revealed significantly increased
expression of 33 genes in cluster 16 and 282 genes in cluster
33 relative to every other B-cell cluster (Table 4). Compared
to other porcine B-cell clusters, cluster 16 had significantly
greater expression of several genes associated with B-cell
activation (such as BHL, ITGB7, JCHAIN, ZBTB38) (Castro
and Flajnik, 2014; Kreslavsky et al., 2017; Delecluse et al.,
2019; Wong and Bhattacharya, 2020), while many genes with
significantly increased expression in cluster 33 were associated
with cellular replication and/or division, such as HIST1H2AB,
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FIGURE 6 | Integration of porcine and human scRNA-seq datasets to further annotate porcine cells. (A) Mapping scores calculated to determine how well porcine
cells were represented by the human dataset. The human cell type specific frequency (size of the circle) and mapping score for that human cell type (color) are
shown for each porcine scRNA-seq cluster. Porcine cell type classifications (color) are shown below the porcine scRNA-seq cluster IDs. (B) Mapping scores
calculated to determine how well porcine cells were represented by the human dataset. The mapping scores for each porcine scRNA-seq cluster is represented by a
box and whiskers plot. Porcine cell type classifications (color) are shown below the porcine scRNA-seq cluster IDs. (C) To identify cells in the porcine dataset that
were not well represented in the human dataset, a de novo visualization of the merged porcine and human data was performed. The porcine (pink) and human (gray)
were plotted together using UMAP. An overlap of both porcine and human cells is shown as (dark red). Clusters of porcine cells that are not well represented in the
human data can be observed by pink regions in the plot. (D) Two primary regions of porcine cells that were not well represented in the human data were identified in
(C). In order to clarify which porcine scRNA-seq clusters were represented in these regions, the porcine cluster IDs were projected onto the UMAP and cells from
four clusters overlapping the identified regions were colored as dark red.
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TABLE 4 | Genes with significantly increased expression in cluster 16 or 33 relative to every other B-cell cluster (2, 7, 8, 10, 11, 15, 23, 26) by every pairwise differential
gene expression analysis. Underlined genes had significantly increased expression in both cluster 16 and 33.

Cluster with greater gene
expression relative to all
other B-cell clusters

Genes

Cluster 16 ABRACL*, ACTG1, ANXA2, BHLHE41, BIRC5, CA8, CD52, CDK2AP2, CFD, CLIC1*, DUT, DYNLL1, ENSSSCG00000037141,
ENSSSCG00000039490, GAPDH, H2AFZ, HINT1, HIST1H2AB, HMGB1*, HMGB2, HMGN2, ITGB7, JCHAIN, LSM5*, PCLAF, PCNA,
S100A11, SPCS1, SRSF10, STMN1, TUBB, TYMS, ZBTB38

