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Abstract: Deep neural networks (DNN) are state-of-the-art machine learning algorithms that can be
learned to self-extract significant features of the electrocardiogram (ECG) and can generally provide
high-output diagnostic accuracy if subjected to robust training and optimization on large datasets
at high computational cost. So far, limited research and optimization of DNNs in shock advisory
systems is found on large ECG arrhythmia databases from out-of-hospital cardiac arrests (OHCA).
The objective of this study is to optimize the hyperparameters (HPs) of deep convolutional neural
networks (CNN) for detection of shockable (Sh) and nonshockable (NSh) rhythms, and to validate
the best HP settings for short and long analysis durations (2–10 s). Large numbers of (Sh + NSh) ECG
samples were used for training (720 + 3170) and validation (739 + 5921) from Holters and defibrillators
in OHCA. An end-to-end deep CNN architecture was implemented with one-lead raw ECG input
layer (5 s, 125 Hz, 2.5 uV/LSB), configurable number of 5 to 23 hidden layers and output layer with
diagnostic probability p ∈ [0: Sh,1: NSh]. The hidden layers contain N convolutional blocks × 3 layers
(Conv1D (filters = Fi, kernel size = Ki), max-pooling (pool size = 2), dropout (rate = 0.3)), one global
max-pooling and one dense layer. Random search optimization of HPs = {N, Fi, Ki}, i = 1, . . . N in
a large grid of N = [1, 2, . . . 7], Fi = [5;50], Ki = [5;100] was performed. During training, the model
with maximal balanced accuracy BAC = (Sensitivity + Specificity)/2 over 400 epochs was stored.
The optimization principle is based on finding the common HPs space of a few top-ranked models and
prediction of a robust HP setting by their median value. The optimal models for 1–7 CNN layers were
trained with different learning rates LR = [10−5; 10−2] and the best model was finally validated on
2–10 s analysis durations. A number of 4216 random search models were trained. The optimal models
with more than three convolutional layers did not exhibit substantial differences in performance
BAC = (99.31–99.5%). Among them, the best model was found with {N = 5, Fi = {20, 15, 15, 10,
5}, Ki = {10, 10, 10, 10, 10}, 7521 trainable parameters} with maximal validation performance for 5-s
analysis (BAC = 99.5%, Se = 99.6%, Sp = 99.4%) and tolerable drop in performance (<2% points) for
very short 2-s analysis (BAC = 98.2%, Se = 97.6%, Sp = 98.7%). DNN application in future-generation
shock advisory systems can improve the detection performance of Sh and NSh rhythms and can
considerably shorten the analysis duration complying with resuscitation guidelines for minimal
hands-off pauses.
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1. Introduction

Cardiac arrest describes the loss of mechanical cardiac function and the absence of systemic circulation,
presenting electrocardiographically (ECG) recorded rhythms of ventricular fibrillation (VF), rapid ventricular
tachycardia (VT), asystole (ASYS), or pulseless electrical activity. Guidelines for resuscitation recommend
prompt and effective bystander basic life support, uninterrupted, high-quality chest compressions, and early
defibrillation for improved survival after cardiac arrest [1]. Only VT/VFs potentially receive benefit from
defibrillation with post-shock return of spontaneous circulation, and they are the initial rhythms seen in
10% to 30% of the out-of-hospital cardiac arrests (OHCA) [2,3]. Non-VT/VF rhythms must not be shocked
because no benefit will follow and deterioration in rhythm may result [4]. The reliable and prompt detection
of cardiac rhythms as shockable (Sh) or nonshockable (NSh) is the primary requirement to the shock
advisory algorithms in automatic external defibrillators (AEDs). Therefore, the AED performance goals
on artifact-free ECGs are demanding (>90% for VFs, >75% for VTs, >95% for NSh, and >99% for normal
sinus rhythms (NSR)), as set by the American Heart Association (AHA) in the early 1997 [4]. Besides,
the hands-off pauses in chest compressions required for artifact-free ECG analysis in AEDs should be
shortened, considering that 5 s to 10 s delay of the shock after stopping chest compressions reduces the
probability of the defibrillation success and survival [5,6]. Therefore, effective strategies for early shock
decision have been reported within the AED setting, such as early starting of the ECG analysis at the
end of chest compressions [7] or during ventilation pauses [8]; as well as short ECG analysis durations,
varying across studies from 2 s to 10 s [3,7,9–27].

During the last decades, Sh/NSh rhythm detection strategies employ comprehensive
measurements of the ECG waveform morphology and heart rhythm periodicity in the
time-domain [7,9,11,14,16,18–25,28,29], specific frequency bands via band-pass filtering for QRS
or VF enhancement [11,13–15,21–23,30], Fourier transform [11,14,22–24,26,31,32] or time-frequency
ECG transformations [10,24,27,33], as well as nonlinear ECG measures [11,12,14,17,22–24,34,35].
Although sets of those classical features measured with computer-based programs have been shown
to present good discrimination between Sh/NSh rhythms with state-of-the-art machine learning
classifiers (discriminant analysis, logistic regression, bagging and random forests, support vector
machines, genetic algorithms) [15,21–24,26,27,35], the strict features measurement within the AED
setting is a challenge. The AED limitations concern real-time analysis with minimal decision delay,
low complexity and low memory requirement for computations that present a certain risk of poor
feature quality due to simplified measurements, inaccurate delineation of ECG waves, filtering or
approximations. Thus imprecise extraction of ECG features might limit AED performance despite
powerful classification algorithms.

Recently, powerful tools have been developed in the field of deep learning, helping classification
of biosignals by end-to-end architectures of deep neural networks (DNNs) [36,37]. Transferring this
knowledge to ECG signals, DNN can accept raw ECG data as input and output diagnostic probabilities
by self-extracting significant features that characterize different arrhythmia classes. In a deep
hierarchical structure, the learned features tend to become more abstract as the network gets
deeper [38]. Convolutional neural networks (CNNs), including hidden layers of convolutional
filters with pretrained weights can be run in real-time, thus being feasible for different ECG
monitoring applications, such as denoising [39,40], QRS detection [41,42], ECG segmentation [43],
heartbeat classification [44–48], and arrhythmia classification with different output diagnosis labels
(normal rhythm, atrial fibrillation, other rhythm, noise [49–52]; normal rhythm, atrial fibrillation,
atrial flutter, ventricular fibrillation [53,54]). While the above studies use DNN architectures with 3 to
11 hidden layers, a recent study of Hannun et al. (2019) [55] has demonstrated that an end-to-end
34-layer DNN can classify a broad range of 12 distinct arrhythmias with high diagnostic performance
similar to that of cardiologists.

In the focus of AED rhythm analysis, a few recent studies have been found to apply DNNs for
detection of life-threatening arrhythmias. Related to the problem for detection of pulseless and pulsatile
rhythm, Elola A et al. (2019) [56] show the superiority of two end-to-end DNN architectures (up to five
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CNN layers and one recurrent layer) vs. a classic machine learning approach (hand-crafted features
and classifier) with analysis over 2–5 s on ECGs acquired by defibrillation pads from OHCA databases.
The other problem for Sh/NSh rhythm detection has been addressed by four studies, proposing DNN
architectures [57–60]. Nguyen and Kiseon (2018) [57] show the partial benefit of CNN, implementing
three CNN layers instead of conventional feature extraction, but keeping the conservative approach
with ECG preprocessing and support vector machines classifier. Acharya et al. (2018) [58] demonstrate
that end-to-end CNN architecture (four CNN layers and three fully connected layers) is able to detect
very short Sh/NSh segments (of only 2 s in duration). A limitation of the above two studies is the DNN
training and reporting results on public Holter databases, while there is evidence that ECGs gathered
by Holters and defibrillators during treatment in OHCA may be very different both for Sh and NSh
rhythms [24,60]. OHCA databases are, however, proprietary, and we find only two DNN models
trained on OHCA ECGs, i.e., Picon et al. (2019) [60] with two CNN layers and one long short-term
memory (LSTM) layer; Irusta et al. (2019) [59] with two or three CNN layers and two dense layers.
Both studies are shown to be compliant with AHA performance goals using short ECG segment lengths
(2 s to 8 s). However, the object for DNN depth and hyperparameter optimization has not been in the
scope of any study for shock advisory decision.

