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Abstract

Background: This paper describes SeqDoC, a simple, web-based tool to carry out direct
comparison of ABI| sequence chromatograms. This allows the rapid identification of single
nucleotide polymorphisms (SNPs) and point mutations without the need to install or learn more
complicated analysis software.

Results: SeqDoC produces a subtracted trace showing differences between a reference and test
chromatogram, and is optimised to emphasise those characteristic of single base changes. It
automatically aligns sequences, and produces straightforward graphical output. The use of direct
comparison of the sequence chromatograms means that artefacts introduced by automatic base-
calling software are avoided. Homozygous and heterozygous substitutions and insertion/deletion
events are all readily identified. SeqDoC successfully highlights nucleotide changes missed by the
Staden package 'tracediff' program.

Conclusion: SeqDoC is ideal for small-scale SNP identification, for identification of changes in
random mutagenesis screens, and for verification of PCR amplification fidelity. Differences are
highlighted, not interpreted, allowing the investigator to make the ultimate decision on the nature
of the change.

Background

The ability to identify single nucleotide changes in DNA is
a fundamental requirement in many fields of biological
research. The identification and characterisation of natu-
rally-occurring single nucleotide polymorphisms (SNPs)
underlies a vast body of work on genetically-linked disor-
ders, diagnosis and risk prediction [1-4] as well as being
important in genomic mapping and population genetics
[5-8]. Identification of point mutations is of equal impor-
tance to many researchers, for roles as diverse as identify-
ing specific alterations caused by random mutagenesis

screens [9,10] to validation of the fidelity of sequences
amplified by PCR.

For labs studying SNPs or point mutations, identification
of these can be a time-consuming and error-prone proc-
ess, particularly if novel changes are being investigated. In
some cases, software such as the Staden package [11,12]
or Sequencher [13] may provide a suitable solution. How-
ever these are sophisticated and multifunctional pro-
grams, and can prove overly complex for simple sequence
comparisons. Consequently, many small-scale projects
may rely solely on manual analysis, for example simply
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carrying out a direct text comparison of the processed
sequence to a known reference.

This manual approach is affected by variations in
sequence quality and incorrect base calling, and may also
miss heterozygous bases if, for example, the wild-type
peak is higher that the additional peak. To address these
issues and to provide a simple and efficient way to accu-
rately identify sequence changes, we have developed a
web-based application which compares DNA sequence
chromatograms directly. SeqDoC (Sequence Difference of
Chromatograms) is freely accessible, very easy to use, and
highlights differences characteristic of single base
changes, including heterozygous SNPs and insertions and
deletions.

Implementation

Read in chromatograms

Two ABI sequence chromatograms, one a reference and
the other the test sequence, are the only user-supplied
data. These are uploaded through a web form and the
sequence traces and other relevant data extracted using the
Perl ABL.pm module [14]. The sequence traces for each
channel (i.e. A, C, G and T) are stored as individual arrays
within the chromatogram object. Blank sequence at the
beginning and end of each chromatogram (resulting for
example from sequencing of a PCR product, when the
trace continues past the end of the template) are removed
by deleting the terminal values from the traces where all
channel values are less than 50. In tests, we established
that a filter value of as low as five resulted in the removal
most blank terminal sequence, while a value of as high as
500 still retained virtually all genuine sequence; we there-
fore used 50 as an appropriate intermediate value.

Normalize traces

Comparison of the test to the reference sequence is per-
formed by subtraction of trace values, so it is necessary to
normalize the trace values so that a sequence run with
strong signal can be meaningfully compared to one with
weaker signal. Normalisation is performed for each chan-
nel individually, and scales each data point so that the
local mean value for that channel is 100 (local being
defined as 500 data points prior to the point being scaled,
the point itself and 499 points after). The mean value of
those local points for the channel is calculated and
divided by 100 to give a scaling factor, and the point being
normalized is then scaled by being divided by this factor.

Special exceptions are made for the initial 500 and final
499 values of the trace, where there are either not 500 val-
ues before, or not 499 after, the point being normalized.
For these two cases, the mean is based on as many points
as are present between the point and the end of the
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sequence on one side, while still using 500 on the other
side.

