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ABSTRACT

As a well-known phenomenon, total mRNAs poorly
correlate to proteins in their abundances as
reported. Recent findings calculated with bivariate
models suggested even poorer such correlation,
whereas focusing on the translating mRNAs
(ribosome nascent-chain complex-bound mRNAs,
RNC-mRNAs) subset. In this study, we analysed the
relative abundances of mRNAs, RNC-mRNAs and
proteins on genome-wide scale, comparing human
lung cancer A549 and H1299 cells with normal human
bronchial epithelial (HBE) cells, respectively. As dis-
covered, a strong correlation between RNC-mRNAs
and proteins in their relative abundances could be
established through a multivariate linear model by
integrating the mRNA length as a key factor. The R2

reached 0.94 and 0.97 in A549 versus HBE and H1299
versus HBE comparisons, respectively. This correl-
ation highlighted that the mRNA length significantly
contributes to the translational modulation, espe-
cially to the translational initiation, favoured by its
correlation with the mRNA translation ratio (TR) as
observed. We found TR is highly phenotype specific,
which was substantiated by both pathway analysis
and biased TRs of the splice variants of BDP1 gene,
which is a key transcription factor of transfer RNAs.
These findings revealed, for the first time, the intrin-
sic and genome-wide translation modulations at
translatomic level in human cells at steady-state,
which are tightly correlated to the protein abundance
and functionally relevant to cellular phenotypes.

INTRODUCTION

As a major component of central dogma, the ribosome is
a node in the flow of genetic information, adapting both
the input of mRNA and the output of protein. With the
recognition of poor correlations between the abundances
of mRNAs and proteins in various species, with R2

ranging from �0.01 to 0.50 (1–8) [reviewed in (9)], it has
been speculated for years that the amount of translating
mRNAs (mRNAs bound to ribosome-nascent chain
complex, RNC-mRNA) may better reflect protein abun-
dances (10,11). However, this seemed to be uncertain
at least in recent studies regarding yeasts (8), HEK293
cells (12) and tumour cells (13), with R2< 0.37. These
findings indicated a widespread and diversified transla-
tional modulation that may occur in all of the three
stages of translation, namely, initiation, elongation and
termination, as well as the spatial organization of
mRNAs [reviewed in (14)]. However, studies on the trans-
lational kinetics revealed that the major influential factor
of this modulation is translational initiation in general
(15), which determines the fraction of mRNA molecules
that are subjected to translation (16).
As a very upstream step of functional protein produc-

tion, the translation offers a rapid and specific response
to the environmental and physiological changes. Thus,
transient alterations of genome-wide translational states
were frequently observed in non-steady investigative
systems, such as cell differentiation, T-cell activation
and stress response [reviewed in (10,17)]. For example,
the translation initiation of Saccharomyces cerevisiae is
to be globally repressed in a few minutes after being
shifted to a non-fermentable carbon source, and this is
independent from the mRNA level (18). When exposed

*To whom correspondence should be addressed. Tel: +86 20 85224031; Fax: +86 20 85222616; Email: zhanggong@jnu.edu.cn
Correspondence may also be addressed to Tong Wang. Tel: +86 20 85225960; Fax: +86 20 85222616; Email: tongwang@jnu.edu.cn
Correspondence may also be addressed to Qing-Yu He. Tel: +86 20 85227039; Fax: +86 20 85227039; Email: tqyhe@jnu.edu.cn

The authors wish it to be known that, in their opinion, the first three authors should be regarded as joint First Authors.

Published online 21 March 2013 Nucleic Acids Research, 2013, Vol. 41, No. 9 4743–4754
doi:10.1093/nar/gkt178

� The Author(s) 2013. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



to other stresses including heat, acid, alkali, oxidation and
salt, this yeast exhibits stress-specific patterns of transla-
tional control on gene expression for survival (19).
Regarding systems at steady-state, such as drosophila,
transcripts with the highest abundance are usually not
those in ribosomes with the most abundances (20). This
suggests that the translation initiation is an important
factor to decouple the poor correlation of transcription
and protein abundances, which is also relevant to other
known factors, such as protein degradation [reviewed in
(21)] and elongation rate [reviewed in (14)]. When
comparing relative abundances between different cell
populations at steady-state, the role of translation
control can be more easily observed. For example, a
cancer cell study, focusing on the ribosome-bound
mRNA changes in a transforming growth factor beta-
induced epithelial-mesenchymal transition (EMT) model,
showed that differentially translated genes are phenotype
relevant (22). These findings lead us to hypothesize that
the relative abundances of translating mRNAs and
proteins are strongly correlated in cells at steady states,
when considering multivariate factors. Addressing this
question is fundamentally significant for the characteriza-
tion of various biosystems by quantitatively bridging the
gap between transcriptome and proteome with
translatome in the flow of genetic information.
Building this quantitative connection is an intriguing