The objective of this study is to optimize the hyperparameters of an end-to-end fully convolutional
DNN architecture (one to seven CNN layers, 5 to 23 hidden layers) for Sh/NSh rhythm detection
using single-lead raw ECG signals from public Holter and OHCA databases with life-threatening
arrhythmias. The validation performance of our best model is reported for short and long analysis
durations (from 2 s to 10 s). Comparison to other published studies aims to prove the superiority of
our DNN design. While the network can be run alone, without the need for preprocessing, waveform
measurements, transformations or other machine learning algorithms, it has perspectives for certain
applications in unsupervised database annotation and diagnosis platforms, as well as in reliable
real-time AED shock-advisory systems in OHCA.

2. ECG Databases

The ECG data used in this study contains a wide variety of nonshockable and shockable rhythms
extracted from two sources: public Holter ECG databases from continuously monitored patients with
ventricular arrhythmias, and OHCA databases recorded by AEDs from patients in cardiac arrest.

2.1. Public Holter Databases

The full-length ECG recordings of three publicly available databases are considered:

• AHA fibrillation database (AHADB) [61], including 30 min ECG recordings from 10 patients (files
A8001 to A8010); only the first out of the two available ECG channels is used;

• Massachusetts Institute of Technology – Beth Israel Hospital (MIT-BIH) malignant ventricular
ectopy database (VFDB) [62–64], including 35 min ECG recordings from 22 patients (files 418 to
430; 602, 605, 607, 609, 610, 611, 612, 614, and 615); only the first out of the two available ECG
channels is used;

• Creighton University (CU) ventricular tachyarrhythmia database (CUDB) [64–66], including 8 min
ECG recordings from 35 patients (files cu01 to cu35); only one ECG channel is available and used.

All ECG signals were stored at sampling frequency fs = 250 Hz. No additional filtering was applied,
although ECGs might be prefiltered during their hardware acquisition in Holters. Each ECG recording
was split in nonoverlapping 10 s strips, which are annotated following the rhythm annotation scheme
(see Section 2.3). Data augmentation by overlap of extracted strips in long-term Holter databases
has not been applied because extra replication of identical rhythms from the same patient produces
artificially big datasets without introducing statistically valuable information for extraction of new
diagnostic features. Indeed the training process on such databases could be substantially slowed down
with no effect on improving the machine learning accuracy.
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2.2. OHCA Databases

The OHCA databases were collected during 959 interventions with a commercial AED (Fred Easy,
Schiller Médical, Wissembourg, France) in the region of Paris and outlying areas in two nonoverlapping
periods:

• November 2010–December 2010 (OHCA1 from 226 patients);
• June 2011–September 2011 (OHCA2 from 733 patients).

One-channel ECG signals were acquired via the defibrillation pads in the anterolateral position,
filtered in a bandwidth (1–30 Hz) by the AED input hardware circuits for baseline drift and
high-frequency noise suppression, and sampled at fs = 250 Hz. Ten-second ECG strips during
AED analysis were extracted and annotated following the rhythm annotation scheme (see Section 2.3).

2.3. Rhythm Annotation

The rhythm of each 10 s ECG strip was observed and independently annotated by three
cardiologists. Majority voting was applied in cases of annotation disagreement. The annotations follow
the AHA rhythm classification scheme [4], where performance goals are defined only in the absence of
artifacts. Five basic Sh and NSh rhythm categories are defined (illustrated in Figure 1):

• Shockable rhythms, including:

# Coarse ventricular fibrillation (VF) with amplitude >200 µV;
# Rapid ventricular tachycardia (VT) with rate >150 bpm;

• Nonshockable rhythms, including:

# Normal sinus rhythm (NSR) with visible P-QRS-T waves,
# Other nonshockable rhythms (ONR), such as supraventricular tachycardia,

sinus bradycardia, atrial fibrillation and flutter, heart block, idioventricular rhythms,
and premature ventricular contractions;

# Asystole (ASYS), representing ECG signal with peak to peak amplitude <100 µV,
lasting more than 4 s;

This study excluded all 10 s strips that met one of the following conditions:

• Intermediate rhythms, consisting of fine ventricular fibrillations with amplitude in the range
100–200 µV (i.e., between ASYS and VF), and slow ventricular tachycardia with rate <150 bpm.
AHA does not set any performance goal for such rhythms [4];

• Inconsistent rhythm (i.e., transition from NSh to Sh);
• Strips that contain extreme artifacts, significant baseline wander, electromyogram noise,

pacemaker impulses.
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nonshockable (normal sinus rhythms—NSR, other nonshockable rhythms—ONR, asystole—ASYS) 
rhythms, found in Holter (left panel) and out-of-hospital cardiac arrests (OHCA) (right panel) databases. 
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The annotated ECG strips were partitioned in two independent datasets, composed from 
different databases, as follows: 

• A training dataset, including all Sh and NSh strips from AHA, CUDB and OHCA1 databases;  
• A validation dataset, including all Sh and NSh strips from VFDB and OHCA2 databases.  

The sample size of the training and validation datasets is presented in Table 1. 

Table 1. Number of 10 s strips in the training and validation datasets, collected from Holter and 
OHCA databases with respective arrhythmia annotations. 

 Training Dataset Validation Dataset 
Rhythm AHADB CUDB OHCA1 Total VFDB OHCA2 Total 

VF 430 93 66 589 308 221 529 
VT 20 93 18 131 202 8 210 

NSR 499 304 42 845 1023 154 1177 
ONR 550 776 334 1660 1425 1063 2488 
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Figure 1. Examples of 5 s electrocardiogram (ECG) strips, extracted according to the defined annotation
scheme for shockable (ventricular fibrillation—VF, rapid ventricular tachycardia—VT) and nonshockable
(normal sinus rhythms—NSR, other nonshockable rhythms—ONR, asystole—ASYS) rhythms, found in
Holter (left panel) and out-of-hospital cardiac arrests (OHCA) (right panel) databases.

2.4. Training/Validation Subsets

The annotated ECG strips were partitioned in two independent datasets, composed from different
databases, as follows:

• A training dataset, including all Sh and NSh strips from AHA, CUDB and OHCA1 databases;
• A validation dataset, including all Sh and NSh strips from VFDB and OHCA2 databases.

The sample size of the training and validation datasets is presented in Table 1.

Table 1. Number of 10 s strips in the training and validation datasets, collected from Holter and OHCA
databases with respective arrhythmia annotations.

Training Dataset Validation Dataset

Rhythm AHADB CUDB OHCA1 Total VFDB OHCA2 Total

VF 430 93 66 589 308 221 529
VT 20 93 18 131 202 8 210

NSR 499 304 42 845 1023 154 1177
ONR 550 776 334 1660 1425 1063 2488
ASYS 6 4 655 665 4 2252 2256

All Sh 450 186 84 720 510 229 739
All NSh 1055 1084 1031 3170 2452 3469 5921
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3. Methods

3.1. DNN Architecture

The architecture of the end-to-end fully CNN investigated in this study is presented in Figure 2.
The input feature space is a 1D data vector read from one-lead raw ECG signal with size (1 × L1). It is
next processed by a sequence of N convolutional blocks, each one including the three common layers
of the CNNs architecture: 1D convolution (Conv1D), max-pooling and dropout [38]. The Conv1D
layer of block number (i) consists of Fi filters with specific 1D convolution kernels of size (1 × Ki),
thus providing Fi feature map representations of the ECG signal that maintain its temporal order [60].
The output of the fth filter (f = 1, 2, . . . Fi) is computed as:

conv f
i [ j] =

Ki−1∑
k=0

w f
kiSi[ j + k] + b f

ki

 ∗A, (1)

where:

- i = [1, 2, . . . N] identifies the sequential number of the convolutional layer.
- Si is the input vector of the ith convolutional layer, with size (1 × Li).
- j = [0, 1, . . . Li – Ki + 1] indexes the output feature vector, applying convolutional operation with

a valid padding [37].
- wki are the weights and bki are the biases of the convolution kernel;
- A is the applied nonlinear activation function ReLU (rectified linear unit);
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reports that values of α > 0.3 rapidly increase the error rate [56].  

