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Abstract: Ovarian cancer is the fifth leading cause of cancer deaths in women and is regarded as one
of the most difficult cancers to treat. Currently, studies are being conducted to develop therapeutic
agents for effective treatment of ovarian cancer. In this review, we explain the properties of the
hepatocyte growth factor (HGF)/mesenchymal-epithelial transition factor (c-MET) and how the
signaling pathway of HGF/c-MET is activated in different cancers and involved in tumorigenesis
and metastasis of ovarian cancer. We present the findings of clinical studies using small chemicals or
antibodies targeting HGF/c-MET signaling in various cancer types, particularly in ovarian cancer.
We also discuss that HGF/c-MET-targeted therapy, when combined with chemo drugs, could be an
effective strategy for ovarian cancer therapeutics.
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anti-cancer; therapeutics

1. Introduction

Hepatocyte growth factor (HGF) is a multifunctional heterodimer polypeptide released
by fibroblasts and mesenchymal cells in paracrine and autocrine manner. HGF is composed
of a 69 kDa alpha-chain and 34 kDa beta-chain that are linked by disulfide bonds [1–3].
HGF is released as a biologically inactive single-chain HGF (known as pro-HGF) and
proteolytical cleavage of the Arg494-Val495 site results in HGF as a mature form [4]. Mature
HGF, which is biologically activated by proteolytic cleavage, is a heterodimeric protein
composed of an alpha-chain (62 kDa) and beta-chain (36 kDa) linked by a disulfide bond
(Figure 1a) [5].

Pro-HGF is not a biological precursor because it does not activate MET (mesenchymal-
epithelial transition) receptor, known as HGF receptor; however, the activation of two-chain
HGF occurs in wounded tissue or the tumor microenvironment. The alpha-chains have
an N-terminal hairpin loop and four kringle domains (K1–K4), whereas the beta-chain
has a serine protease-like domain [6]. Furthermore, the N-terminal and the K1 domains
must be involved for the high-affinity binding of HGF to its receptor c-MET [7,8]. c-MET
is a cell surface receptor that binds HGF and activates a signaling pathway downstream.
The c-MET proto-oncogene encodes c-MET, and it is created as a single-chain precursor
before being converted to the mature form [9,10]. Mature MET is composed of 50 kDa
beta-chain and 145 kDa alpha-chain [11]. The plexin–semaphorin–integrin (PSI domain),
immunoglobulin-like fold-plexin-transcription factor (IPT domain), and N-terminal Sema
domain comprise c-extracellular MET’s region [12]. The interaction of HGF and c-MET
activates the MET phosphorylation of the Y1234 and Y1235 residues, followed by phospho-
rylation of the Y1349 and Y1356 residues, which form a docking site for adaptor proteins
(Figure 1b) [13,14].
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Figure 1. Schematic structure of HGF and MET. (a) HGF structure. HGF is a heterodimer that con-
sists of alpha- and beta-chains linked via disulfide bonds. An alpha chain is composed of N-terminal 
hairpin domain and four kringle domains, and a beta chain is composed of serine-protease homol-
ogy domain. Alpha- and beta-chains are connected by disulfide bonds and are cleaved by serum-
derived proteases to convert to the active from. (b) MET structure. c-MET is a heterodimer linked 
by an extracellular alpha-chain and a transmembrane beta-chain. The beta-chain consists of a SEMA 
domain, PSI domain, IPT domain, multifunctional docking site, and C-terminal tail region. The mul-
tifunctional docking site has several tyrosine kinase domains. 

2. HGF Biology in Cancer 
2.1. The Roles of the HGF/c-MET Axis Signaling Pathway in Cancer 

The HGF/c-MET interaction is linked to cell proliferation, motility, survival, differ-
entiation, and morphogenesis, as well as wound healing and tissue repair activation 
[15,16]. HGF and c-MET are expressed at a modest level in normal epithelial cells; how-
ever, during carcinogenesis, c-MET and HGF are overexpressed in the cells. The HGF/c-
MET axis is activated in cells with increased HGF and c-MET expression, promoting cell 
proliferation, motility, angiogenesis, and epithelial-to-mesenchymal transition (EMT), ul-
timately leading to cancer cell growth and metastasis [17–19]. HGF released from stromal 
fibroblasts was found to play a role in the invasion of oral squamous cell carcinoma cells 
in early investigations, and further research found that neutralizing HGF inhibited cancer 
cell invasiveness [20,21]. In addition, abnormal c-MET expression in several carcinomas, 
including breast cancer, cervical cancer, gastric cancer, and colorectal cancer, produces 
several signaling cascades and is associated with enhanced proliferation, blocking apop-
tosis, and poor prognosis [22–25]. 