Cluster 33 ACTG1, AHCY, ANP32E*, ANXA2, AP3S1*, ARL6IP1, ASF1B, ASPM, ATAD2, ATAD5, ATP5MC3, AURKA*, AURKB, BANF1*, BBS7,
BIRC5, BRCA1, BUB1, BUB1B*, BUB3, CALM3, CBX3*, CBX5, CCDC167, CCDC34, CCNB1, CCNB2, CCNE2, CDC2*, CDC20,
CDC25B, CDC45, CDCA3, CDCA5, CDCA7, CDCA8, CDK2, CDK4, CDKN2C, CDKN3, CDT1, CENPA, CENPE, CENPF, CENPM,
CENPN, CENPS, CENPT, CENPU, CENPW, CEP55, CEP57*, CIP2A, CKAP2, CKAP2L, CKAP5, CKS1B, CKS2, CLIC1*, CLSPN,
CMC2*, COX17, COX5A, CSPP1, CTCF, CXXC1, CYB5B, DBF4*, DDX39A, DEK*, DEPDF1B, DHFR*, DIAPH3, DLGAP5, DNMT1,
DTYMK, DUT, DYNLL1, E2F2, E2F8, ECT2, ENSSSCG00000034527, ENSSSCG00000037071, ENSSSCG00000037185, ERH,
ESCO2, E2H2, FABP3, FAM72A*, FBXO5, GAPDH, GFER*, GGCT*, GINS1*, GINS2, GMNN, GON7, GPN3, GTSE1*, H1-2*, H2AFV,
HSAFY, H2AFZ, HDGF, HELLS, HINT1, HIST1H1D, HIST1H1E, HIST1H2AB, HIS1H2AG, HIST2H2AC, HMGA1, HMGB1*, HMGB2,
HMGB3*, HMGN2, HMGN1*, HMGN5*, HMMR, HNRNPA2B1*, HNRNPAB*, HNRNPS, HNRNPH1, HSP90AA1, HSPA4L, IDI1*, JPT1*,
KIF11, KIF15, KIF18A, KIF20A, KIF20B, KIF22, KIF23*, KIF2C, KIF4A, KIFC1, KNL1*, KNSTRN, KPNA2, KPNB1, LGALS1, LMNB1,
LSM2, LSM3, LSM4*, LSM5*, LSM6, LSM8, LYAR, MAD2LA, MAGOHB*, MAZ, MCM3, MCM4, MCM5, MCM6, MCM7, MDH1,
MELK, MIS18A, MKI67*, MND1, MNS1, MPHOSPH9, MSH6, HTFR1, MTHFD1, MXD3, MYBL2, NANS, NASP, NCAPD2, NCAPD3,
NCAPG, NCAPG2, NCAPH, NCAPH2, NDC80, NEK2, NRM, NSD2, NT5C, NUCKS1, NUDC, NUF2, NUSAP1*, NUTF2*, NXT2, ORC1,
ORC6, PBK, PCLAF, PCNA, POC1A, POLR2K, POMP, POP7, PPIA*, PRIM1*, PRR11, PTBP1, PTMA, PTTG1*, RACGAP1, RAD21,
RAD51, RAD51AP1, RAN, RANBP1, RBMX, RFC3, RFC4, RHNO1, RNASEH2B, RPA2, RPA3, RRM2*, S100A11, S100A6, SEPHS1*,
SFPQ, SGO1, SGO2, SHCBP1, SIVA1, SKA1*, SKA2, SLBP, SMC1A, SMC2, SMC3, SMC4, SNRPA1, SNRPD1, SNRPD3, SNRPE,
SNRPF, SNRPG*, SPC24, SPC25, SPTSSA, SQLE, SRSF10, SRSF1, SRSF7, STMN1, SUZ12, SYNE2, TACC3*, TCF19, TEX30, TK1,
TMEM258, TMPO, TMSB15B*, TOP2A, TOPBP1, TPX2, TRA2B, TRIM28, TRIM59, TTK, TUBA1B, TUBA1C*, TUBB, TUBB4B, TYMS,
UBALD2, UBE2C, UBE2S, UBE2T, UHRF1, USP1, UXT, VIM VRK1, WEE1*, YBX1*, YEATS4, YWHAQ, ZNF367

*Refer to gene name replacement in Materials and Methods section.

HMGB2, STMN1, MKI67, PCLAF, UBE2C (Dabydeen et al., 2019;
Giotti et al., 2019).

Different Activation States of Porcine
CD4+ αβ T-Cells Based on CD8α

Expression
We further compared scRNA-seq gene expression profiles
amongst only CD4+ αβ T-cell clusters to gain functional
inferences and correspondence to CD8α− vs. CD8α+ phenotypes
that were used to sort CD4+ αβ T-cells for bulkRNA-seq.
CD4+ αβ T-cell clusters (0, 3, 4, 28) were comprised of 5,082
total cells (Figure 7A). Hierarchical clustering and pairwise
DGE (Supplementary File 7), as well as random forest (RF)
analyses, a deep-learning classification method, (see Methods;
Supplementary File 11), cumulatively revealed clusters 3 and 4
to be the most transcriptionally similar to each other. Clusters 3
and 4 had the smallest hierarchical distance, fewest DEGs (67),
and largest RF error rate (19.5) between them, while cluster 28
was the most distantly related to the other 3 clusters (Figure 7B).

CD8A gene expression was detected in a subset of cells in
the CD4+ αβ T-cell clusters (3.5, 13.1, 20.9, 39.7% of cells in
clusters 0, 3, 4, 28, respectively; Figure 7C). CD8A expression
was significantly greater in clusters 4 and 28 compared to
cluster 0 by pairwise DGE analyses (Supplementary File 7)
but not in cluster 3 compared to 0, due to not meeting a
minimum threshold of cells (20%) expressing the gene in either
cluster implemented for DGE analysis. However, cluster 3 had
significantly greater expression of CD8A compared to cluster 0
when removing the minimum cell expression threshold (average

log2FC = 0.37, adjusted p-value = 5.52 × 10−21). GSEA of DEGs
identified by pairwise DGE analysis of CD4T and CD4CD8T
populations recovered from bulkRNA-seq (Supplementary File
2) revealed genes significantly enriched in CD4T compared to
CD4CD8T populations were relatively enriched in cluster 0,
while genes significantly enriched in CD4CD8T compared to
CD4T populations showed greater relative enrichment in clusters
4 and 28 and to a lesser extent in cluster 3 (Figure 7D and
Supplementary File 12).