step forward to allow strategic advancement. In current
human protein knowledge bases, there are numerous tran-
scripts with no protein evidence, largely due to the extreme
low abundances or biophysical properties of proteins for
identification, incomplete or wrong annotations of genes,
amino acid sequence variations, and the ubiquitous exist-
ence of non-translational mRNAs in the transcriptome
(23–28). Other than these aspects, major obstacles exist
in functional proteomics investigations regarding the
data integration, relevant to both biological and technical
variations in different laboratories (28,29). In contrast,
deep sequencing on translating mRNAs is independent
from these protein properties, conferring both
translatomic annotation and potentially computational
prediction on protein abundances to overcome these hin-
drances. To this end, a tight correlation of RNC-mRNAs
versus proteins will emphasize the biological relevance
of independently using nucleic acid information of
translating mRNAs to investigate cellular functionalities
and phenotypes.
Equally important is that a novel insight of global trans-

lation modulation can be achieved by addressing our
hypothesis. The information of mRNA and RNC-
mRNA abundances enables systematic evaluation of
mRNA translation ratios (TR, defined as the abundance
ratio of the translating mRNA to total mRNA regarding
a certain gene), thus offering a new way to quantify the
selection of mRNA molecules that are subjected to trans-
lation on genome-wide scale. Furthermore, the TR alter-
ations of alternative spliced transcripts (ASTs) from
mRNA to protein levels can be investigated precisely,
demanded in current gene-centric studies (28,29).
Therefore, we analysed the mRNAs, RNC-mRNAs and

proteome of lung cancer A549 and H1299 cells in

comparison with normal human bronchial epithelial
(HBE) cells, respectively. We discovered a novel multivari-
ate linear correlation between translating mRNAs and
proteins on genome-wide scale, by integrating the
mRNA length as a key factor. We found the mRNA
length is an important contributor in translation initiation
and TR alterations, which are highly relevant to cancerous
phenotypes.

MATERIALS AND METHODS

Cell lines

Human A549, H1299 and HBE cells were acquired from
American Type Culture Collections (ATCC, Rockville,
MD). Cells were maintained in Dulbecco’s modified
Eagle’s medium (Invitrogen, Carlsbad, CA), supple-
mented with 10% fetal bovine serum (PAA Australia,
Weike Biochemical Reagent, Shanghai, China), 1%
penicillin/streptomycin and 10 mg/mL ciprofloxacin.

Ribosome-nascent chain complex extraction

The RNC extraction was performed as described by
Esposito et al. (30) with certain modifications. In brief,
cells were pre-treated with 100 mg/ml cycloheximide for
15min, followed by pre-chilled phosphate buffered saline
washes and addition of 2 ml cell lysis buffer [1% Triton
X-100 in ribosome buffer (RB buffer) [20mM
HEPES-KOH (pH 7.4), 15mM MgCl2, 200mM KCl,
100 mg/ml cycloheximide and 2mM dithiothreitol]. After
30-min ice-bath, cell lysates were scraped and transferred
to pre-chilled 1.5 ml tubes. Cell debris was removed by
centrifuging at 16 200� g for 10min at 4�C. Supernatants
were transferred on the surface of 20 ml of sucrose buffer
(30% sucrose in RB buffer). RNCs were pelleted after
ultra-centrifugation at 185 000� g for 5 h at 4�C.

RNA extraction

Total RNA and RNC-RNA were respectively isolated by
using TRIzol� RNA extraction reagent (Ambion, Austin,
TX), following the manufacturer’s instructions. Both total
RNA and RNC-RNA samples were prepared from three
independent experiments. Equal amount of total RNA or
RNC-RNA from each preparation was pooled, respect-
ively, for subsequent library construction and RNA-seq.