HGF is primarily expressed and secreted by stromal cells such as cancer-associated 
fibroblasts (CAFs) and tumor-associated macrophages (TAMs) that surround malignant 
tumors, but it can also be released by various cancer cell types such as renal cell carcinoma, 
colorectal carcinoma, breast carcinoma, glioma, and multiple myeloma [26–32]. HGF re-
leased by CAFs stimulates multiple chemicals in the tumor microenvironment, including 
bFGF, TGF-a, prostaglandin E2 (PGE2), and PDGF, all of which are involved in cancer 
proliferation, invasion, and metastasis [33–35]. In addition, c-MET is overexpressed in var-
ious cancers, including lymphoma, melanoma, glioma, breast cancer, pancreatic cancer, 
colorectal cancer, and ovarian cancer [36–41]. c-MET overexpression in cancer cells pro-
motes survival of glioma and lymphoma cells via the PI3K signaling pathway and the 
proliferation of neck squamous cell carcinoma, gastric cancer, and prostate cancer cells via 
the MAPK and ERK signaling pathway (Figure 2) [42–45]. 

Figure 1. Schematic structure of HGF and MET. (a) HGF structure. HGF is a heterodimer that consists
of alpha- and beta-chains linked via disulfide bonds. An alpha chain is composed of N-terminal
hairpin domain and four kringle domains, and a beta chain is composed of serine-protease homology
domain. Alpha- and beta-chains are connected by disulfide bonds and are cleaved by serum-derived
proteases to convert to the active from. (b) MET structure. c-MET is a heterodimer linked by an
extracellular alpha-chain and a transmembrane beta-chain. The beta-chain consists of a SEMA
domain, PSI domain, IPT domain, multifunctional docking site, and C-terminal tail region. The
multifunctional docking site has several tyrosine kinase domains.

2. HGF Biology in Cancer
2.1. The Roles of the HGF/c-MET Axis Signaling Pathway in Cancer

The HGF/c-MET interaction is linked to cell proliferation, motility, survival, differen-
tiation, and morphogenesis, as well as wound healing and tissue repair activation [15,16].
HGF and c-MET are expressed at a modest level in normal epithelial cells; however, during
carcinogenesis, c-MET and HGF are overexpressed in the cells. The HGF/c-MET axis is
activated in cells with increased HGF and c-MET expression, promoting cell proliferation,
motility, angiogenesis, and epithelial-to-mesenchymal transition (EMT), ultimately lead-
ing to cancer cell growth and metastasis [17–19]. HGF released from stromal fibroblasts
was found to play a role in the invasion of oral squamous cell carcinoma cells in early
investigations, and further research found that neutralizing HGF inhibited cancer cell
invasiveness [20,21]. In addition, abnormal c-MET expression in several carcinomas, in-
cluding breast cancer, cervical cancer, gastric cancer, and colorectal cancer, produces several
signaling cascades and is associated with enhanced proliferation, blocking apoptosis, and
poor prognosis [22–25].

HGF is primarily expressed and secreted by stromal cells such as cancer-associated
fibroblasts (CAFs) and tumor-associated macrophages (TAMs) that surround malignant
tumors, but it can also be released by various cancer cell types such as renal cell carcinoma,
colorectal carcinoma, breast carcinoma, glioma, and multiple myeloma [26–32]. HGF re-
leased by CAFs stimulates multiple chemicals in the tumor microenvironment, including
bFGF, TGF-a, prostaglandin E2 (PGE2), and PDGF, all of which are involved in cancer
proliferation, invasion, and metastasis [33–35]. In addition, c-MET is overexpressed in
various cancers, including lymphoma, melanoma, glioma, breast cancer, pancreatic can-
cer, colorectal cancer, and ovarian cancer [36–41]. c-MET overexpression in cancer cells
promotes survival of glioma and lymphoma cells via the PI3K signaling pathway and the
proliferation of neck squamous cell carcinoma, gastric cancer, and prostate cancer cells via
the MAPK and ERK signaling pathway (Figure 2) [42–45].
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Figure 2. Signaling pathway of HGF/c-MET in cancers. Stimulation of c-MET by HGF induces acti-
vation of various down-stream signaling pathways, such as cell proliferation, invasion, and tubu-
logenesis. 