Align traces

Due to variations arising both from the sample and the
sequencing matrix, the start position of the sequence
traces and the base separation within the traces may differ
between the test and the reference sample. The software
compensates for this by automatically calculating the
optimal start alignment combined with continual fine
adjustment throughout the length of the sequences to
maintain alignment of the test and reference sample.

To identify start point offsets, the software tests a range of
initial alignments, from -200 to +200 data points, corre-
sponding to approximately +/- 20 bases of sequence. The
offset which results in the best alignment (the smallest
total value of the absolute differences between the test and
reference traces for all four channels) is used for subse-
quent analysis. This is implemented by the addition or
deletion of 'spacer' data points at the beginning of the test
sequence.

Ongoing fine adjustment of the sequences is achieved by
the addition or removal of individual data points from the
test sequence as required. The sequences are sampled
every five data points, and difference scores calculated for
the subsequent 30 data points. If that difference score is
reduced by the insertion or deletion of a single data point,
then the test traces are adjusted accordingly (by either
duplication or removal of the data point at the test
position).

Calculate differences

Following normalisation and alignment of the sequences,
a 'difference profile' is calculated. The trace values of the
test sequence are subtracted from the equivalent values for
the reference sequence for all four channels, and the
resulting values are passed through an algorithm which
highlights changes characteristic of base substitutions,
while reducing random noise. This is achieved by squar-
ing the difference value and multiplying the result by the
square root of the sum of the differences of other channels
which change in the opposite direction.

The overall outcome of this process is to enhance the sig-
nal given by large differences with at least one channel
changing in the opposite direction, which is characteristic
of base substitutions, while minimising the signal from
small unidirectional changes (typical of signal noise). Dif-
ference profiles are calculated for all four channels and the
results overlaid in the final output.
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Generate trace and difference images

User output is provided in the form of three aligned
images: aligned sequence chromatograms for the refer-
ence and test sequences, and a similarly aligned difference
profile. These outputs are based on the normalized,
aligned traces generated during earlier stages of the analy-
sis. The difference trace is typically primarily flat, with a
large bidirectional peak at the point of any base changes
between the sequence. Other patterns are possible,
depending on specific features of the test and reference
sequences, and are discussed in more detail below. The
three images are generated by the Perl GD::Graph module,
and are returned to the user as a web page. Identification
of the site of base substitutions is simply a matter of exam-
ining the difference trace for the bidirectional peaks men-
tioned above; by examining the aligned test and reference
sequences at the point of these peaks, single base changes
between the two sequences can be rapidly and simply
identified.

Staden comparison

The Staden 1.5.3 Windows installer was downloaded
from SourceForge and installed on a PC running Win-
dows XP Pro. Tracediff comparison was performed
through Pregap4 using the following modules in order:
General Configuration, Initialise Experiment Files, Refer-
ence Traces & Sequences, Trace Difference. All user-defin-
able parameters were left at their default values (except
that 'Write trace differences out to disk' was selected). We
used Gap4 to both align and view the initial and tracediff-
generated traces as well as to carry out trace subtraction
directly. The reference and test sequences (and difference
trace where appropriate) were assembled into a contig,
which was opened in the Trace display window. A sub-
tracted trace was generated using the Diff button.

Results and discussion

All scaling factors, cutoff filters and algorithms described
in the methods section were chosen after testing of multi-
ple settings as giving the clearest identification of single
base changes and best retention of genuine data while
minimising the signal resulting from noise. The process
was initially optimised using sequences covering known
polymorphisms in different regions of the human
melanocortin 1 receptor gene [15]. In all cases the poly-
morphisms were clearly visible in the difference trace. The
software has since been successfully used to test for single
base changes in several hundred sequence
chromatogrames.

Extracts from typical output traces are shown in figures 1
and 2, which identify homozygous and heterozygous pol-
ymorphisms respectively. The difference trace does not
differentiate between these two different substitutions
(although the size of the double peak is typically smaller
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for heterozygous sites). Instead it makes it rapidly obvious
to an investigator where the sites of difference are, and
allows the investigator to make the final decision about
the nature of the substitution.