We hypothesize that 𝐻𝑃𝑠 = {𝑁, 𝐹 , 𝐾 } , determining the number of trainable parameters 
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summarized in Figure 3 and will be further described in detail.  
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Figure 2. Еnd-to-end architecture of the proposed convolutional neural networks (CNN) model,
showing input layer of raw ECG signal (one channel × length L1) followed by N consecutive blocks
with a common fully-convolutional three-layer structure (1D convolution—Conv1D; max-pooling;
dropout). The final diagnostic probability for Sh/NSh rhythm detection p ∈ [0: Sh, 1: NSh] is derived
after global max pooling (GMP) and a dense layer binary classifier.

Next, the Conv1D layer output (conv f
i ) with size (1 × (Li − Ki + 1) × Fi) is downsampled by

a max-pooling layer (pool size = (1 × MP)). It applies maximum operation over nonoverlapping
segments of the feature vector conv f

i , thus generating a new feature vector pool f
i with MP times smaller

width (1 × Li−Ki+1
MP x Fi). To avoid overfitting and improve the generalization, a dropout regularization
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layer is applied during training with a dropout rate α ∈ [0; 1], thus generating an output vector drop f
i

(1 × Li−Ki+1
MP × Fi) with portion of ‘0′ nodes equal to α. In the test process drop f

i = pool f
i . The input

signal for the next convolutional layer is Si+1 = drop f
i .

The sequence of N convolutional blocks with the structure described above is followed by a global
max-pooling (GMP) layer, which downsamples drop f

N of each filter (f = 1, 2, . . . FN) to a single value
equal to its maximal value. Thus the GMP layer has an output feature size (1 × 1 × FN), which is fed
into a binary classifier implemented as a dense layer with a sigmoid activation function. The output
layer provides the diagnostic probability for Sh/NSh rhythm detection p ∈ [0: Sh,1: NSh].

The trainable parameters in the proposed DNN architecture correspond to the weights and biases
of the N-blocks Conv1D layers and the final dense layer, therefore, this model can be considered as
a fully CNN. The number of trainable parameters can be calculated with the following equation:

Params =
N∑

i=1

Fi (K iFi−1 + 1) + (F N + 1). (2)

3.2. Hyperparameters Optimization

Although the structure of the designed DNN architecture implements a sequence of standard
CNN layers (Figure 2), their basic hyperparameter (HP) settings are a priori unknown. These include:

• Number of sequential CNN blocks (N), which virtually represents the depth of the network;
• Number of filters (Fi) and kernel size (Ki) of Conv1D in each sequential block (i = 1, 2, . . . N) that

majorly influence the feature map representations of the ECG signal;
• Max-pooling size: A minimal fixed setting MP = 2 is used to gradually subsample the feature

space at each sequential CNN block N, thus providing conditions to build deeper networks;
• Dropout rate: α = 0.3 is adopted as the most common dropout setting [37], based also on reports

that values of α > 0.3 rapidly increase the error rate [56].

We hypothesize that HPs = {N, Fi, Ki}
N
i=1, determining the number of trainable parameters

(Equation (2)) might have significant influence on the Sh/NSh rhythm detection performance. Therefore,
we performed a process of search, analysis and optimization of the top-ranked HP settings with the
final aim to justify the choice of the best CNN model. The whole process is schematically summarized
in Figure 3 and will be further described in detail.
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3.2.1. Random HP Search

The first task of this study was to train different CNN models with settings of HPs = {N, Fi, Ki}
N
i=1,

which were selected by random search in a large grid of HP values:
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• N = {1, 2, 3, 4, 5, 6, 7};
• Fi = {5, 10, 15, 20, 25, 30, 40, 50}; additional range F1 = {75, 100, 125, 150, 200} is included in the

search space only for the shallowest CNN (N = 1), aiming to increase the number of trainable
parameters to levels comparable to deeper CNNs (N > 1);

• Ki = {5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 85, 100}; owing to the same reason as above, extra-large
kernel sizes K1= {125, 150, 200} are included in the search space of CNN (N = 1);

• The vectors {Fi} and {Ki} are designed to follow a decreasing, increasing or constant trend from
top to bottom layers (i = 1, 2, . . . N) in the same model.

The random HPs search was performed under equal training conditions for all models (defined in
Section 3.3). The input ECG vector length was L1 = 5 s (625 samples@125 Hz), taken from the initial
part (0–5 s) of the annotated ECG strips (10 s) in databases after downsampling by 2. The concept for
selection of the initial signal part (without shifting) simulates the real-case scenario when the AED
analysis process was started without a delay to output the earliest Sh/NSh decision.

All random search CNN models are evaluated according to their performance on the validation
dataset. The performance was estimated at the point on the receiver operating characteristic curve
(ROC) with balanced sensitivity (Se) and specificity (Sp), i.e., the ROC point corresponding to maximal
balanced accuracy (BAC):

BAC =
Se + Sp

2
→ max (3)

Se =
TP

TP + FN
, Sp =

TN
TN + FP

, (4)

where TP are the correctly detected Sh cases; FN are the Sh cases classified as NSh; TN are the correctly
detected NSh cases; FP are the NSh cases classified as Sh.

3.2.2. HPs Analysis

Our first focus was to estimate the relative importance of each HP to the performance of all
random search models. For this purpose, we applied a regression tree (RT) to predict the dependent
variable (BAC) with continuous predictors HPs = {Params, Fi, Ki}

N
i=1, using the depth of the network as

a covariate N = {1, 2, 3, 4, 5, 6, 7}. RT has the option to weight the predictors’ importance by calculating
their importance score IS = [0; 1] based on the relative importance of the predictor in the full set of splits
in the tree. Our RT design uses algorithms built into Statistica 12 (Dell Inc., Round Rock, Texas, USA).
Computational details regarding this measure can be found in [67]. Note that the embedded concept
of predictor importance is related to the method of surrogate splitting, which has the advantage of
identifying variables that may contain important predictive power with respect to the outcome of
interest, although they might be never chosen for any split due to colinearity with superior variables
(e.g., we can achieve importance scores for all HPs, although Params are correlated to both Ki and Fi).

In the second step, we analyzed the statistical distributions of HPs (median value, quartile-range)
using BAC performance of all random search models as a covariate. Then we focused on the small
proportion of models with top-ranked performance (PR) with HPs denoted as:

HPrank = {HPs PR
}
→ max(BAC), (5)

which was our strategy for statistically justified HP optimization, as further communicated.

3.2.3. Optimal HP Models

For different CNN depths N = {1, 2, 3, 4, 5, 6, 7}, the HPrank distributions (median values) were
used to design new statistically justified “median HP” models which were expected to perform equally
well to the top-ranked models. We further denoted them as our optimal CNN configurations, valid for
different N:

HPopt = median(HPrank{Fi, Ki}
N
i=1). (6)
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All HPopt models were further trained under equal training conditions (defined in Section 3.3) and
optimized for different learning rates LR = {0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001}, each LR
used in 10 independent runs for model training. All trained HPopt models were further evaluated on
the validation dataset.

3.2.4. Best Model

The settings of the best-performing HPopt model are reported as our best CNN configuration:

HPbest = HPopt{LR, N, Fi, Ki}
N
i=1 → max(BAC) . (7)

CNN models with HPbest settings were further trained for different ECG analysis durations L1 =

(2 s, 3 s, 4 s, 5 s, 7 s, 10 s), each one used in 10 independent runs for training. The evaluation of all
trained models on the validation dataset justified our best CNN models for short and long analysis
durations (2–10 s).