2.2. Relationship between HGF/c-MET and Cancer Metastasis 
Cytoskeletal remodeling and reorganization are known to cause the major processes 

of cancer movement and metastasis, and the HGF/c-MET signaling route plays a critical 
role in cancer metastasis. HGF-related actin rearrangement, which is linked to cancer cell 
morphogenesis and metastasis, is primarily regulated by small GTPase activity, especially 
RhoA, Rac1, and Cdc42; however, various types of cancer cells use distinct signaling path-
ways in response to HGF to activate small GTPase [46]. In glioma cells, for example, HGF 
drives c-MET to the periplasm of the endosome for prolonged activation of Rac1, resulting 
in optimum membrane ruffling, cell motility, and invasion [47]. On the other hand, actin 
cytoskeletal rearrangement in ovarian cancer is regulated by kinases such as p70S6, the 
downstream effector of the phosphatidylinositol 3-kinase/Akt (PI3K/Akt) pathway acti-
vated by HGF [48]. Furthermore, HGF influences the organization of the microtubules, 
which is essential to cancer cell motility, inversion, and EMT. HGF stimulates Rac1′s 
downstream signaling routes causing microtubule restructuring via the microtubule-reg-
ulated actin remodeling mechanism [49]. A recent study found that Tankyrase2, a poly-
ribose polymerase involved in wnt signaling, facilitated HGF-induced microtubule as-
sembly in the cancer cells and inhibited of Tankyase 2 lung cancer cell invasion and mi-
gration. In addition, HGF is involved in cancer cell metastasis by regulating the expression 
of several proteins through modulating cell-to-cell junction stability [50]. Moreover, HGF 
promotes cancer cell metastasis by controlling focal adhesions by modifying the expres-
sion of many proteins. The integrin family, which consists of non-covalently coupled al-
pha and beta subunits, mediates cell attachment to the extracellular matrix (ECM). The 
integrin–ECM interaction and many ECM proteases cause integrin clustering to increase 
the recruitment of cytoskeletal and cytoplasmic proteins, such as talin, paxillin, and alpha-
actinin, to generate focal adhesion [51]. HGF-induced integrin clustering promotes cancer 
cell motility and invasion by activating actin-rich adhesion sites and lamellipodia. In 
breast cancer cell lines, for example, HGF/c-MET interaction has been demonstrated to 
preferentially increase adhesion to laminins, fibronectin, and vitronectin via a PI3K path-
way [52]. In colon cancer, the activation of CD44, which impacts cancer cell formation and 

Figure 2. Signaling pathway of HGF/c-MET in cancers. Stimulation of c-MET by HGF in-
duces activation of various down-stream signaling pathways, such as cell proliferation, invasion,
and tubulogenesis.