The top genes contributing to overall transcriptional
heterogeneity amongst four clusters of CD4+ αβ T-cells, as
determined by RF analysis (Figures 7E,F and Supplementary
File 13), highly overlapped with genes identified in overall
DGE analysis (Figure 7G and Supplementary File 13). Of
eight genes with mutually highest permutation and impurity
scores from overall RF analysis (Figures 7E,F), one gene had
significantly greater expression in cluster 0 compared to all other
clusters (RPS3A), while the other seven genes had significantly
greater expression in clusters 3, 4, and 28 compared to cluster 0
(FCGR3A∗, TMSB10, COX1, S100A6, GPX1, CRIP1∗, S100A11),
as determined by pairwise DGE analyses (Supplementary File 7).

Genes associated with a naïve phenotype, including CCR7,
SELL, LEF1, and TCF7 (Szabo et al., 2019; Kim et al., 2020)
had significantly increased expression in cluster 0 (Figure 7G
and Supplementary Files 9, 13), in line with the result obtained
by comparing to human scRNA-seq data that indicated a good
alignment of cluster 0 with human naïve CD4 T-cells (Figure 6A).
From Figure 6A, clusters 3 and 4 aligned with human CD4
Tcm (central memory) cells, and cluster 28 aligned with human
CD4 proliferating cells. Correspondingly, genes associated with
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FIGURE 7 | Transcriptional heterogeneity of porcine CD4+ αβ T-cells at single-cell resolution. (A) Two-dimensional t-SNE plot of 5,082 cells belonging to clusters
designated as CD4+ αβ T-cells (clusters 0, 3, 4, and 28) in Figure 4D. Each point represents a single cell. Color of the cell corresponds to transcriptional cluster a
cell belongs to. Cells more transcriptionally similar to each other belong to the same cluster. (B) Transcriptomic relationship amongst CD4+ αβ T-cell clusters as
calculated by three methods: hierarchical clustering (as seen by hierarchical trees on both axes), pairwise random forest analyses (as seen on top right diagonal); and
pairwise DGE analyses (as seen on bottom left diagonal). Longer branches on the hierarchical tree corresponds to greater hierarchical distance. Lower numbers of
DEGs by DGE analysis and higher out-of-bag (OOB) error rates from random forest analyses indicate greater pairwise transcriptional similarity. (C) Visualization of
CD8A expression overlaid onto t-SNE coordinates of single CD4+ αβ T-cells. Each point represents a single cell. Color of the point corresponds to relative expression
of CD8A within a cell. Gray corresponds to little/no gene expression, while navy corresponds to increased gene expression. (D) Relative average gene set enrichment
scores of CD4+ αβ T-cell clusters calculated by AUCell analysis of DEG sets from pairwise DGE analysis of the CD4T and CD4CD8T populations from porcine
bulkRNA-seq. Scores are relative to other cells within a single gene set comparison (across a row of the heatmap) and are not calculated relative to scores across
gene set (across columns in the heatmap). (E,F) Genes with the largest effects in discriminating CD4+ αβ T-cells by cluster identities were determined, as indicated
by high permutation (E) and/or impurity scores (F) calculated from a trained random forest model. Average relative expression for each of these genes within clusters
is also depicted by a heatmap. (G) Dot plot of up to the top 20 DEGs having logFC > 0 from overall DGE analysis of only CD4 + ab T-cell clusters. Clusters are listed
on the y-axis, while selected DEGs are listed on the x-axis. The size of a dot corresponds to the percent of cells in a cluster that expressed the gene. The color of a
dot corresponds to the average relative expression level for the gene in the cells expressing the gene within a cluster. *Refer to ‘Gene name replacement’ methods.

activation, such as ITGB1, CD40LG, IL6R, and MHC II-
associated genes (CD74, SLA-DRA, SLA-DQB1, SLA-DRB1∗,
SLA-DQA1∗) (Grewal and Flavell, 1996; Gerner et al., 2009;
Zemmour et al., 2018; Zhu et al., 2020) had significantly greater

expression in clusters 3, 4, and/or 28, and cluster 28 expressed
many genes specific for cellular replication and division (PCLAF,
BIRC5, TK1, PCNA) (Dabydeen et al., 2019; Giotti et al., 2019;
Figure 7G and Supplementary Files 9, 13). Overall, we leveraged
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single-cell gene expression profiles to confirm likely identity of
cluster 0 as naïve CD4+CD8α− αβ T-cells and clusters 3, 4, and
28 as potentially previously activated CD4+CD8α+ αβ T-cells.

Heterogeneity Between/Amongst CD2+

and CD2− γδ T-Cells
Clusters predicted to be porcine γδ T-cells were examined to
reveal transcriptional distinctions within this cell type. Four
clusters containing 2,652 cells were previously identified as
CD2− γδ T-cells (clusters 6, 21) or CD2+ γδ T-cells (clusters
24, 31) (Figure 8A). We could further segregate these clusters
by CD2 and CD8A expression into CD2−CD8α− (clusters 6,
21), CD2+CD8α− (cluster 24), and CD2+CD8α+ (cluster 31)
designations used to functionally define porcine γδ T-cells
previously (Stepanova and Sinkora, 2013; Sedlak et al., 2014;
Figure 8B).