3.3. Training of DNN Models

All DNN models were programmed in the TensorFlow framework using Keras built-in APIs for
model design, training, and evaluation. After the training was completed, the parameters of all networks
were stored in HDF5 files. All experiments were conducted on a workstation with Intel(R)Xeon(R)
CPU E5-2630 0 @ 2.30 GHz (2 processors), 32G B RAM, NVIDIA Quadro K4000-3Gb GPU.

The following concepts were applied for management of the input data for model fitting:

• Keep balanced training dataset by replicating the shockable cases four times, considering the
ratio of total NSh/Sh cases in Table 1, i.e., after replication the number of Sh cases (4 × 720 = 2880)
becomes roughly equal to the number of NSh cases (3170);

• Shuffle the training data for randomization before feeding it into batches;
• Split the training data into batches, because using small batch sizes achieves the best training

stability and generalization performance;
• Normalization of the input data is not applied and the input signal resolution of 2.5 µV/LSB is

maintained. We purposely keep the real ECG amplitude, since it is characteristic for some of the
analyzed rhythms (e.g., ASYS peak-to-peak amplitude <100 µV).

The following settings were applied for the model design and fitting:

• Training epochs: 400. Early stopping is applied if no improvement in performance is observed for
more than 150 epochs;

• Batch size: 256;
• Kernel initializer: random uniform;
• Optimizer: ‘Adam’ with learning rate LR = 0.001, chosen as a good default setting [37], decay rate

DR = LR/epochs, exponential decay rate for the first moment estimates β1 = 0.9 and exponential
decay rate for the second moment estimates β2 = 0.999;

• Loss function: binary cross-entropy for 2 target classes (Sh/NSh);
• Metrics function: accuracy = (TP + TN)/(TP + TN + FP + FN). Owing to the concept for balanced

training dataset during model fit, the metrics accuracy closely corresponds to BAC.
• Saved model: the model with maximal accuracy after all training epochs.

4. Results

4.1. Random HPs Search

The random search training of CNN models was automatically performed within the defined
HP grid of values HPs = {N, Fi, Ki}

N
i=1 (Section 3.2.1), using a fixed setting of the network depth
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{N = const}7N=1 in one training session. A relatively similar duration of the training sessions has been
respected, however, owing to some specifics in model training (mentioned below), the number of
trained CNN models with distinct depths was globally different:

• (N = 1): 195 models, which cover the full search grid (13 filters × 15 kernel sizes). They are trained
for 202 (120–298) epochs, reported as median value (quartile range). All models converged within
400 epochs.

• (N = 2): 1305 models trained for 140 (74–226) epochs. The relatively smaller number of trainable
parameters than deeper networks resulted in a larger number of trained models generated during
the training session;

• (N = 3): 707 models trained for 116 (57–204) epochs;
• (N = 4): 715 models trained for 69 (35–171) epochs;
• (N = 5): 716 models trained for 55 (25–143) epochs;
• (N = 6): 275 models trained for 44 (19–88) epochs;
• (N = 7): 303 models trained for 51 (20–62) epochs. Note the about 2.5-times smaller number of

very deep models (N = 6, 7) than (N = 3, 4, 5), which is a consequence of the limited optional
values for setting Ki in deeper CNN layers owing to the effect of reaching maximal model shrink
with valid padding. In some iterations, the random search algorithm has spent abundant amount
of time for finding a valid HPs setting.

We illustrate the performance of all 4216 models generated by random HPs search in Figure 4—first
shown as individual hits in BAC scatterplot (Figure 4a) and second as a statistical interpretation of those
BAC hits in respect to the network depth N (Figure 4b). The dense overlapping scatterplots are seen as
very similar BAC quartiles (fixed roughly in a 1% span within 98%–99%) and BAC min-max ranges
(fixed roughly in a 5.5% span from about 95% to 99.5%) for all models with N ≥ 3. The shallowest
models have a downshift performance, estimated within a BAC quartile range (97.6%–98.4%, N = 2)
and (92.7%–95.7%, N = 1). Following the strategy for statistically justified HPs optimization, our focus
was only on the top ranked performance models, which are zoomed in Figure 4a and pointed out
(arrows) in the rightmost part of the BAC histograms in Figure 4c. According to the observations,
we define four BAC thresholds for selection of the top-ranked models:

• BAC ≥ 96.5% applied for N = 1 (selecting six models);
• BAC ≥ 98.9% for N = 2 (five models);
• BAC ≥ 99.1% for N = 3 (26 models);
• BAC ≥ 99.3% for N = 4 (seven models), N = 5 (seven models), N = 6 (seven models), N = 7 (14 models).
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Figure 4. Analysis of validation balanced accuracy (BAC) performance for all CNN models trained
with random search: (a) scatterplot of BAC in function of the number of trainable parameters; (b) box
plots of BAC categorized to the network depth N = {1, 2, 3, 4, 5, 6, 7}; (c) BAC histograms categorized to
N and highlighting the selected models with top-ranked performance (red arrow).

4.2. HP Statistical Analysis

A simple example, which can visually justify the principle of our statistics-based HP optimization is
illustrated in Figure 5a. It represents a 2D colormap BAC = f {K1, F1,} for all models with one CNN layer
(N = 1), which are trained for the full search grid in the 2D space HPs {K1, F1} ∈ [5; 200]. The colormap
gradient clearly identifies that BAC is nonlinearly dependent on HPs {K1, F1}, with a maximal
performance red area in a relatively narrow mid part of K1 = [30; 85] and a wider range of high
F1 40. However, this optimal area has no clear peak or contours because it is representative for the
performance variance that each model can have in different training attempts. As soon as all models
in the random search are trained only once, the performance of all models in the grid is randomly
distributed within this variance. Therefore, all HPs {K1, F1}were adjusted to BAC, as shown in Figure 5b,
where the common values in 50% of observations (quartile range and median value) were used to derive
conclusions about the HPs distributions, which are associated with specific BAC range. These statistical
distributions show clear nonlinear trends for K1 = f (BAC) and F1 = f (BAC), which have important
implications on the analysis of the feature importance score, as further communicated. Our current
focus is on the 50% of the top ranked performance models, which manifest very similar HPrank
values, allocated in narrow quartiles—the red highlighted range in Figure 5b, translated to the white
rectangle in Figure 5a, i.e., HPrank {K 1 = [50; 65], F1 = [100; 125]

}
. Our optimization criterion based on

median(HPrank) (Equation (6)) predicts a new statistically justified model: HPopt{K1 = 50, F1 = 113},
depicted with the white square in Figure 5a. We observe that its coordinates fall in an interpolated
red zone of high performance (between four points of our search grid with BAC = {96.50, 96.52, 96.65,
96.74}) and it is a subject of our further optimization results to prove that the real HPopt performance
corresponds equally well to the predicted in this graph performance.
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Figure 5. Analysis of HPs = {K1, F1,} of random search CNNs with one convolutional block
(N = 1):(a) Colormap of validation performance: BAC = f {K1, F1,} generated in a fine surface
grid by four-nearest-neighbors interpolation between the measurement points of the search grid
(blue dots). The highlighted white zone covers the HPs of the top-ranked performance models,
i.e., HPrank quartile range (rectangle) and HPopt = HPrank median value (square); (b) statistical
distributions of {K1, F1,} = f (BAC), presented as median values (dots) and quartile ranges (whiskers).
HPrank quartile range of the top ranked performance models is highlighted in the rightmost distributions,
corresponding to BAC ≥ 96.5%.