2.2. Relationship between HGF/c-MET and Cancer Metastasis

Cytoskeletal remodeling and reorganization are known to cause the major processes
of cancer movement and metastasis, and the HGF/c-MET signaling route plays a critical
role in cancer metastasis. HGF-related actin rearrangement, which is linked to cancer cell
morphogenesis and metastasis, is primarily regulated by small GTPase activity, especially
RhoA, Rac1, and Cdc42; however, various types of cancer cells use distinct signaling
pathways in response to HGF to activate small GTPase [46]. In glioma cells, for example,
HGF drives c-MET to the periplasm of the endosome for prolonged activation of Rac1,
resulting in optimum membrane ruffling, cell motility, and invasion [47]. On the other hand,
actin cytoskeletal rearrangement in ovarian cancer is regulated by kinases such as p70S6,
the downstream effector of the phosphatidylinositol 3-kinase/Akt (PI3K/Akt) pathway
activated by HGF [48]. Furthermore, HGF influences the organization of the microtubules,
which is essential to cancer cell motility, inversion, and EMT. HGF stimulates Rac1′s down-
stream signaling routes causing microtubule restructuring via the microtubule-regulated
actin remodeling mechanism [49]. A recent study found that Tankyrase2, a poly-ribose
polymerase involved in wnt signaling, facilitated HGF-induced microtubule assembly in
the cancer cells and inhibited of Tankyase 2 lung cancer cell invasion and migration. In
addition, HGF is involved in cancer cell metastasis by regulating the expression of several
proteins through modulating cell-to-cell junction stability [50]. Moreover, HGF promotes
cancer cell metastasis by controlling focal adhesions by modifying the expression of many
proteins. The integrin family, which consists of non-covalently coupled alpha and beta
subunits, mediates cell attachment to the extracellular matrix (ECM). The integrin–ECM
interaction and many ECM proteases cause integrin clustering to increase the recruitment
of cytoskeletal and cytoplasmic proteins, such as talin, paxillin, and alpha-actinin, to gen-
erate focal adhesion [51]. HGF-induced integrin clustering promotes cancer cell motility
and invasion by activating actin-rich adhesion sites and lamellipodia. In breast cancer
cell lines, for example, HGF/c-MET interaction has been demonstrated to preferentially
increase adhesion to laminins, fibronectin, and vitronectin via a PI3K pathway [52]. In
colon cancer, the activation of CD44, which impacts cancer cell formation and progression,
promotes MET expression, leading to integrins amplification, which facilitates malignant
cell attachment to adjacent epithelial cells [53].
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3. HGF/c-MET Axis Signaling Pathway in Ovarian Cancer
3.1. Ovarian Cancer Incidence and Standard Treatment Strategies

In 2020, 313,959 new cases of ovarian cancer were recorded globally, with 207,252 deaths,
making it the fifth-highest cause of cancer death in women. According to the American
Cancer Society, 21,410 women in the United States will be diagnosed with ovarian cancer in
2021 with 13,770 dying from the disease [54]. Early-stage (I, II) patients with ovarian cancer
have a 5-year overall survival (OS) rate of about 90%, whereas late-stage (III, IV) patients
with ovarian cancer have a 5-year OS rate of less than 29% [55,56]. Cancer biomarkers are
evaluated in the patient’s serum and confirmed by radiological imaging techniques to aid in
the early detection of ovarian cancer. In addition, with surgical treatment alone, the 5-year
survival percentage of patients with early-stage (stage I) ovarian cancer is critical. [57,58].
However, in the case of early stage ovarian cancer, few symptoms are reported, such as
bloating, abdominal pain, bowel obstruction, or significant weight loss. The majority of
patients with ovarian cancer are initially diagnosed with advanced-stage disease, in which
cancer cells have implanted in the peritoneum and have metastasized to other organs.
Cancer cells move throughout the peritoneal organs, resulting in the metastatic course for
ovarian cancer. Dissemination of peritoneal cancer cells causes an increase in ascites, which
leads to progression to a high-grade carcinoma with poor prognosis [59,60].

Debulking surgery and chemotherapy are the standard treatments for patients with
ovarian cancer. The goal of surgery is to remove as much of the tumor burden in the
ovary and the cancer cells seeded in abdominal cavity as feasible, but complete removal
is challenging due to the unseen cancer cells. Patients with ovarian cancer are typically
treated with platinum-based drugs or a class of taxane pharmaceuticals to eradicate the
cancer cells that remain in the body [61,62]. Initially, the platinum-based drugs, such
as cisplatin, were used to treat epithelial ovarian cancer, and later, the less toxic analog
drug, carboplatin, was used as a chemotherapeutic treatment. Cisplatin and carboplatin
have a mechanism of anti-cancer activity that is connected to the N7 reactive center of
purine bases, causing DNA damage that blocks replication and leads to cancer cell death.
Cisplatin-induced DNA damage causes cancer cell death via oxidative stress, such as
increased production of mitochondrial reactive oxygen species (ROS), as well as activation
of signaling molecules and pathways involved in drug-related cytotoxicities, such as p53,
extracellular-signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). Cisplatin-
induced DNA damage also causes G2/M growth arrest, which inhibits cell replication
and leads to cell death via apoptosis or necrosis [63,64]. Paclitaxel, a taxane medication,
on the other hand, has an anti-cancer mechanism that stimulates microtubule hyper-
stabilization, which is a component of the cytoskeleton made of repeating subunits of alpha-
and beta-tubulin. Paclitaxel binds to the N-terminus of the beta-tubulin subunit and inhibits
polymerization into microtubules while also inducing depolymerization by acting directly
on microtubule stabilization. As a result, cancer cells treated with the medication become
growth-arrested in metaphase on bipolar spindles, preventing cell cycle advancement and
inducing cell death. Moreover, paclitaxel inhibits apoptosis, inactivating the anti-apoptotic
protein Bcl-2, or causes apoptosis by increasing cytochrome C level via a direct action on
mitochondria [65–67]. This treatment improves the 5-year survival rate of patients with
advanced-stage cancer by up to 30% [61].