CD2− γδ T-cell clusters 6 and 21 were most closely related
to one another by hierarchical clustering, had the fewest
pairwise DEGs (30), and had the highest pairwise RF analysis
error rate (23.5), indicating clusters 6 and 21 to be the most
transcriptionally similar γδ T-cell clusters of the four clusters
(Figure 8C and Supplementary Files 7, 14). CD2+ γδ T-cell
clusters 24 and 31 were most similar to each other by hierarchical
clustering, had the second fewest pairwise DEGs (236), and
had the second highest pairwise RF error rate (5.12), indicating
clusters 24 and 31 to be most similar to each other. When
performing pairwise comparison between any CD2− and CD2+
γδ T-cell clusters, the number of DEGs increased and RF error
rates decreased, indicating greater transcriptional differences
between cells of the CD2− and CD2+ γδ T-cell lineages than
amongst them (Figure 8C and Supplementary Files 7, 14).

The top genes contributing to overall transcriptional
heterogeneity amongst γδ T-cell clusters, as determined by
RF analysis (Figures 8D,E and Supplementary File 14),
overlapped with genes identified with significant and highest
logFC expression in overall DGE analysis (Figure 8F and
Supplementary File 14). Six of the top seven genes with mutual
highest impurity (the best features that correctly split the data)
and permutation scores from RF analysis (Figures 8D,E) were
also DEGs between both CD2− compared to both CD2+ γδ

T-cell clusters by pairwise DGE analysis (Supplementary File
7), again indicating large transcriptional differences between
CD2− and CD2+ γδ T-cells. In total, 31 genes had significantly
greater expression in both CD2− γδ T-cell clusters compared
to both CD2+ γδ T-cell clusters, and 49 genes had significantly
greater expression in both CD2+ γδ T-cell clusters compared to
both CD2− γδ T-cell clusters (Table 5), as determined using the
pairwise DGE analyses (Supplementary File 7).

Intra-lineage heterogeneity of CD2− γδ T-cells (between
clusters 6 and 21) and CD2+ γδ T-cells (between clusters 24
and 31) demonstrated additional complexity beyond the inter-
lineage heterogeneity between CD2− and CD2+ γδ T-cells.
Pairwise comparison between clusters 24 and 31 (Supplementary
Data 8) revealed 80 genes with significantly greater expression
in cluster 24 (CD2+CD8α− γδ T-cells) and 156 genes with
significantly greater expression in cluster 31 (CD2+CD8α+ γδ

T-cells). Genes with the greatest logFC expression (logFC > 1.5)

in cluster 31 compared to cluster 24 were related to cellular
activation and/or effector functions (CCL5, GNLY, FCGR3A∗,
KLRK1, GZMA∗, NKG7, FCER1G, GZMB) (Rincon-Orozco et al.,
2005; Pizzolato et al., 2019; Szabo et al., 2019). Of the 30 DEGs
between clusters 6 and 21 (Supplementary Data 8), three genes
had significantly greater expression in cluster 6, while 27 genes
had significantly greater expression in cluster 21. Several genes
with greater expression in cluster 21 encoded for activation-
or stress-induced molecules, including GPX1, LGALS1, ITGB1,
LTB, several genes encoding for S100 proteins (S100A4, S100A6,
S100A10, S100A11), and genes related to MHCII presentation
(CD74, SLA-DRA∗) (Blaser et al., 1998; Ware, 2005; Gerner et al.,
2009; Steiner et al., 2011; Kesarwani et al., 2013; Siegers, 2018).
Genes encoding transcriptional regulators playing important
roles in cell fate determination, including ID3 and GATA3,
had greater expression in cluster 6, while ID2 expression was
significantly greater in cluster 21 (Blom et al., 1999; Zhang et al.,
2014; Rodríguez-Gómez et al., 2019).7

DISCUSSION

We present the first comprehensive annotation of the
global transcriptome of all major circulating porcine blood
mononuclear cells. We applied bulkRNA-seq to determine
transcriptomes of eight sorted PBMC populations and scRNA-
seq to annotate transcriptomic diversity of PBMCs into
transcriptionally distinct clusters. Deep RNA sequencing
detected significant heterogeneity between sorted populations
except for T-cell populations, while further heterogeneity was
unmasked by scRNA-seq. Collectively, the data sets revealed
specific immune functional expression patterns and highlighted
substantial diversity in some subsets, such as T-cells. The
combined approach helps to unite porcine transcriptomics
and cellular immunology, as transcriptional differences and
functional relationships of porcine immune cells have remained
unclear due to lack of sufficient reagents to label distinct porcine
immune cell populations. While cross-species comparisons have
been done with many RNA-seq datasets of partially purified cell
populations (Kapetanovic et al., 2013; Herrera-Uribe et al., 2020),
our new porcine data demonstrates global similarity to human
bulkRNA-seq and scRNA-seq transcriptomes that can be used
to further unravel porcine cell function and extend comparative
immune investigation.