RNA-seq

The sequencing libraries were constructed following the
TruSeqTM RNA Sample Preparation Guide (Illumina,
San Diego, CA). Briefly, the polyA+mRNA in the total
mRNA or RNC-mRNA samples was isolated using the
RNA Purification Beads (Illumina). The mRNA was frag-
mented by incubation in Elute-Prime-Fragment Mix at
94�C for 8min to obtain 120–200 bp inserts. First-strand
cDNA was synthesized with SuperScript II Reverse
Transcriptase (Invitrogen) using random primer, and
Ampure XP beads (Beckman Coulter, Beijing, China)
were used to isolate double-stranded cDNA synthesized
by Second Strand Master Mix. The adapters were
ligated to the A-Tailing fragment, and 12 cycles of PCR

4744 Nucleic Acids Research, 2013, Vol. 41, No. 9



were performed to enrich those DNA fragments that have
adapter molecules on both ends and to amplify the
amount of DNA in the library. Purified libraries were
quantified by Qubit� 2.0 Fluorometer (Invitrogen) and
validated by Agilent 2100 bioanalyzer (Agilent, Beijing,
China). Clusters were generated by cBot with the library
diluted to 10 pM and then were sequenced on the Illumina
Genome Analyzer IIx for 75 cycles or HiSeq-2000 for
100 cycles (Illumina). Library construction and Illumina
sequencing were performed at Shanghai Biotechnology
Corporation. High quality reads that passed the
Illumina quality filters were kept for the sequence
analysis (Supplementary Table S1). The sequencing data
sets are available at http://bioinformatics.jnu.edu.cn/
software/sequencing_datasets/ and Gene Expression
Omnibus database (access number GSE42006).

Sequence analysis

High quality reads were mapped to human mRNA refer-
ence sequence (RefSeq) for GRCh37/hg19 in UCSC
genome browser (downloaded from http://hgdownload.
cse.ucsc.edu/downloads, accessed on August 2nd, 2012)
using FANSe v. 7.2 mapping algorithm (31) with the
options –L78 –S8 –I0 –E9 –B1. The reads mapped to
splice variants of one gene were summed. The mRNA
abundance was normalized using both rpkM (reads per
kilobase per million reads) (32) and edgeR package (33)
methods. Genes with >10 mapped reads were considered
as quantified genes (34). The TR of a gene g is calculated as:

TRg ¼
RNC-mRNAg ðrpkMÞ

mRNAg ðrpkMÞ

BDP1 splice variants were detected and quantified from
the deep sequencing data sets exactly using the method as
we previously reported (35).

Stable isotope labelling with amino acids in cell culture

Cells were labeled with a stable isotope labelling with
amino acids in cell culture (SILAC) quantitation kit
(Pierce Biotechnology, Rockford, IL) as previously
described (36). In brief, HBE cells were labelled by light
lysine (12C6) containing media, whereas A549 and H1299
cells by heavy lysine (13C6) containing media. Cells were
cultured in their respective media for at least six passages
to allow maximum lysine incorporation. Equal amounts
of protein from light and heavy lysine-labelled cell
lines were mixed and separated by SDS–PAGE. Gel
bands were excised and subjected to in-gel trypsin diges-
tion as previously described (36).

Mass spectrometry

Peptides were analysed by a Finnigan Surveyor HPLC
system coupled with LTQ-Orbitrap mass spectrometer
(Thermo Electron, Beijing, China) as previously described
with minor modifications (36). In brief, the peptides
were loaded in a C18 reverse-phase column, followed by
a 0–40% gradient wash with acetonitrile buffer over
90min. The eluent was real-time analysed by the
LTQ-Orbitrap under data-dependent mode with capillary

temperature of 200�C and spray voltage of 1.80 kV. Mass
range of 400–1800m/z was scanned in the Orbitrap at
resolution r=60 000 at m/z 400, followed by 10 mass
spectrometry (MS)2 scans for each MS in the LTQ with
Dynamic Exclusion setting: a repeat count of 2, a repeat
duration of 30 s and an exclusion duration of 90 s.
Database searching and protein quantification were per-
formed by employing the MaxQuant software (37,38).

Reverse transcription and PCR

RNC-RNA, isolated from both A549 and HBE cells,
were reverse transcribed to cDNA as templates with
poly-dT primer using RevertAidTM Premium Reverse
Transcriptase (Fermentas, Hunover, MD), respectively,
by following the manufacturer’s instructions. The quanti-
tative real-time PCR (qPCR) was then performed with
gene-specific primers and the iTaqTM universal SYBR�

Green Supermix (Bio-rad, Hercules, CA) on a Bio-rad
MiniOpticon real-time PCR system (Bio-rad) by following
the manufacturer’s instructions. The primers were listed in
the Supplementary Table S2. The specificity of the primers
was verified by both in silico computation (NCBI
Primer-BLAST) and melting curve measurement after
the qPCR amplification. To double check the existence
of the PCR product, another conventional PCR was
performed by using the DreamTaqTM polymerase
(Fermentas) with cDNA template and gene-specific
primers. The PCR program was set identical to the quan-
titative PCR. The reaction mixture was resolved using a
2.5% agarose gel electrophoresis for in-gel visualization
confirmation.