The above statistically justified principles were applied for the performance analysis in the
multivariate search grid HPs = {Ki, Fi,}Ni=1 of deeper CNNs (N = 2, 3 . . . 7) so that HP median values
and quartile ranges were drawn in function of BAC (Figure 6). Our focus on the top-ranked models
identified the quartile ranges of HPrank (highlighted red zone), and most importantly the median points,
which were used to derive our optimal CNN configurations: HPopt = median(HPrank). We further
considered the number of trainable parameters since they might have an important influence on the
model training process and accuracy. They were subjected to the above statistical approach, adjusting
their distributions in function of BAC (Figure 7). The graphs were used only for observational purposes
and were not part of the model optimization settings HPopt = median(HPrank) as soon as Params
were a derivation of the other HPs in the random search (Equation (2)): Params = f {N, Fi, Ki}

N
i=1.

The observations show that the top-ranked models (highlighted red zone in Figure 7) have limited
trainable parameters, with quartile ranges of about 5000 to 45,000 parameters.
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Figure 6. Distributions of HPs = {Ki, Fi,}
N
i=1 of random search CNNs with more than one convolutional

block (N = 2, 3 . . . 7), corresponding to Ki = f (BAC) (top plots) and Fi = f (BAC) (bottom plots)
as median values (dots) and quartile ranges (whiskers). HPrank quartile ranges of the top-ranked
performance models are highlighted in the rightmost distributions.
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Figure 7. Number of trainable parameters in function of the validation BAC performance.
The distributions are presented as median values (dots) and quartile ranges (whiskers). The number of
parameters of the top-ranked performance models is highlighted in the rightmost distributions.

4.3. Rank of HPs Importance

Another result is the computed importance score of HPs = {Params, Fi, Ki}
N
i=1 as individual

predictors of CNN performance, presented in Table 2. This importance score can be used for identifying
the significant nonlinear trends of HPs = f (BAC), depicted in Figures 5b and 6, Figure 7. The red
highlighted cells in Table 2 (IS > 0.5) clearly indicate that the kernel sizes (N= 1, . . . 7) and the number
of filters (N = 7) in the first convolutional layers, and consequently the number of CNN parameters
(N = 1, . . . , 7) have significant importance to the BAC.

Table 2. Relative importance of HPs = {Fi, Ki, Paramsi}
7
i=1 as individual predictors of CNN performance.

The importance range (0–1) is coded with a color gradient, highlighting the most important features
(dense red).

N F1 F2 F3 F4 F5 F6 F7 K1 K2 K3 K4 K5 K6 K7 Param
1 0.15 1.00 0.56
2 0.36 0.35 0.80 1.00 1.00
3 0.28 0.29 0.05 1.00 0.64 0.44 0.58
4 0.32 0.20 0.21 0.16 1.00 0.62 0.39 0.33 0.56
5 0.37 0.27 0.17 0.18 0.23 1.00 0.73 0.30 0.06 0.19 0.61
6 0.27 0.22 0.18 0.17 0.17 0.24 1.00 0.72 0.40 0.18 0.46 0.55 0.63
7 0.18 0.68 0.75 0.68 0.41 0.18 0.09 0.73 0.27 0.23 0.00 0.00 0.00 0.00 1.00
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4.4. Optimal HP Models

Table 3 presents the predicted optimal model settings HPopt = median(HPrank{N, Fi, Ki}
N
i=1, ,

N = 1, . . . 7, which were derived from the highlighted top-rank ranges in Figures 5b and 6.
The performance of these optimal models is presented in Figure 8 for different learning rates.
The min–max and quartile range distributions in Figure 8 show the natural BAC variance, which was
observed between different training runs of a model with the same HPopt settings. We note that BAC
variance is dependent on the LR and is minimal for LR = 0.0001–0.001 (<0.5%). Besides, we found
that LR = 0.0001–0.001 is the optimal setting for training of the top-ranked HPopt models (BAC > 99%
for N ≥ 3). The best performances of all HPopt models are reported in Table 3. Among them, our best
model (BAC = 99.5) was found to be:

HPbest = {N = 5, LR = 0.001, F = {20, 15, 15, 10, 5}, K = {10, 10, 10, 10, 10}} → max(BAC) (8)

Table 3. Settings of the optimal HPs for CNNs with different numbers of convolutional layers:
HPopt = {N, Fi, Ki}

7
i=1 The value of maxBAC is corresponding to maximal performance achieved after

learning rate (LR) optimization (Figure 8). Note *: The highlight shows our choice for the best model
(N = 5).

N F1 F2 F3 F4 F5 F6 F7 K1 K2 K3 K4 K5 K6 K7 Param LR Max
BAC

1 113 50 5877 0.001 96.70%
2 10 15 60 25 4391 0.001 98.99%
3 5 10 20 10 30 50 11606 0.001 99.31%
4 15 15 15 10 20 25 30 40 18741 0.001 99.31%

5 * 20 15 15 10 5 10 10 10 10 10 7521 0.001 99.50%
6 30 30 15 15 10 5 15 10 10 10 10 10 18311 0.0005 99.38%
7 40 30 25 15 10 5 5 15 5 5 5 5 5 5 13486 0.0005 99.45%
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Figure 9 illustrates the validation ROC for all 𝐻𝑃𝑜𝑝𝑡 models in Table 3. We note that ROCs and 
their BAC points are closely overlapping for N≥3 CNN layers, where BAC coordinates correspond to 
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Figure 8. Validation BAC performance of HPopt models with different depths (N = 1, 2, . . . 7), trained
with different learning rates. The distributions are presented as median values (dots), quartile ranges
(boxes) and min–max range (whiskers). The red arrow highlights the best model, i.e., N = 5 (LR = 0.001),
having BAC→max.

Figure 9 illustrates the validation ROC for all HPopt models in Table 3. We note that ROCs and
their BAC points are closely overlapping for N ≥ 3 CNN layers, where BAC coordinates correspond to
balanced Se and Sp in the same range (99%–99.6%). The red model with maximal BAC (HPbest) is
distinguished to reach the highest Se.
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Figure 9. Validation receiver operating characteristic curves (ROC) of HPopt models with different
depths (N = 1, 2 . . . 7). The dot marks correspond to the ROC point with maximal BAC (Se + Sp→max).
The red ROC (N = 5) corresponds to the selected HPbest.

4.5. Best Model

Figure 10 and Table 4 present the validation performance of our best model (HPbest) for different
analysis durations (2–10 s) measured within the following ranges: Se (97.6%–99.6%), Sp (98.7%–99.7%),
BAC (98.2%–99.5%). Maximal performance is measured at 5 s (maxSe = 99.6%) and 10s (maxSp = 99.7%).
We note that BAC linearly increases from 25 s but further prolongation of the analysis duration (5–10 s) did
not improve BAC owing to the effect of proportional Sp rise (+0.3% points) and Se drop (−0.3% points).

Table 4 also presents the final report of the validation performance on the Public and OHCA
databases. Overall, the performance is lower in OHCA vs. Public databases, estimated with an average
drop of −2.2% points for Se (95.2%–98.7% vs. 98.6%–100%), −0.3% points for Sp (98.7%–99.2% vs.
98.6%–99.8%), −1.2% points for BAC (97%–99% vs. 99.5%–99.9%).
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Figure 10. Validation sensitivity (Se), specificity (Sp), and BAC of our best CNN model (HPbest) for
different analysis durations of the input ECG signal.
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Table 4. Performance of our best CNN model with 2–10 s analysis durations, reported for all rhythms
in different validation databases.