Gene expression patterns from the bulkRNA-seq datasets
revealed distinct transcript profiles enriched in biological
pathways characteristic of each respective cell population, based
on previous findings in pig and other species (Alter et al., 2004;
Palmer et al., 2006; Wang et al., 2008; Foissac et al., 2019; Monaco
et al., 2019; Summers et al., 2020). However, bulkRNA-seq data
from the porcine sorted populations had limited ability to identify
genes with specific transcriptional patterns for some sorted
lymphocyte populations. The transcriptomes of eight different
cell types we provide include three types of transcriptomes that
have not reported before in pig, including NK, CD21pB and
CD21nB. Lists of SEGs, pairwise DGE between all populations

7http://biocc.hrbmu.edu.cn/CellMarker/#
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FIGURE 8 | Transcriptional heterogeneity of porcine γδ T-cells at single-cell resolution. (A) Two-dimensional t-SNE plot of 2,652 cells belonging to clusters
designated as CD2− γδ T-cells (clusters 6, 21) or CD2+ γδ T-cells (clusters 24, 31) in Figure 4D. Each point represents a single cell. Color of the cell corresponds to
transcriptional cluster a cell belongs to. Cells more transcriptionally similar to each other belong to the same cluster. (B) Visualization of selected gene expression
overlaid onto t-SNE coordinates of single γδ T-cells. Each point represents a single cell. Color of the point corresponds to relative expression of a specified gene (top
left of each t-SNE plot) within a cell. Gray corresponds to little/no gene expression, while navy corresponds to increased gene expression. (C) Transcriptomic
relationship amongst γδ T-cell clusters as calculated by three methods: hierarchical clustering (as seen by hierarchical trees on both axes), pairwise random forest
analyses (as seen on top right diagonal); and pairwise DGE analyses (as seen on bottom left diagonal). Longer branches on the hierarchical tree corresponds to
greater hierarchical distance. Lower numbers of DEGs by DGE analysis and higher out-of-bag (OOB) error rates from random forest analyses indicate greater
pairwise transcriptional similarity. (D,E) Genes with the largest effects in discriminating γδ T-cells by cluster identities were determined, as indicated by high
permutation (D) and/or impurity scores (E) calculated from a trained random forest model. Average relative expression for each of these genes within clusters is also
depicted by a heatmap. (F) Dot plot of up to the top 20 DEGs having logFC > 0 from overall DGE analysis of only γδ T-cell clusters. Clusters are listed on the y-axis,
while selected DEGs are listed on the x-axis. The size of a dot corresponds to the percent of cells in a cluster that expressed the gene. The color of a dot
corresponds to the average relative expression level for the gene in the cells expressing the gene within a cluster. *Refer to ‘Gene name replacement’ methods.

and cell type-specific genes data sets presented here, could be
used for further analysis in other pig or even in cross-species
comparisons. Notably, we were able to identify a large number
of HEGs in the Myeloid population. Some HEGs in Myeloid
cells were reported as a Myeloid cell markers in pig (e.g., CD14
and CD36) (Fairbairn et al., 2013) and other HEGs may be
considered as new potential cell markers. Also, in comparison
to sorted CD4T and CD8T populations reported in a previous
porcine RNA-seq study (Foissac et al., 2019), we observed
concordant transcriptional patterns in essentially equivalent

populations. However, we extended transcriptional annotation
to two additional T-cell populations (CD4CD8T, SWC6gdT),
thus identifying transcriptional differences across more T-cell
populations. We demonstrated the utility of an established
NanoString CodeSet (Van Goor et al., 2020; Dong et al., 2021)
to validate RNA-seq results and further profile porcine sorted
PBMC populations. At the bulk RNAseq level, we concluded
substantial transcriptional heterogeneity was present across
sorted T-cell and B-cell populations, as fewer enriched or cell
type-specific genes were detected. As described below, the lack of
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TABLE 5 | Genes differentially expressed between both CD2− γδ T-cell clusters (clusters 6 and 21) and both CD2+ γδ T-cell clusters (clusters 24 and 31).