3.2. Limitation of Chemotherapy and Current Status of Other Therapeutic Strategies in
Ovarian Cancer

Insufficient response to chemotherapeutic drugs leads to drug resistance, which leads
to disease recurrence in patients with ovarian cancer. Statistically, 70% of patients have a
recurrence within 2 years of their initial diagnosis [68]. Traditionally, recurrent patients
are classified as platinum-sensitive or platinum-resistant. Platinum-sensitive recurrent
patients who are partially platinum-sensitive, which refers to 60–70% of patients with
a platinum-free interval of more than 24 months, may likely react to re-treatment with
the platinum medication. [69]. Platinum-sensitive recurrent patients are treated with
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carboplatin and specific anti-cancer medicines, either together or alone. Individuals with
platinum-resistant ovarian cancer who relapse within 6 months of surgery and adjuvant
treatment are referred to as patients with ovarian cancer with platinum-resistant recurrence.
This type of ovarian cancer has a very poor prognosis and a very low response rate to
conventional chemotherapy in general [70]. Novel medicines have been tested recently
on these patients, and their feasibility as an experimental treatment alternative is being
investigated. Bevacizumab, a monoclonal antibody that targets vascular endothelial growth
factor A (VEGF-A), is an example of targeted anti-cancer medicine used to treat patients
with platinum-sensitive malignancies. When bevacizumab was combined with platinum
chemotherapy, progression free survival (PFS) was extended by 3 months when compared
to chemotherapy alone [71]. On the other hand, poly-ADP ribose polymerase (PARP)
inhibitors, such as niraparib, rucaparib, veliparib, and olaparib, have been shown in
clinical trials in patients with ovarian cancer to promote cancer cell death by inhibiting
the alternative DNA repair pathway [72]. PARP inhibitors have demonstrated remarkable
clinical results recently in phase I/II trials. In particular, BRCA1 and BRCA2 linked
platinum-resistant patients with ovarian cancer treated with olaparib [73]. Other PARP
inhibitors, such as veliparib, niraparib, and rucaparib, have also been evaluated in patients
with platinum-resistant ovarian cancer, with overall response rates (ORRs) ranging from
20% to 27% in patients with mBRCA [74–76].

3.3. Function of HGF/c-MET Axis in Ovarian Cancer

HGF signaling functions in proper ovarian and follicular development via paracrine
signaling between HGF and c-MET expressing cells [77]. However, as with other can-
cer types, multiple prior investigations have shown that cancer growth is linked to an
abnormally active HGF/c-MET axis in subsets of all four major histocytes in ovarian can-
cer (high-grade serous, clear cell, mucinous, and endometroid) [78,79]. Several studies
found that CAF-derived HGF increased chemoresistance in ovarian cancer cells in vitro
and in vivo via upregulating MET/PI3K/Akt signaling [80]. DiRenzo et al. used Western
blotting to examine the c-MET expression in 67 patients with ovarian cancer and discovered
an intermediate or strong expression of c-MET in roughly 30% of patients [78]. According to
another study, c-MET expression is the most commonly found change in epithelial ovarian
malignancies, appearing in up to 77% of cases [81,82]. As a result, multiple studies have
verified the synergistic reduction of tumor development in ovarian cancer cells in vitro and
in vivo when chemo drugs are combined with HGF or c-MET targeting.

Previous research has shown that HGF is detectable in primary ovarian cancer tissue
and that the amount increases with tumor stages. In addition, high levels of HGF are found
in malignant ascites of patients with ovarian cancer, which promotes cancer cell migration
by activating c-MET [83]. In addition, in a recent study, HGF was used as a blood-based
independent predictive biomarker in patients with ovarian cancer, implying that it might
be used as a primary diagnostic marker. Furthermore, in a study of patients with ovarian
cancer, c-MET expression was linked to a clinicopathological characteristic associated with
poor prognosis [84]. These findings imply that HGF and c-MET can be used to aid the
diagnosis and prognosis of ovarian cancer.