Se/Sp (rhythm)
Analysis Duration

2 s 3 s 4 s 5 s 7 s 10 s

Validation dataset: Total

Se (all Sh), % 97.6 98.7 98.9 99.6 99.5 99.3
Sp (all NSh), % 98.7 99.1 99.3 99.4 99.5 99.7

BAC, % 98.2 98.9 99.1 99.5 99.5 99.5

Validation dataset: Holter (VFDB)

Se (all Sh), % 98.6 99.4 99.8 100 99.8 100
Sp (all NSh), % 98.6 99.5 99.4 99.8 99.5 99.4

BAC, % 98.6 99.5 99.6 99.9 99.7 99.7

Validation dataset: OHCA2

Se (all Sh), % 95.2 96.9 96.9 98.7 98.7 97.8
Sp (all NSh), % 98.7 98.8 99.2 99.2 99.6 99.1

BAC, % 97.0 97.9 98.1 99.0 99.2 99.2

5. Discussion

5.1. HPs Optimization

Although the detection of life-threatening cardiac arrhythmias has been handled over two decades
with hand-crafted features and classic machine learning approaches, it is still a research area for
improvements with special attention on maximal shortening of the analysis interval, thus providing the
earliest shock advisory decision. This study addresses a substantially new approach for self-extracting
significant features that characterize the raw ECG signals of different arrhythmias by means of
end-to-end fully convolutional DNNs. The DNN input is fully consistent with the limited input setting
for AED operation, without the need of additional pre-processing stages (e.g., filtering, feature extraction,
signal transformations, gathering information from other ECG leads, etc.). This study contributes with
results from the performed large scale HPs optimization HPs = {N, Fi, Ki}

N
i=1 by random grid search in

a configurable DNN implementation (Figure 2), including:

- Shallow and very deep DNNs (from five to 23 hidden layers), composed by three to 21 layers
from one to seven CNN blocks × three layers (Conv1D, max-pooling, dropout) + one GMP + one
dense layer for binary classification;

- Different number of filters in each Conv1D layer: Fi ∈ [5; 50], i =1 . . . N;
- Different kernel sizes in each Conv1D layer: Ki ∈ [5; 100], i = 1 . . . N, valid for fs = 125 Hz.

To the best of our knowledge, such large grid ranges of {N, K i, Fi} are beyond the HP settings
used in other published CNN studies for ECG diagnostic classification [56–60]. We consider that
the performed HPs optimization process is computationally exhaustive and it has probably not been
applicable or goes beyond the objective of other related works. The applied random search optimization
is probably more computationally expensive and training time consuming than recently published
DNN optimization algorithms based on neural architecture search (ENAS [68] and DARTS [69]),
originally shown for image processing. In this study, we rely on the comprehensive interpretation
of results from the classical random search, questioning whether the novel techniques, designed for
search of optimal subgraphs with fixed blocks can deal with optimization of the hyperparameters in
the blocks. This might be an interesting object of future research, transferring knowledge from image
to ECG classification.

Our optimization goal is based on maximal BAC, which corresponds to the most convex point of
ROC (Se + Sp→max) (Figure 9). This optimization score is beneficial for maximizing together both
Se and Sp, as only those statistical indices have threshold requirements in the AHA performance



Sensors 2020, 20, 2875 17 of 24

goals [4]. Generally, BAC assumes equal proportion of false detections within both classes (Sh and
NSh), leading to larger absolute number of FPs in the larger NSh class (5921 cases), which is about
eight times larger than the Sh class (739 cases), i.e., BAC assumes imbalanced number of FP and FN,
proportional to the class size (FPBAC � 8FNBAC). In contrast, other statistical metrics known to deal
with imbalanced classes, such as F1-score = 2TP/(2TP + FP + FN) would assume balanced number of
FP and FN (FPF1 � FNF1) at the expense of increasing the number of FNF1>>FNBAC. Thus, using FNF1

in the denominator of Se could lead to an intolerable Se drop below the AHA goals [4].
Our results are distinctive to the general concept for optimal HPs design and the choice of the best

performance model based on statistical analysis of a total of 4216 random search models. All models
have been trained and evaluated under the same conditions with independent public and OHCA
datasets for Sh/NSh classification over 5s ECG signals. Our initial observations reveal a large number of
models, which have overlapping performances within the range (98%–99.5%), seen in the dense top-left
corner of the BAC scatterplot (Figure 4a), as well as in the BAC boxplots and histograms (Figure 4b,c)
of all deep networks with more than three CNN layers (N ≥ 3). The simplest optimization approach
might take the best model from the random search and to just report its HPs settings and performance.
We go further and define more generalized rules for optimal model predictions, answering to the
following questions:

(1) What is the common HP space between several top-ranked models? The answer is highlighted in the
quartile range distributions of HPs{Fi, Ki}

N
i=1 = f (BAC→ max) Figures 5b and 6. Our optimal design

is then fitted to the median of those distributions, assuming a more robust HP setting derived from
several models rather than just taking a single model. The proposed new “median HP” models are
designed for N = 1, . . . 7 (Table 3), and they are proven to perform equally well to the top-ranked
models in the random search (Figure 4).

(2) Which are the HPs with major importance to the global CNN performance? The answer to
this basic question could considerably simplify the optimization problem in the multivariate HPs
space of deep networks, giving the focus only to a few key HPs, which can potentially majorly
influence the final outcome. Our interpretation is highlighted in Table 2, ranking the relative HPs
importance with a regression tree for BAC prediction over statistics on all random search models:
IS{Params, Fi, Ki}

N
i=1 ∈ [0; 1]. In general, the most important features to BAC are found to be the kernel

sizes, with declining importance from top to bottom layers, and special emphasis (IS > 0.6) for the first
two layers: {K1, K2}. This can be visually tracked over the nonlinear trends Ki = f (BAC) in Figure 6,
where the median values of K1 and K2 exhibit the most substantial drop over the full BAC scale (e.g.,
N ≥ 3). Another comprehensive example illustrating K1 importance is the BAC colormap (Figure 5a),
where K1 mid-range is the most definitive to maximal BAC. We turn the attention that kernel sizes
of deep layers lose importance when the network reaches maximal shrink due to valid padding.
This effect is observed for our deepest network (N = 7), where only limited search grid of K2–K7 ≤ 15
has been eligible, and therefore, its importance to BAC is practically reduced (IS < 0.3). In this case,
the number of filters (F2–F5, N = 7) gains proportional importance (IS > 0.65). Generally speaking,
in shallow networks (N < 7) the number of filters is the least important HPs except for the first layer
F1 (IS = 0.3–0.35). This slight importance is confirmed in Figure 6 with the lack of visible trend
in the distribution Fi = f (BAC). Both Ki and Fi are related to the number of trainable parameters
(Equation (2)), which is found to be the third most important feature to BAC (IS > 0.55, ranked after K1,
K2). As shown in Figure 7, there is a decreasing trend in Params = f (BAC), which tends to an optimal
minimal range of about 5000–20,000 parameters (also visible in the left top corner of the scatterplot
in Figure 4a). We suggest that the importance scores highlighted in this study (Table 2) might reveal
the CNN behavior in extracting abstract ECG features pertinent for the specific Sh/NSh classification
setting, however, it is probable that the highlighted HPs have a generally high importance to the ability
for model training and feature extraction in other ECG diagnostic applications.

Finally, the HPs of our optimal models with one to seven convolutional layers
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HPopt = {N, Fi, Ki Param, LR}7i=1 are presented in Table 3, subjected also to a learning rate
optimization LR = [10−5; 10−2]. Generally, the optimal models with more than three convolutional
layers do not exhibit substantial differences in performance BAC = (99.31%–99.5%). Among them,
the best model HPbest is found with five convolutional layers, filters F = {20, 15, 15, 10, 5}, kernel size
K = {10, 10, 10, 10, 10}, trained with default LR = 0.001, as specified in (Equation (8)). The best model
has the smallest number of trainable parameters (7521) compared to others optimal candidates (with
up to 187410 parameters) that is considered beneficial for the better generalization of the self-extracted
abstract features with this model.

5.2. Analysis of Our Best CNN Model

The training and evaluation of our best model (HPbest) provide two general advantages:

• The use of two ECG sources from the most famous public ventricular arrhythmia databases and
private OHCA databases provides a robust setting for model optimization on a large scale of
ECG rhythms that can be seen by Holters and defibrillators during treatment of cardiac arrest
patients. This article uses the largest number of (Sh + NSh) samples for training (720 + 3170) and
validation (739 + 5921), which is the important precondition for design of robust deep learning
shock advisory systems;

• The application of the model on ECG signals with short and long durations (2–10 s), with maximal
performance for 5 s analysis (BAC = 99.5%, Se = 99.6%, Sp = 99.4%, Table 4) and tolerable drop
in performance (<2% points) for very short 2 s analysis (BAC = 98.2%, Se = 97.6%, Sp = 98.7%,
Table 4) can satisfy the crucial AED requirements for providing shock advisory decision with
minimal hands-off delay after end of chest compressions.