SeqDoC is also able to highlight the occurrence of single
base insertion or deletion events. Figure 3 shows the typi-
cal pattern from a deletion; at the point of the deletion,
there is a major difference between the two chromato-
grams, which is gradually eliminated by the alignment
algorithm bringing the two chromatograms back into
phase. Insertion events give similar patterns. As with sub-
stitutions, no interpretation of the pattern is calculated;
the role of the software is to alert the investigator to the
location of the change, not to characterise it.

The automatic start alignment process means that it
should not be necessary to use the same primer to
sequence the reference and test sequences, providing that
the two different primers produce sequences which start
within approximately 20 nucleotides of each other. Alter-
natively, it would be possible to manually edit the raw
chromatograms to bring the start points of the two
sequences into approximate alignment. We do not believe
that the comparison will work for samples sequenced in
opposite directions, using the reverse complement of one
or the other. Sequencing chemistry is such that peak
heights are typically affected by the local sequence com-
position [16,17], and while this is consistent for samples
sequenced in the same direction from different primers, it
is not true for those sequenced in opposite direction.

Because of the normalisation and noise reduction algo-
rithms built into the software, it is relatively resilient to
poor quality sequence. Typically, if the sequence quality is
sufficient for an investigator to unambiguously identify
the base call, it is good enough for automatic identifica-
tion of sequence differences. Most problems with
sequence quality only occur at the end of the sequence
run, although unincorporated dye terminators may cause
'dye blobs' at the beginning of the sequence, which can
partially mask base changes occurring at the same site.
Examples of the output produced in these cases, along
with full instructions on the use of SeqDoC, are provided
on our website at http://research.imb.uq.edu.au/seqdoc/.

The Staden software package [11] is an established, well-
supported and widely used sequence analysis package,
and has functions (such as 'tracediff') for direct compari-
son of chromatogram traces analogous to those provided
by SeqDoC. It can also display trace subtractions through
the Gap4 program. We have therefore evaluated the per-
formance of SeqDoC using Staden as a benchmark.
Although the principle advantage of SeqDoC over Staden
is that it is specifically designed and optimized for the
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Figure |
Difference pattern from a single base substitution. Replacement of one base by another (here a G for an A at position
251 in the reference sequence (top trace)) means a major decrease in the value of one channel and a similar increase in

another. This causes a bi-directional peak in the difference profile.
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Figure 2

Difference pattern from a heterozygous SNP. A multiple peak in the test sequence (bottom trace) is characterised by an
increase in the value in one channel (in this case the A at position 195 in the test sequence), and typically a decrease in the orig-
inal channel (G), therefore giving a bi-directional peak in the difference profile similar to a direct substitution.
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Figure 3
Difference pattern from a single base deletion. When a base is deleted (in this case the G at position 254 in the refer-

ence sequence) the resulting phase shift in the test sequence will result in major differences between the traces until the soft-
ware compensates by bringing them back into alignment.
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Figure 4
Comparison of weak and strong sequence traces. Weak and strong sequence traces are successfully aligned by both Sta-
den's Gap4 program (fig 4a) and SeqDoC (fig 4b). The local normalisation algorithms of SeqDoC mean that the two traces are
displayed with comparable peak heights (weak trace at the top), and possibly results in a less noisy difference profile. Both fig-

ures show the same region of the same sequences.
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Effects of sequence misalignment. A minor misalignment of test and reference sequences by Gap4 causes a cyclical pat-
tern in the difference profile (fig 5a, bottom trace) which increases signal noise. The fine adjustment algorithm of SeqDoC
ensures that sequences are properly aligned (fig 5b) and eliminates this noise signal.
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Figure 6

Missed heterozygous base call. Tracediff does not identify the heterozygous base at position 191 in the test sequence
(upper trace, fig 6a), possibly because of the weak signal strength and noise in the difference profile. The normalisation and dif-
ference profile optimisation algorithms built into SeqDoC give a very strong signal to noise ratio for this change in the differ-

ence profile (fig 6b) and make the substitution obvious.
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Figure 7