4. Targeting HGF/c-MET Axis in Cancer
4.1. Efficacy of Therapeutics with HGF and c-MET Inhibitors in Cancer

Cancer cell survival and progression are dependent on the signaling interactions
between tumor and stromal cells in the surrounding tumor microenvironment. HGF
released by cancer and stromal cells impacts the development of cancer cells, promotes
cancer cell proliferation and survival and stimulates metastatic dissemination via activating
the signaling pathway of its receptor, c-MET. Furthermore, constitutive activation of the
HGF/c-MET signaling pathway in cancer patients is linked to tumor aggressiveness, drug
resistance, and poor prognosis. For these reasons, the HGF/c-MET axis pathway is seen
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as a prospective target in various cancers and many small molecules and therapeutic
monoclonal antibodies are being evaluated in preclinical and clinical trials.

Some therapeutic drugs targeting HGF or c-MET have been evaluated in preclinical
or clinical trials in various solid cancers in recent years (Table 1). Several small molecule
inhibitors that block the downstream signaling pathway of c-MET, as well as antibodies
targeting HGF or c-MET, are being evaluated in clinical trials. Crizotinib, for example, is an
orally administered multi-target tyrosine kinase inhibitor (TKI) that competes with the c-
MET tyrosine kinase domain to interfere with receptor activation and downstream signaling
transmission [85]. It is licensed by the FDA for the treatment of ROS-1-positive metastatic
non-small cell lung cancer (NSCLC). Treatment with crizotinib has been proven to improve
OS and median OS in NSCLC patients [86–88]. However, the combination treatment
resulted in many side effects and efficacy was ineffective [89]. Tivantinib, another TKI, is
a non-ATP competitive c-MET inhibitor that is being investigated clinically as a highly
selective MET inhibitor in NSCLC, hepatocellular carcinoma (HCC), and esophageal cancer.
Although tivantinib has completed multiple phases of I/II/III clinical trials, its therapeutic
usefulness is debatable [90,91]. Tivantinib strongly inhibits MET autophosphorylation,
causing cell growth arrest, and also prevents cancer cell proliferation, invasion, metastasis,
and induces caspase-dependent apoptosis by blocking cascades of downstream signaling
pathway. Only one of the eight clinical trials conducted between 2013 and 2020 found
tivantinib to have a therapeutic benefit in an individual with advanced HCC. In the study,
the median time patients were treated with tivantinib was increased compared to those
who received a placebo, but no significant difference in median PFS and median OS was
observed between the two groups [92].

Table 1. Clinical trials of targeting of HGF/c-MET in cancers.

Inhibitor Cancer Type Characteristic gov Identifier

Crizotinib
(PF-02341066)

NSCLC Efficacy and safety test of PF-02341066 in cancer patients with
alterations in ALK, MET, or ROS1. NCT02034981

NSCLC To analyze PK and PD in patients with NSCLC,
c-MET-dependent. NCT00585195

NSCLC
Comparison of safety and anti-cancer efficacy of PF-02341066

versus pemetrexed or docetaxel in patients with NSCLC
involving the ALK gene.

NCT00932893

Rilotumumab
(AMG-102)

CRC
To test the safety and efficacy of AMG-102 or ganitumab in
combination with panitumumab in patients with metastatic

wild-type KRAS CRC.
NCT00788957

NSCLC To evaluate AMG-102 and erlotinib in previously treated
subjects with advanced NSCLC. NCT01233687

Ficlatuzumab

PC
To identify the maximally tolerated dose of ficlatuzumab
when combined with nab-paclitaxel and gemcitabine in

patients with previously untreated pancreatic cancer.
NCT03316599

SCCHN
To find the recommended dose of the combination of

ficlatuzumab and cetuximab in patients with
recurrent/metastatic SCCHN.

NCT02277197

YYB-101

CRC
To evaluate the safety, tolerability, pharmacokinetics, and

anti-tumor activity of YYB-101 with irinotecan, patients who
are metastatic or recurrent colorectal cancer patients.

NCT04368507

AST
To evaluate the safety, tolerability, pharmacokinetics, and
maximum tolerated dose of YYB-101 in advanced solid
tumor patients who are refractory to standard therapy.