Ingenuity pathway analysis

Ingenuity pathway analysis (IPA) was performed as
described previously with minor modifications (39,40).
Briefly, the differentially expressed proteins (DEPs) and/
or genes with different TRs were uploaded into www.
ingenuity.com (Ingenuity Systems, Inc., Redwood City,
CA). Core analyses were performed to identify top canon-
ical pathways, biological networks, bioprocesses and
effects on functions.

Statistics

The Spearman correlation coefficients were calculated to
determine bivariate relationships. The regressions, data
distribution and standard deviations were calculated by
using MATLAB R2012a software package (MathWorks,
Natick, MA). Data are shown as mean±standard devi-
ation. Statistical difference was accepted when P< 0.001.

RESULTS

Translatome sequencing and quantitative proteome
profilling

We performed RNA-seq on both mRNAs (transcriptome
sequencing) and RNC-mRNAs (translatome sequencing)
of A549 and HBE cells (Figure 1), and compared the
proteomic difference between the two cell lines by using
SILAC-based MS. To ensure the complete detection of
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mappable reads and the unbiased quantification of
low-abundance mRNAs, we used our published FANSe
algorithm to map the sequencing reads (31).
Genes detected by mRNA and RNC-mRNA sequencing

in both cell lines showed a remarkable overlap, indicating
that the majority of transcribed mRNAs were translated
(Figure 2A and B, Supplementary Table S3). Regarding
RNC-mRNA data set, a total of 11 686 genes in A549
cells (Figure 2A) and 11 911 genes in HBE cells (Figure
2B) were mapped with �10 reads, which is considered as
the threshold of quantifiable genes in RNA-seq data (34).
In the SILAC experiments (A549 versus HBE cells), a total
of 4803 proteins were identified, among which 3045
proteins were identified with at least two unique peptides,
and 2934 proteins contained quantifiable information
(Ratio H/L Normalized) (Figure 2A and B). The detailed
protein list is included in the Supplementary Table S4.
We observed that all of the MS-quantified proteins were
also detected in RNC-mRNAs in A549 cells (Figure 2A).
Similar detection pattern was also observed in experiments
performed with HBE cells, although minor proportion of
outliers was noted (Figure 2B).
In general, lognormal-like distributions of RNC-

mRNA abundances were observed in both A549 (Figure
2C) and HBE cells (Figure 2D). In addition, proteins with
higher RNC-mRNA abundances tended to be more de-
tectable by MS, in comparison of those with lower such
abundances (�50 rpkM) (Figure 2C and D). It is known
that protein abundance is a critical factor for successful
MS identification. This observation implies a potential
correlation between the abundances of RNC-mRNAs
and proteins on genome-wide scale.

To validate RNC-mRNA identification, we performed
reverse transcription PCR (RT-PCR) on six randomly
selected genes that were not detected by MS but quantified
by RNC-mRNA deep sequencing with abundance ranging
from 4 to 300 rpkM, low to medium range. All of these
genes were detected in the RNC-mRNA fraction by both
real-time quantitative RT-PCR and conventional
RT-PCR, evidencing the reliability of this high-throughput
method (Figure 2E). The gene HMGB3P1 (RefSeq:
NR_002165) has not been included in either the NCBI ref-
erence sequence (RefSeq) protein sequence database or the
UniProtKB/Swiss-Prot protein knowledgebase, indicating
that its protein product has never been detected.

Strong multivariate linear correlation exists among
relative abundances of RNC-mRNAs and proteins,
together with mRNA lengths

We observed that the mRNA ratio of A549 to HBE
correlated poorly with the SILAC ratio (R2=0.37,
Figure 3A), and that the correlation between the RNC-
mRNA ratio and the SILAC ratio showed no increase
(R2=0.31, Figure 3B). These results suggest that an
extra factor must exist if our hypothesis on the tight
correlation of mRNA/RNC-mRNA with protein abun-
dance is true. We previously found that translation
efficiency is affected by mRNA length (41), leading us to
hypothesize that the mRNA length may serve as this add-
itional factor. Therefore, we tested two multivariate linear
models including mRNA length as candidates:

log10SR ¼ a � log10MR+b � log10L+c ð1Þ

log10SR ¼ a � log10RR+b � log10L+c ð2Þ

Figure 1. Schematic procedure for translatome and transcriptome sequencing.
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where SR=SILAC ratio, MR=mRNA ratio,
RR=RNC-mRNA ratio and L=mRNA length.