5.3. Comparative Study to Other Published CNN Models for ECG Classification

The general purpose of this section is to present comparative study of our best model to a reference
AED shock advisory system and other published fully-convolutional DNNs, originally recognized
as state-of-the-art high-performance solutions to various ECG arrhythmia classification problems.
Five CNN models were selected from literature with available information about their architectures
and HPs configurations (Table 5). Two CNNs [53,60] had been originally designed for the same
Sh/NSh detection purpose, one of them [60] presenting an LSTM recurrent layer in addition to two
convolutional layers. The other three fully CNNs had been published for different ECG applications,
including pulseless rhythm detection [56] and heartbeat classification [44,48]. This comparative study
demonstrates the possibility of applying transfer learning through relearning of models designed
for different ECG diagnostic purposes. We, however, could not test the original concept for transfer
learning through reusing pretrained CNNs on ECG data for different purposes, as pretrained versions
of the models in Table 5 are not publicly accessible.

A truthful comparative study was respected so that each CNN architecture in Table 5 was trained and
evaluated under the same conditions, relying on the same data points, annotations, training and validation
datasets from Holters and defibrillators, as used for training and validation of the best model in this study.
All models were trained for input signals with durations 2–10 s and their BAC performance on the validation
datasets is presented in Figure 11. The following conclusions can be drawn:

- Our best model outperforms all other models for both Public and OHCA databases.
Its configuration can be distinguished as the deepest among others with five convolutional
layers, while the number of filters and kernel sizes looks balanced within the middle range found
in other studies. This result is a certain proof that HP optimization has an important role in
accuracy and should always be carefully performed during DNN design for specific applications;

- The models of Elola et al. [56] and Kiranyaz et al. [44] are the next best models with up to about
−1% points and −1.5% points’ drop in BAC, respectively. These models are good examples for
successful transfer learning of CNNs in ECG signal processing, where CNN designs optimized
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for detection of pulseless rhythm and heartbeat classification are here successfully relearned for
detection of shockable rhythms. The model of Elola et al. [56] can be distinguished as a deep
model (four convolutional layers) with a small number of trainable parameters (1441, owing to the
small number of filters and kernels), while the model of Kiranyaz et al. [44] can be distinguished
as the shallowest model (two convolutional layers), but with the largest number of trainable
parameters (8389 resulting from the largest number of filters and kernel sizes). These models are
good examples to show that both deep and shallow networks can almost perform equally if their
HPs are optimized in a specific ECG diagnostic application;

- The models of Picon et al. [60], Zubair et al. [48] and Acharya et al. [53] present the largest BAC
drop (from −1% points to −5% points). The common HP setting observed in these models is the
very small kernel size (three to five), which has been proven in our optimization study to have
the most important impact to BAC (see Table 2);

- We note that the additional LSTM layer in the model of Picon et al. [60] provides evidence for
inferiority, observing the considerable BAC drop (−2.5% points to −5% points) for short-duration
signals < 5 s in Holter databases. This demonstrates that fully convolutional networks are indeed
enough powerful to extract features for superior Sh/NSh detection performance at minimal
computational cost than other DNN architectures.

- Our best model outperforms a reference shock-advisory system of a commercial AED (Fred Easy,
Schiller Médical, France) based on hand-crafted ECG morphology features and a decision tree
classifier [7,19,25] by about (+0.5% points to +3% points) for analysis durations of 10 s and 2 s,
respectively. Indeed, the AED shock advisory system does not show inferior performance to three
DNNs [48,58,60], which is a clear indication that unoptimized deep networks have no benefit
compared to traditional machine learning algorithms.

Table 5. Configurations of published CNN networks for ECG arrhythmia classification, which are
further subjected to training and evaluation with our databases for shockable or nonshockable rhythm
(Sh/NSh) detection.

CNN Layers LSTM
Layer

Dense
Layers

Methods Original
Application N Filters Kernel

Size Max-Pool Kernel
Size

N (Kernel
Size)

Trainable
Params

This study Sh/NSh
detection 5 20, 15, 15,

10, 5
10, 10, 10,

10, 10 2 - 1 (2) 7521

Picon et al. [60] Sh/NSh
detection 2 32, 32 3, 3 7 20 1 (2) 7493

Acharya et al. [53] Sh/NSh
detection 4 3, 5, 10,

10 5, 5, 5, 4 2 - 3 (10, 5, 2) 939

Elola et al. [56] 1
Pulseless
rhythm

detection
4 8, 8, 8, 8 7, 7, 7, 7 2 - 1 (2) 1441

Kiranyaz et al. [44] 1,2 Heartbeat
classification 2 32, 16 15, 15 6 - 2 (10, 2) 8389

Zubair et al. [48] 1,2 Heartbeat
classification 3 32, 16, 8 5, 5, 5 2 - 1 (2) 3425

1 Transfer learning of CNN models used for other ECG classification tasks different than Sh/NSh detection. 2 The
kernel size of the last dense layer was modified compared to the original publication to adapt for detection of two
classes in our study.
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Figure 11. Comparative study of our best model to published fully convolutional DNNs,
which are trained and evaluated under the same conditions on public Holter and OHCA databases.
BAC performance is reported on our validation dataset using analysis durations between 2 s and
10 s. The performance of the reference automatic external defibrillator (AED) algorithm is reported
for the same databases, taken from Krasteva et al. [19] for VFDB, Didon et al. [7] (3, 5, 7 s) and
Krasteva et al. [25] (10 s) for the OHCA database.

6. Conclusions

This study presents the optimal HPs of deep CNNs with two to seven convolutional layers,
derived by statistical justification of the common HPs of the top-ranked models. We observe a certain
limit in the depth and width of CNNs design so that inferior performance is common for all shallow
models (less than three convolutional layers), as well as deep (three to six layers) but very wide or
very narrow models (highlighted importance for the kernel size of the first two layers). The deepest
models (N = 7) might lose performance due to maximal model shrink, where the kernel size is fixed to
minimum and the number of filters in deep convolutional layers become strong predictors of the CNN
performance. The presented optimal HPs have a generally high importance to the ability for good
model training and feature extraction, and might be efficient in other ECG diagnostic applications.

The general conclusion after evaluation in Holter and OHCA databases would be that our best
CNN model provides very high Se (>95.2%) and Sp (>98.6%), even for very short analysis durations
(2 s), and could be considered compliant with the AHA performance goals [4]. While the optimized
network, based on fully convolutional hidden layers with pretrained weights can be run alone in real
time without the need of preprocessing, waveform measurements, transformations, or other machine
learning algorithms, it has perspectives for certain applications in unsupervised database annotation
and diagnosis platforms, as well as in reliable real-time AED shock-advisory systems in OHCA.

7. Limitations

The size of the training/validation datasets is not divided according to the common scheme
of 80%/20% as it isn’t a manually controllable factor but depends only on the number of cases
found in independent data sources, predefined before the study. Thus, the cases are distributed
uncommonly with majority of data for validation. The scheme with independent data sources is,
however, respected to avoid the common cross-validation scenario without a patientwise control,
where rhythms from the same patient are randomly shuffled in the training and validation datasets,
and thus an overtraining on the specific patient rhythm is highly probable in deep learners.
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From the methodological point of view, the HP optimization is done on the validation set, which is
also used for evaluation. However, as soon as the study sets out to investigate the HP optimization
itself, it is not an issue for the main conclusions, regarding the importance of HPs and comparison to
other published DNN models, all trained and evaluated under the same conditions and datasets.