NCT02499224

Abbreviations: NSCLC, non-small cell lung cancer; CRC, colorectal carcinoma; PC, pancreatic cancer; SCCHN,
squamous cell carcinoma of the head and neck; AST, advanced solid tumors.

In a randomized phase II clinical trial, rilotumumab, which was in development by
Amgen, was delivered in conjunction with cisplatin, epirubicin, and capecitabine to ad-
vanced gastric cancer patients, and PFS was extended compared to the control group [93].
However, in phase III trials, the mortality in gastric cancer patients who received rilotu-
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mumab in combination with cisplatin, epirubicin, and capecitabine increased compared to
placebo; hence, the clinical trial was halted [94]. Ficlatuzumab is a humanized antibody
with a high affinity for HGF. A randomized phase II clinical trial in individuals with NSCLC
looked at the efficacy of gefitinib with or without ficlatuzumab. In the EGFR mutation and
low c-MET expression subgroup, treatment with a combination of ficlatuzumab and gefi-
tinib led to improved ORR and median PFS [95]. However, in an intention-to-treat analysis,
the ORR, PFS, and OS of the patients treated with a combination did not demonstrate a
significant improvement compared to the group treated with gefitinib alone [96]. Another
HGF-targeted neutralizing antibody, YYB-101, in clinical development at CellabMED, dis-
plays significant efficacy in combination therapy with irinotecan or temozolomide in several
preclinical models, including xenograft models of colorectal cancer and glioblastoma [97].
In a recent phase I clinical study, YYB-101 was shown to be a treatment option with an
acceptable safety profile and moderate anti-cancer activity in patients with a previously
treated solid tumor.

4.2. Preclinical and Clinical Trials of HGF/c-MET Inhibitors in Ovarian Cancer

A study on the efficacy and mechanism of action of foretinib, an orally available
multi-kinase inhibitor of c-MET under development by GlaxoSmithKline (GSK), was
conducted in a preclinical model of ovarian cancer. Foretinib was found to effectively
inhibit tumorigenesis and reduce tumor growth [98]. These findings support the need for
additional clinical trials of foretinib for the treatment of ovarian cancer. Studies with the
multi-target MET inhibitor cabozantinib, which was discovered and developed by Exelixis,
have shown significant activity in ovarian cancer. However, cabozantinib demonstrated
minimal activity in the second- and third-line treatments of clear cell, fallopian tube, or
primary peritoneal carcinoma, according to a phase II clinical report published in 2018 [99].

Although few patients with ovarian cancer were included in the phase I clinical trial
of a drug targeting HGF/c-MET, the phase II clinical trial of rilotumumab in patients with
recurrent epithelial ovarian, fallopian tube, or primary peritoneal carcinoma demonstrated
a significant effect [100]. However, only 1 of the 31 patients in this trial displayed a complete
response, and 6 had stable disease, so the positive results were insufficient to proceed to
the second stage. The second stage of the trial was halted [99,101].

In the preclinical model of ovarian cancer, YYB-101 blocked HGF, leading to the
inhibition of the progression of ovarian cancer cells through downstream signaling of
the c-MET axis [102,103]. However, in the phase I trial of YYB-101 in ovarian cancer,
administering YYB-101 to patients who had failed at least four previous regimens resulted
in none of the patients with ovarian cancer responding to single-agent treatment [104].

5. Conclusions

Unlike other cancers, ovarian cancer is difficult to early diagnose early and has the char-
acteristic of metastasis to the peritoneum, making it a difficult cancer to overcome [105–107].
In this review, we discuss the role of the HGF/c-MET axis in ovarian cancer metastasis and
prognosis, as well as other cancer types. Because clinical management of ovarian cancer
is difficult, several researchers have conducted scientific research on various treatment
methods. Many studies have been conducted to treat ovarian cancer using small molecules
and antibody drugs, which are new candidates targeting HGF/c-MET. When HGF/c-MET-
targeted molecules were applied to ovarian cancer in various clinical trials, no specific
therapeutic efficacy was observed. Nevertheless, several preclinical studies with novel
candidates have demonstrated remarkable therapeutic efficacy in ovarian cancer. These
findings suggest that HGF and c-MET have a therapeutic potential strategy and will be
developed as a drug that can overcome the therapeutic limitations of ovarian cancer in
the future.
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