First, we used the stepwise regression to examine whether
the mRNA length contributes to the linear fitting. When
analysing Equation (1), the mRNA length does not con-
tribute to the regression (P=0.208), thus being excluded
from the analysis, whereas in Equation (2), regarding
RNC-mRNA ratio (based on rpkM normalization), the
mRNA length contributes significantly to the regression
(P=6.69� 10�12) (Table 1). Next, we applied the least
absolute residual robust iterative method to refine the
regression. The regression converged within 500 iterations

and resulted in a=0.5998 (95% CI 0.5917–0.6079),
b=0.1509 (95% CI 0.1401–0.1616) and c=�0.4004
(95% CI �0.4370–�0.3638), with the correlation coeffi-
cient reaching R2=0.94 (Figure 3C and Supplementary
Figure S1A). The data points distributed evenly along
with the fitted plane determined by the Equation (2),
showing a tight multivariate linear correlation of the data
set (Figure 3C).When excluding SILAC value as a factor in
Equation (2), the data points were sparsely scattered on the
top-view plane with no correlation (R2=0.085),
implicating that mRNA length and RNC-mRNA ratio
are not correlated (Supplementary Figure S2). To address

Figure 2. Gene identification in translatome and transcriptome sequencing, in comparison with SILAC-based mass spectrometry. (A and B) Number
of genes and proteins identified with RNA-seq (lighter circles) and MS (dark circle), respectively, in A549 cells (A) and HBE cells (B). (C and D)
RNC-mRNA abundance distribution in A549 cells (C) and HBE cells (D). Genes were step-wise classified, based on abundances of quantified
RNC-mRNA. Each bar indicates gene number of detection in its respective category. In each category, the percentage of the number of MS
quantifiable protein to the number of genes that are detected by RNC-mRNA sequencing is shown with a dot. (E) Validation of gene detection
in RNC-mRNA, extracted from A549 and HBE cells, respectively. Six randomly selected genes were subjected to RT-PCR assays and indicated by
HGNC gene names.
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whether the different normalization method can affect the
correlation, we calculated the RNC-mRNA ratio with
edgeR package (33). EdgeR uses the trimmed mean of
M-values method based on the negative binomial distribu-
tion, which is able to reliably detect the differential expres-
sion (42). In our case, themultivariate correlation remained
exactly the same when using the RNC-mRNA ratio
calculated using edgeR (Figure 3D, Supplementary
Figure S1B), showing that this tight correlation is not
dependent on the normalization method.
To validate whether this strong correlation is a random

phenomenon, we performed a biological validation
analysing another pair of human cells at steady-state,

H1299 and HBE cells, with the same strategy as described
in the Figure 1. We quantified >11 868 genes from the
RNC-mRNA data of H1299 cells (Supplementary
Table S5). A total of 2353 quantifiable proteins that
were identified with at least two unique peptides were
obtained by the SILAC experiment, comparing the
relative protein abundance between H1299 and HBE
cells (Supplementary Table S6). Interestingly, the strong
multivariate linear correlation among the mRNA length
and the relative abundances of RNC-mRNAs and
proteins was affirmatively observed, with R2=0.97
(Supplementary Figure S3). Even distribution of data
points along with the fitted plane was also observed.

Figure 3. Multivariate linear correlation among the relative abundances of mRNA, RNC-mRNA and protein. (A and B) Bivariate correlation
comparing mRNA (A) and RNC-mRNA ratios (A549/HBE) (B) with SILAC ratio (A549/HBE), respectively. (C and D) Multivariate linear model,
fitting SILAC ratio (A549/HBE), mRNA length and RNC-mRNA ratio (A549/HBE), calculated based on rpkM (C) and edgeR (D) normalizations
regarding RNA-seq data. The viewpoints were on the fitted planes.