Population with greater
gene expression

Genes

CD2− γδ T-cells (clusters 6, 21) AP3S1*, ANXA1, BLK, CAPG, CDNF*, CD163L1*, EMP3, ENSSSCG00000032017, ENSSSCG00000033734, FCER1A, GATA3,
IL6R, ITM2B, LGALS1, LTB, MAN2B1*, MYL12A*, PARK7, PIK3AP1, PLEKHF2, PPP1CC, RCAN3, RHEX, RPS19*, SAMSN1,
SELL, SLC25A24, SRGN, TIMP1, VIM, YBX3

CD2+ γδ T-cells (clusters 24,
31)

ABI3*, ACTG1, ARPC1B, ARPC5L, BIN1, CAMK4, CCDC12*, CD2, COTL1, CTSD, DYNLRB1, ENSSSCG00000023584,
ENSSSCG00000027196, ENSSSCG00000029596, ENSSSCG00000038825, FAM49B, FSCN1, FYB1, GBP7*, GIMAP4*, H2AFV,
IFITM1*, IFI6, IKZF2, IKZF3, IL2RB, ISG15, ITGA4, ITGB2, ITM2C, KRAS, LCK, MAGOHB*, NT5C3A*, PIK3R1, PRKCH*, PSIP1,
PTPRC, RESF1, S100A1, SLC9A3R1, SMC4, SNRK, STK17B, STMN3, TRAT1, UBAC2, WCR1, WIPF1*

*Refer to gene name replacement in Materials and Methods section.

identification of cell type-specific genes was likely caused by the
lack of further sub-setting during sorting to separate functionally
distinct cells. However, we were able to find several specific
transcriptional patterns in B- and T-cells using bulkRNA-seq,
and some of the identified genes encode for transmembrane
proteins. Beyond further description of well-annotated genes,
we also demonstrated that up to 18% of our predicted cell-
type specific and enriched genes are currently poorly annotated,
i.e., genes with no recognized human ortholog. These data
thus increase the functional annotation of these genes, as co-
expression patterns linking such genes with known genes can
be an important component for Gene Ontology classifications
and disease-association gene prediction (van Dam et al., 2018),
and is an important proposed outcome of the FAANG project
(Giuffra et al., 2019).

Comparison of our sorted population expression patterns
to a similar human RNA-seq dataset revealed both similarities
and differences between species. While we compared the
transcriptomes of the sorted cells with human populations that
were isolated using similar cell markers, we cannot exclude that
we are biasing this comparison due to different immunoreagent
markers used across species. However, we did find similar
transcriptional patterns across immune cell populations that are
intrinsic to a lineage, such as the porcine Myeloid population
correlating with the human myDC123 population, in agreement
with other studies (Auray et al., 2016).

Previous global gene expression studies using either porcine
whole blood or specific immune cell types have failed to
thoroughly describe all major PBMC populations (Freeman et al.,
2012; Dawson et al., 2013; Mach et al., 2013; Auray et al., 2016;
Foissac et al., 2019). Providing the transcriptomes of bulk sorted
cell populations will be readily useful to the majority of porcine
immunology research labs that use sorting techniques to analyze
porcine immune cell function and RNA expression patterns, as
new lists of co-expressed genes in these cell populations are now
available. However, our combined analysis of such bulkRNAseq
data with the scRNAseq data demonstrated that the former
approach has significant heterogeneity, limiting the ability to
resolve specific cell types for deeper transcriptional interrogation.
A combined analysis provided evidence confirming our
hypothesis that scRNA-seq would lead to identification
of more specific and novel transcriptional signatures to
improve annotation and understanding of circulating porcine
immune cells.

Single-cell RNA-sequencing provides many noted benefits in
transcriptomic analysis, however there are limitations to the

approach. Of benefit, scRNA-seq captured transcriptomes of
cells excluded from our bulkRNA-seq analysis, as scRNA-seq
approach did not rely on protein marker expression and selection
of sorting criteria based on specific marker phenotypes. As
mentioned above, scRNA-seq also established that greater levels
of cellular heterogeneity exist, since sequencing was resolved
to the level of individual cells rather than a sorted population.
We recognize the scRNAseq-predicted clusters may contain
transitory cell states that may be very challenging to further study
for the relationship between cellular function and transcriptional
patterns (Bassler et al., 2019). Further, we assumed single-cell
gene expression profiles would be indicative of protein expression
for cell type-specific markers; however, gene expression for many
such markers, including SIRPA∗ and CR2∗ that encode proteins
used for bulk RNA-seq cell sorting, was sparse. Sparsity of
data is a known limitation of the scRNA-seq approach utilized
herein, while methods such as imputation have been proposed to
improve sensitivity (Andrews et al., 2021). We chose not to use
imputation due to our current inability to estimate effects on cell
patterns through comparison to an external reference (Andrews
et al., 2021). Thus, these limitations made it difficult to decipher
between low- and non-expression for some genes of interest,
including canonical markers used for identifying cell types in
the immunology literature. Instead, reliance on gene expression
profiles of multiple markers was used. For example, SIRPA∗
expression was observed at low levels in monocyte clusters
but was virtually absent in DC clusters, though both porcine
monocytes and DCs express CD172α protein. Because DCs
express CD172α at lower levels than monocytes (Piriou-Guzylack
and Salmon, 2008; Auray et al., 2016), SIRPA∗ expression in DCs
may have been below our limit of detection using scRNA-seq,
as it was insufficiently expressed in DCs but not in monocytes.
We utilized a droplet-based partitioning method for scRNA-seq
that can detect a large number of cells but a lower number
of transcripts per cell. By this method, we could retain a large
number of cells (>25,000 cells from seven samples) at the expense
of limited sequencing depth per cell (minimum of 500 unique
genes and 1,000 unique transcripts per cell). Utilizing higher
sequencing depth per cell or different partitioning platforms
for scRNA-seq that have more efficient transcript capture per
cell will be beneficial for deeper analysis of specific cells/genes
of interest. It is likely some gene expression profiles are not
predictive of protein expression, due to post-transcriptional
regulation mechanisms. Using newly available co-expression lists
to formulate more refined cell sorting regimens and scRNAseq
analysis of such sorted populations will also increase the ability
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to define transcriptomes of such cell types (Nestorowa et al.,
2016). It was notable that the lists of genes predicted to be
significantly enriched in the 36 scRNAseq clusters had overall a
very similar fraction of poorly annotated genes (average of 18%;
cite in Supplementary File 6) to those predicted for bulkRNAseq,
indicating that even the genes with expression patterns predicted
to be more discriminatory contribute a similar level of genome
annotation improvement.