Poor sequence quality. A poor quality sequence (in this case the reference sequence, top) unavoidably causes a noisy differ-
ence profile. However SeqDoC still successfully highlights nucleotides which differ between the sequences. In this case the C at
position 390 in the reference sequence becomes a mixed T/C peak at position 398 in the test sequence.
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single purpose of chromatogram comparison, and there-
fore provides a much simpler user interface, we also
believe that it offers advantages in normalisation, align-
ment and, particularly, sensitivity. On the other hand, Sta-
den can allow much higher throughput, since multiple
sequences can be analysed at once; data can also be saved
and analysed in detail with multiple additional functions.

Figure 4 shows a comparison of a weak and strong signal
trace with Staden and SeqDoC respectively. The SeqDoC
local normalisation algorithm means that the trace
heights for both are very similar, and therefore more
readily comparable. Although the Y-scale can be altered in
the Staden trace display window to compensate for this,
the problem is then shifted to the beginning of the trace
where the sequence is proportionally much stronger. The
effects of misalignment are observed earlier in the same
comparison, where the Staden difference trace shows a
characteristic cyclical pattern which is not observed in the
SeqDoC alignment (figure 5). Although it is impossible to
tell whether either of these factors significantly compro-
mises the performance of tracediff, we suspect that align-
ment at least will have some influence, since any
misalignments will introduce unnecessary noise into the
difference trace.

The main functional benefit of using SeqDoC over Staden
is that of sensitivity, particularly for identifying hetero-
zygous peaks or when using either weak or poor quality
sequence. The heterozygous base shown in figure 2 is
identified by tracediff, but the output suggests that it is a
direct replacement rather than a mixed base, while
another (figure 6) is missed by tracediff altogether. The
latter example occurs in a weak strength trace, which is
compensated for by the SeqDoC normalisation. Similarly
tracediff can miss differences in noisy sequence; SeqDoC
is more robust, because calls are made by visual inspec-
tion and the difference profile is used only to draw the
investigator's attention to areas of difference. For example,
figure 7 shows a comparison using poor quality reference
sequence data. Although the difference trace is
consequently noisy, it still highlights a heterozygous sub-
stitution in the test sequence.

In summary, SeqDoC proves a lightweight but effective
substitute to Staden for sequence trace comparisons.
While Staden is a more appropriate choice for applica-
tions where high throughput is the main priority, SeqDoC
provides a better solution when sensitivity, specificity or
simplicity are more important considerations.

Conclusion

SeqDoC is a very easy to use web-based application which
rapidly highlights differences between ABI sequence chro-
matograms, including substitution and insertion/deletion
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events. It uses chromatograms directly, rather than
extracted text-based sequence data, so eliminating errors
introduced by base calling software and allowing identifi-
cation of heterozygous substitutions which might other-
wise be missed. No user intervention or adjustment is
required for processing, with all normalisation, alignment
and noise reduction being carried out automatically; on
the other hand the ultimate decision on the specific
change identified remains with the investigator. SeqDoC
is free and requires no training to use, and is ideally suited
for use by researchers carrying out small scale SNP analy-
sis or mutagenesis experiments. It can also be used to rap-
idly screen PCR-amplified products for introduced
mutations.

Availability and requirements
Program name: SeqDoC

Project home page: http://research.imb.uq.edu.au/seq

doc/

Source code: http://research.imb.uqg.edu.au/seqdoc/seq
doc.pl or additional file 1.

Operating system(s): Platform independent
Programming language: Perl CGI

Other requirements: Requires Perl CGI, GD::Graph and
ABI modules

License: None for web access, GNU GPL for source code
Any restrictions to use by non-academics: No restrictions

Additional material

Additional File 1

The perl source code for SeqDoC (seqdoc.pl) is available with the online
version of this article (additional file 1). Instructions for use of the pro-
gram can be obtained using the 'perldoc' command.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-6-133-S1.pl]
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