Table 1. Stepwise regression with the multivariate linear model

log10SR= a·log10MR+b·log10L+c log10SR= a·log10RR+b·log10L+c

Coefficient Value 95% CI P-value Coefficient Value 95% CI P-value

a 0.6004 0.5743–0.6264 <10�308 a 0.5795 0.5534–0.6055 1.89� 10�317

b �0.0210 �0.0537–0.0117 0.2084 b 0.1213 0.0868–0.1558 6.69� 10�12

c 0.2892 c �0.3167

SR, SILAC ratio; MR, mRNA ratio; RR, RNC-mRNA ratio; L, mRNA length; CI, confidence interval.
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Genome-wide upregulation of mRNA TRs in cancer cells
and correlation analysis with the mRNA length

This tight multivariate correlation between translating
mRNAs and proteins suggests a close relationship
between translational modulation and phenotypes. In
this regard, gene-specific transfer of mRNA to ribosomes
is an essential step in protein biogenesis. We then pro-
ceeded to analyse the TR changes of a total of 10 626
genes that were detected in A549 and HBE cells
(Figure 4). Indeed, the mRNA abundances showed good
correlation with RNC-mRNA abundances in both A549
and HBE cells (R2 were both greater than 0.85)
(Figure 4A), whereas TR values did not correlate with
mRNA abundances at all (R2 were approaching to 0)
(Figure 4B).

We next performed correlation analysis on the TR and
the mRNA length to address the contribution of the
mRNA length to translational modulation. The two
parameters were significantly and negatively correlated
with R2 of 0.49 and 0.35, in A549 and HBE cells, respect-
ively (both P< 10�16) (Figure 4C). The slope of the

regression line in A549 cells was �1.82, approximately
three times sharper than that of the HBE cells (�0.61)
(Figure 4C). Especially regarding genes with mRNA
lengths of, 1000 nt, the TR distribution in A549 cells was
largely between 2 and 5, whereas between 1 and 2 in HBE
cells, suggesting a remarkable upregulation of TR in genes
with shorter mRNA lengths (Figure 4C).
Genome-wide upregulation of TRs was observed in

A549 cells, with detection of 10 160 upregulations and
446 downregulations (Figure 4D). By examining TR fold
change differences of all genes in a chromosome-by-
chromosome manner, a widespread distribution of TR
upregulated genes across chromosomes was observed,
comparing A549 with HBE cells; however, chromosome
19 was noted to contain �10% of all TR downregulated
genes (44 of the 446), indicating chromosomal enrichment
and uneven distribution of such genes (Supplementary
Figure S4). The TR fold change (A549/HBE) and the
mRNA length exhibited significant negative correlation as
well (R2=0.27, P< 10�16) (Figure 4D). Interestingly, this
correlation was non-significant regarding genes with

Figure 4. Distribution and correlation analysis of mRNA TRs, comparing A549 cells with HBE cells. (A) Correlation of mRNA and RNC-mRNA
abundances in A549 and HBE cells, respectively. (B) Correlation of mRNA ratio (A549/HBE) and RNC-mRNA ratio (A549/HBE). (C) Correlation
of TRs and mRNA lengths. (D) Correlation of TR fold changes (A549/HBE) and mRNA lengths. The genes with TR ratio changes greater than
4 folds are indicated by green dots.
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considerable TR fold changes, which were greater than 4
folds (R2=0.0141, P=0.1913) (Figure 4D).

Translational modulation is highly phenotype relevant

We previously reported that A549 cells exhibit
EMT-polarized phenotypes in contrast to HBE cells,
based on functional proteomic evidence (40). With the
detection of TR difference in this study, we posit that
these outliers with considerable TR fold changes, as
shown in the Figure 4, is relevant to the malignant pheno-
types of A549 cells. We therefore performed IPA on 123
genes with considerable TR changes (TR fold
change� 4.0) (Supplementary Table S7) as well as 1505
differentially expressed proteins [DEPs, fold change� 1.5
(43)] identified by SILAC MS (Supplementary Table S4),
respectively. IPA analysis on the DEPs pointed towards
cancer cell phenotypes in the general reports
(Supplementary Figure S5A); however, TR analysis spe-
cifically revealed airway pathology as one of the top ca-
nonical pathways (Supplementary Figure S5B).
This increase of computational specificity in TR

analysis was also confirmed by effect-on-function assays
in IPA (Figure 5). The effects of DEPs on biological
processes were largely mixed with contradictory predic-
tions, showing both promotion and inhibition on the
same processes (Figure 5A). However, the specificity was
improved when analysing TR-changed genes, indicating
homogenous regulation on functions (Figure 5B). These
TR-predicted and promoted bioprocesses included cell
growth and proliferation, cell movement and develop-
ment, specifically reflecting the features of EMT pheno-
type of A549 cells (40) (Figure 5B). The top canonical
pathway regulated by these TR-changed genes fell into
the role of tissue factor in cancer (P=2.96� 10�4,
Fisher’s Exact test provided by IPA) (Supplementary
Figure S5B). The endpoint biological functions regulated
by this pathway included cell growth and proliferation,
angiogenesis and migration (Figure 5C). With the results
shown earlier in the text, TR-based pathway analysis ex-
hibited unique advantages in focusing investigative
bioprocesses.