We used multiple methods to compare these high-
dimensional expression datasets to further interpret genes
predicted to be different between sorted cell populations,
between clusters, or between human and pig. GSEA and/or
deconvolution analyses of bulkRNA-seq to scRNA-seq datasets
was only partially effective in correlating sorted populations
with assumed corresponding clusters in the scRNA-seq dataset
(regardless of inter-species or intra-species comparison). At a
higher level of resolution, both methods were able to assign
most corresponding cell-type designations between scRNA-seq
and bulkRNA-seq data. However, several different scRNA-seq
clusters were not predicted to make up a large portion of
any bulkRNA-seq sample. While methodology could account
for these differences, it is more likely that CIBERSORTx was
unable to discriminate between certain clusters due to their high
similarity. For example, cells that could have been predicted to
be assigned to cluster 8, which makes up a large proportion of
the scRNA-seq data, may have been assigned to other similar
B-cell clusters. The ability to discriminate between similar
clusters may have been impacted by down sampling each cluster
to include the same number of cells for the analysis. Overall,
deconvolution was useful in assigning cell type level data but in
some instances, it could not fully deconvolute bulk RNAseq to
the cluster specific level.

Integration of porcine PBMC scRNA-seq with a human PBMC
scRNA-seq dataset did allow further resolution of porcine cluster
annotations and yielded high confidence of homology between
many porcine and human single cell populations. While we
cannot completely discount the potential for recognized cell
types in our scRNA-seq dataset not being present in sorted
populations used for bulkRNA-seq (or vice-versa), it seems more
likely this is similar evidence to that described above indicating
that the same level of resolution simply was not captured by
bulkRNA-seq and could not well represent all cell types found
in the scRNA-seq data. Integration with another scRNA-seq
dataset, even when accounting for cross-species comparison, was
in many ways more informative for further annotating porcine
single cells, highlighting the enhanced ability of scRNA-seq to
define cellular landscapes. Moreover, cross-species integration
extended our knowledge of comparative immunology between
humans and pigs, as we could identify most similar human
counterparts by reference-based prediction. Conversely, we also
identified clusters of CD2- γδ T-cells (clusters 6 and 21) and
B-cells enriched for activation or cycling-specific genes (clusters
16 and 33) that were more prevalent in porcine data by de
novo visualization of single cells using the combined human
and porcine scRNA-seq data. CD2− γδ T-cells are frequent in
porcine circulation but are reported absent in humans and mice
(Stepanova and Sinkora, 2013), and our analyses supported the
presence in pigs but not humans. On the other hand, B-cells with

transcriptional profiles characteristic of activated or cycling cells,
similar to porcine clusters 16 and 33, likely still occur in humans,
albeit with low prevalence in circulation. B-cell ontogeny and
activation are less fully understood in pigs than in humans, and
it’s possible peripheral B-cells in clusters 16 and 33 arise from a
developmental, activation, or circulation process specific to pigs.
In pigs, the majority of leukocytes exit lymph nodes through the
vasculature and directly re-enter the blood rather than efferent
lymph, as observed in humans (Sasaki et al., 1994; Saalmüller
and Gerner, 2016). Thus, it’s possible the different patterns of
egress for activated cells leaving sites of immune induction might
contribute to a higher frequency of activated B-cells entering
circulation in pigs compared to humans.