Splice variants of the BDP1 gene are not equally
translated

Proteomics and/or transcriptomics cannot address
whether the genetic information of ASTs can be propor-
tionally transmitted to translational level (44). However,
comparison of the ASTs in mRNA and RNC-mRNA can
reveal variant-specific TR information. We previously
reported that ASTs of the BDP1 gene, coding one of the
transcription factor IIIB subunits, exist with different
abundances in various tissues (35). Therefore, we added
RNC-mRNA information and analysed this gene again to
serve as an example in this study (Figure 6). Consistent
with our previous findings (35), we observed different and
independent expression patterns of the BDP1 ASTs in
both A549 and HBE cells at mRNA level (Figure 6A).
These patterns were shifted at RNC-mRNA level in
both cell lines (Figure 6B). Compared with other ASTs,
the splice variant H5C7152.4 exhibited remarkably higher

reads in the RNC-mRNA fraction than the mRNA
fraction in A549 cells (Figure 6B). Furthermore, the
splice variants H5C7152.5 and H5C7152.6 were less
likely to be translated as their TRs ranged from 0.67 to
0.85, whereas the TR of H5C7152.4 reached 1.48 and 1.93
in A549 and HBE cells, respectively, evidencing a clear
translational preference of this AST (Figure 6C).
Collectively, the TR variance of the ASTs, either within
a single cell type or across the two cell lines, displayed
biased translation preference, suggesting a fine tuning in
the genetic information transmission from mRNA to
translation level.

DISCUSSION

We report here, for the first time, that a multivariate linear
model integrating the full mRNA length can fit the relative
abundances of RNC-mRNAs and proteins with signifi-
cantly tight correlation. Given this correlation, we
demonstrated that the translating mRNA represents an
independent source for the prediction of protein abun-
dances. The hypothesis of this study was reasoned from
our previous findings, indicating the interplay of
length-dependent decay of translating mRNAs and trans-
lational efficiency, suggesting that certain synergy exists
between the amount of translating mRNAs and the
mRNA lengths (41). As a favourable validation, we dis-
covered that the mRNA length is one of the determinant
factors in the translational control, according to its signifi-
cant correlation with the TRs of a single cell type or
relative TR fold changes. Although similar studies with
full mRNA length has not been noted, Arava et al (45)
discovered in yeast cells that ribosome density decreases in
mRNAs with longer open reading frames and underlined
the rate-limiting role of translation initiation in transla-
tional control, which was confirmed in a human cell
study (12). This is reinforced by the general trend
observed in the regression assays of this study, suggesting
that genes with shorter mRNA lengths tend to have higher
TRs and vice versa. These reports and our findings suggest
that the mRNA length plays an important role in connect-
ing translatome to proteome in terms of its correlation
with translation initiation and TR. As a negative
control, if not taking translating mRNA into consider-
ation, we reproduced low correlation between mRNAs
and proteins, and the mRNA length does not contribute
to this correlation. This is consistent with studies from
other groups, showing low bivariate or partial correlations
between mRNA-length and protein abundances (45–47)
[reviewed in (21)]. Therefore, we could propose that the
translation initiation preferentially occurs on the shorter
mRNAs, which resulted in the increased fraction of these
mRNA molecules that can be translated to proteins. This
mechanism may serve as a possible explanation of why the
mRNA length has significant contribution to the multi-
variate linear model reported in this study. Furthermore,
with this model, we can propose a quantitative answer,
with the relative abundance analyses, to what extent that
the translational regulation involves in the flow of genetic
information from translating mRNAs to proteins in
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human cells at steady-state and its relevance to cellular
phenotypes.

To be noted, translatome sequencing used in this study
did not consider the number of ribosomes that are
attached to a single mRNA strand. Hence, it differs

from a very similar method, namely, ribosome profiling
that analyses ribosome protected fragments (48). The
difference of these two techniques is illustrated in
Supplementary Figure S6: ribosome profiling yields the
ribosome protected mRNA regions, whereas translatome

Figure 5. IPA. DEPs and genes with considerable TR fold changes (A549/HBE) were subjected to IPA. (A and B) Heat maps of effects on biological
processes, regulated by DEPs (A) and TR-changed genes (B). Top 10 Category Level I bioprocesses are indicated by black blocks. An orange square
represents an enhanced Category Level II bioprocess with a positive z-score, provided by IPA, whereas suppressed such bioprocesses, with negative z-
scores, are shown in blue squares. Insignificant bioprocesses are indicated by grey squares. (C) The top canonical pathway regulated by TR-changed
genes (A549/HBE). Experimentally detected genes are indicated in red shapes, and the colour intensity represents the grade of regulation. Shapes of
inversed triangles, circles and squares represent kinases, complexes and cytokines, respectively. Solid and dashed lines with arrows represent direct
and indirect promotion, respectively. Full names of the genes (HGNC nomenclature) in red shapes are protease-activated kinase II (p90RSK),
cysteine-rich angiogenic inducer 61 (Cyr61), interleulin-8 (IL-8), connective tissue growth factor (CTGF) and heparin-binding EGF-like growth factor
(hbEGF).
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sequencing obtains the information of all RNC-mRNA
regions, including ribosome protected and unprotected
regions. Ribosome profiling detects the ribosome locations
at nucleotide resolution, providing important information
on ribosome density of genes. However, it provides insuf-
ficient TR information, owing to its systematic limitation
in resolving the amount of translating mRNA (illustrated
in Supplementary Figure S7). In contrast, translatome
sequencing detects the entire translating mRNAs,
suitable for TR determination; however, it does not
output the ribosome density. These two techniques
depict the translation scenario from two aspects and
cannot replace each other.
We demonstrated that the TR changes can accurately

discern phenotype-specific canonical pathways, providing
an independent index other than widely used DEPs and/or

differentially transcribed genes. Relevant to our study, it
has been well known that hyper-activation of multiple
signalling pathways in cancer cells results in global
upregulation of translation [reviewed in (49)]. Our IPA
on TR-changed genes indicated remarkable TR increase
of p90RSK that is known to promote translation via Ras
and cap-dependent protein synthesis (50). This partially
explains the global TR upregulation in A549 cells,
compared with HBE cells, as observed in this study.
As such, TR-based information provides a unique stra-
tegic view and opens up a new avenue for functional
investigations.

The biased TRs of different ASTs in a certain gene, such
as BDP1 shown in this study, may represent a critical
mechanism in translational modulation that commonly
exists in various eukaryotes. We previously reported that
BDP1 splice variants recognize various motifs in the
transfer RNA (tRNA) gene upstream sequences, respon-
sible for anticodon-specific regulation of tRNA expression
in mammalian cells (35). TR regulation of BDP1 splice
variants may influence the cellular tRNA composition,
thus reshaping the cellular translation rate profiles and
further globally altering co-translational protein folding
[(51) and reviewed in (52)]. These factors can loop back
to regulate the translational scenario that amplifies the
effects of stimulation and finally drive the system to an
altered steady state.

Our current work demonstrated that translatome
sequencing can potentially add novel proteins to the
proteome atlas. For example, we detected and validated
potentially novel translating genes that have no protein
and transcript evidence to date, such as HMGB3P1.
This capacity of translatomics may confer greater impact
on diverse biologies, allowing for investigations of
proteins even in non-model species that have no available
proteome knowledgebase. In addition, RNC-mRNA
sequencing can exclude most of (if not all) non-coding
transcripts from the transcriptome data and accurately
quantify the translating mRNAs. This allows
translatomics to generate expressing protein sequence
databases on a genome-wide scale, serving as a solid
base for next-step proteomic investigations and gene-
centric annotations.

In conclusion, we provided the first direct translatome
evidence, substantiating that global translation modula-
tion is a key factor of phenotype formation in human
cells at steady state. This is underscored by our discovery
of a novel multivariate linear model to highly correlate
the relative abundances of RNC-mRNAs and proteins
by integrating the mRNA length as a critical factor.
We demonstrated that TR regulation on genes and
their ASTs is highly phenotype specific. Therefore,
the translating mRNA and the TR can serve as independ-
ent research objectives to characterize cellular
functionalities.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–7 and Supplementary Figures 1–7.

Figure 6. Biased TRs of BDP1 splice variants in A549 and HBE cells.
(A and B) BDP1 splice variants detected in mRNA (A) and
RNC-mRNA (B) of A549 and HBE cells, respectively. The bars repre-
sent the normalized number of reads that were mapped to specific
splicing junctions of different variants. (C) TR of these splice
variants in A549 and HBE cells, respectively.
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