While we did not perform deeper biological query of all
cell types identified in our scRNA-seq dataset, we did attempt
to deduce biological significance for the different CD4+ αβ

T-cell populations that have unique aspects in pigs. Deeper
query of CD4+ αβ T-cells was performed, as there is functional
interest in determining activation states of porcine CD4+ αβ

T-cells based on CD8α expression, which may be gained upon
activation and retained in a memory state (Summerfield et al.,
1996; Zuckermann, 1999; Saalmüller et al., 2002; Gerner et al.,
2009). We found it difficult to identify CD4+ αβ T-cell clusters
as CD8α+ or CD8α− due to sparsity in CD8A expression but
could leverage comparison of CD4T and CD4CD8T populations
from bulkRNA-seq to formulate gene sets enriched in each CD4
expressing T-cell population. GSEA helped identify one cluster
of CD4+CD8α− αβ T-cells that corresponded mostly to human
naïve CD4 T-cells, while three clusters of CD4+CD8α+ αβ T-cells
corresponded to human memory or proliferating CD4 T-cells.
Collectively, these data reinforce previous porcine literature,
elucidate parallels to human cells, and provide greater insight
into the spectrum of activation states present in CD4+CD8α+ αβ

T-cells. Future analysis of activated T-cells or trajectory analysis
may provide even further insight on the transition of activation
states in porcine peripheral T-cells.

Pigs are a ‘γδ high’ species, named as such because they
have a higher proportions of γδ T-cells in circulation, largely
attributed to the presence of CD2− γδ T-cells that are absent in
humans and mice (Stepanova and Sinkora, 2013). Three major
γδ T-cell populations are characterized in pigs: CD2−CD8α−

γδ T-cells that express SWC6 and CD2+CD8α−/+ γδ T-cells
that do not express SWC6, where CD2−CD8α− γδ T-cells
become CD2+CD8α+ upon activation (Stepanova and Sinkora,
2013; Sedlak et al., 2014). As our sorting strategy for bulkRNA-
seq utilized an anti-SWC6 antibody rather than a pan-γδ

T-cell-specific antibody; thus, γδ T-cells for bulk RNA-seq
included CD2−CD8α− γδ T-cells in the SWC6gdT population
or CD2+CD8α+ γδ T-cells found in combination with
CD4−CD8α+ αβ T-cells in the CD8T population. CD2+CD8α−

γδ T-cells were expected to be excluded in cell sorting. In
future sorting strategies, it may be beneficial to utilize a pan-
γδ T-cell reactive antibody and/or identify CD4−CD8+ αβ

T-cells with anti-CD8β antibody, which should not label with
CD2+CD8α+ γδ T-cells (Gerner et al., 2009). though this may
still exclude potential CD4−CD8α+CD8β− αβ T-cells, such as we
observed in clusters 5 and 17. Despite limitations in sorting, the
bulkRNA-seq profiles were still informative when comparing to
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scRNA-seq data. The highest relative enrichment of SWC6gdT
gene signatures was detected in CD2− γδ T-cell clusters, while
CD2+ γδ T-cell clusters showed relative enrichment to a
lesser level, indicating some conserved gene expression between
CD2−and CD2+ γδ T-cells. Comparison between CD2+ γδ T-cell
clusters further supported previous biological understanding,
where CD2+CD8α+ γδ T-cells had greater expression of
genes related to cellular activation and cytotoxicity relative to
CD2+CD8α− γδ T-cells (Yang and Parkhouse, 1997; Stepanova
and Sinkora, 2013; Sedlak et al., 2014). On the other hand,
CD2− γδ T-cells are less well described than CD2+ γδ T-cells,
largely due to lack of comparable populations in humans or
mice that may be used for biological inference. Integration with
human scRNA-seq data supported previous observations of the
absence of CD2− γδ T-cells in humans, as close counterparts
for CD2− γδ T-cell clusters could not be found by de novo
visualization, and reference-based integration indicated closest
human counterparts to be a mixture of primarily γδ T-cells, ILCs,
and CD4 TCMs, and mapping scores were highest for human ILCs
rather than γδ T-cells, indicating human ILCs to be the closest,
albeit still poor, human match. Nonetheless, we were able to
highlight transcriptional distinctions that better annotate CD2−
γδ T-cells, including DEGs between CD2− and CD2+ γδ T-cells
that defined the two γδ T-cell lineages and between two clusters
of CD2− γδ T-cells that have not yet been described.

CONCLUSION

This study provides a first-generation atlas annotating circulating
porcine immune cell transcriptomes at both the cell surface
marker-sorted population and single-cell levels. These findings
illuminate the landscape of immune cell molecular signatures
useful for porcine immunology and a deeper annotation of
the genome, a goal of the FAANG project. These results also
provide useful resources to identify new porcine cell biomarkers
for discrimination and isolation of specific cell types, urgently
needed in the field.
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