Although the presented study supports the derivation of valuable conclusions about the optimal
depth and width of CNN models for Sh/NSh rhythm discrimination, we should note the inevitable
influence of the size and content of the training and validation databases. Considering, however,
the application of both public Holter and OHCA electrocardiograms, which cover the wide variety of
Sh and NSh rhythms appearing during cardiac arrest and other critical situations and present as much
as 3890 cases for training and 6660 cases for validation, we do not expect substantial differences in the
context of Sh/NSh rhythm detection.

Author Contributions: Conceptualization, V.K., I.J., S.M., and J.-P.D.; methodology, V.K. and I.J.; software, V.K.
and I.J.; validation, V.K., I.J., S.M., and J.-P.D.; formal analysis, V.K. and I.J.; investigation, V.K. and I.J.; resources,
S.M, and J.-P.D.; data curation, S.M, and J.-P.D.; writing—original draft preparation, V.K. and I.J.; writing—review
and editing, V.K., I.J., S.M., and J.-P.D.; visualization, V.K.; supervision, S.M., J.-P.D.; project administration,
V.K. and I.J.; funding acquisition, V.K. and I.J. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Soar, J.; Nolan, J.; Böttiger, B.; Perkins, G.; Lott, C.; Carli, P.; Pellis, T.; Sandroni, C.; Skrifvars, M.; Smith, G.;
et al. Adult advanced life support section Collaborators. Section 3. Adult advanced life support: European
Resuscitation Council Guidelines for Resuscitation 2015. Resuscitation 2015, 95, 100–147. [CrossRef] [PubMed]

2. Weisfeldt, M.L.; Sitlani, C.M.; Ornato, J.P.; Rea, T.; Aufderheide, T.P.; Davis, D.; Dreyer, J.; Hess, E.P.; Jui, J.;
Maloney, J.; et al. Survival after application of automatic external defibrillators before arrival of the emergency
medical system: Evaluation in the resuscitation outcomes consortium population of 21 million. J. Am. Coll.
Cardiol. 2010, 55, 1713–1720. [CrossRef] [PubMed]

3. Israelsson, J.; Wangenheim, B.V.; Årestedt, K.; Semark, B.; Schildmeijer, K.; Carlsson, J. Sensitivity and
specificity of two different automated external defibrillators. Resuscitation 2017, 120, 108–112. [CrossRef]
[PubMed]

4. Kerber, R.E.; Becker, L.B.; Bourland, J.D.; Cummins, R.O.; Hallstrom, A.P.; Michos, M.B.; Nichol, G.;
Ornato, J.P.; Thies, W.H.; White, R.D.; et al. Automatic External Defibrillators for Public Access Defibrillation:
Recommendations for Specifying and Reporting Arrhythmia Analysis Algorithm Performance, Incorporating
New Waveforms, and Enhancing Safety. Circulation 1997, 95, 1677–1682. [CrossRef] [PubMed]

5. Cheskes, S.; Schmicker, R.H.; Verbeek, P.R.; Salcido, D.D.; Brown, S.P.; Brooks, S.; Menegazzi, J.J.;
Vaillancourt, C.; Powell, J.; May, S.; et al. Resuscitation Outcomes Consortium (ROC) investigators.
The impact of peri-shock pause on survival from out-of-hospital shockable cardiac arrest during the
Resuscitation Outcomes Consortium PRIMED trial. Resuscitation 2014, 85, 336–342. [CrossRef]

6. Deakin, C.D.; Koster, R.W. Chest compression pauses during defibrillation attempts. Curr. Opin. Crit. Care
2016, 22, 206–211. [CrossRef]

7. Didon, J.P.; Krasteva, V.; Ménétré, S.; Stoyanov, T.; Jekova, I. Shock advisory system with minimal delay
triggering after end of chest compressions: Accuracy and gained hands-off time. Resuscitation 2011, 82,
S8–S15. [CrossRef]

8. Ayala, U.; Irusta, U.; Ruiz, J.; Ruiz de Gauna, S.; González-Otero, D.; Alonso, E.; Kramer-Johansen, J.; Naas, H.;
Eftestøl, T. Fully automatic rhythm analysis during chest compression pauses. Resuscitation 2015, 89, 25–30.
[CrossRef]

9. Thakor, N.V.; Zhu, Y.S.; Pan, K.Y. Ventricular tachycardia and fibrillation detection by a sequential hypothesis
testing algorithm. IEEE Trans. Biomed. Eng. 1990, 37, 837–843. [CrossRef]

10. Clayton, R.H.; Murray, A.; Campbell, R.W. Comparison of four techniques for recognition of ventricular
fibrillation from the surface ECG. Med. Biol. Eng. Comput. 1993, 31, 111–117. [CrossRef]

http://dx.doi.org/10.1016/j.resuscitation.2015.07.016
http://www.ncbi.nlm.nih.gov/pubmed/26477701
http://dx.doi.org/10.1016/j.jacc.2009.11.077
http://www.ncbi.nlm.nih.gov/pubmed/20394876
http://dx.doi.org/10.1016/j.resuscitation.2017.09.009
http://www.ncbi.nlm.nih.gov/pubmed/28923243
http://dx.doi.org/10.1161/01.CIR.95.6.1677
http://www.ncbi.nlm.nih.gov/pubmed/9118556
http://dx.doi.org/10.1016/j.resuscitation.2013.10.014
http://dx.doi.org/10.1097/MCC.0000000000000310
http://dx.doi.org/10.1016/S0300-9572(11)70145-9
http://dx.doi.org/10.1016/j.resuscitation.2014.11.022
http://dx.doi.org/10.1109/10.58594
http://dx.doi.org/10.1007/BF02446668


Sensors 2020, 20, 2875 22 of 24

11. Jekova, I. Comparison of five algorithms for the detection of ventricular fibrillation from the surface ECG.
Physiol. Meas. 2000, 21, 429–439. [CrossRef] [PubMed]

12. Jekova, I.; Dushanova, J.; Popivanov, D. Method for ventricular fibrillation detection in the external
electrocardiogram using nonlinear prediction. Physiol. Meas. 2002, 23, 337–345. [CrossRef] [PubMed]

13. Jekova, I.; Krasteva, V. Real time detection of ventricular fibrillation and tachycardia. Physiol. Meas. 2004, 25,
1167–1178. [CrossRef] [PubMed]

14. Amann, A.; Tratnig, R.; Unterkofler, K. Reliability of old and new ventricular fibrillation detection algorithms
for automated external defibrillators. Biomed. Eng. Online 2005, 4. [CrossRef] [PubMed]

15. Krasteva, V.; Jekova, I. Assessment of ECG frequency and morphology parameters for automatic classification
of life-threatening cardiac arrhythmias. Physiol. Meas. 2005, 26, 707–723. [CrossRef] [PubMed]

16. Jekova, I. Shock advisory tool: Detection of life-threatening cardiac arrhythmias and shock success prediction
by means of a common parameter set. Biomed. Signal Process. Control 2007, 2, 25–33. [CrossRef]

17. Amann, A.; Tratnig, R.; Unterkofler, K. Detecting ventricular fibrillation by time-delay methods. IEEE Trans.
Biomed. Eng. 2007, 54, 174–177. [CrossRef]

18. Jekova, I.; Krasteva, V.; Ménétré, S.; Stoyanov, T.; Christov, I.; Fleischhackl, R.; Schmid, J.J.; Didon, J.P.
Bench study of the accuracy of a commercial AED arrhythmia analysis algorithm in the presence of
electromagnetic interference. Physiol. Meas. 2009, 30, 695–705. [CrossRef]

19. Krasteva, V.; Jekova, I.; Ménétré, S.; Stoyanov, T.; Didon, J.P. Influence of Analysis Duration on the Accuracy
of a Shock Advisory System. Comput. Cardiol. 2011, 38, 537–540.

20. Arafat, M.; Chowdhury, A.; Hasan, M. A simple time domain algorithm for the detection of ventricular
fibrillation in electrocardiogram. Signal Image Video Process. 2011, 5, 1–10. [CrossRef]

21. Irusta, U.; Ruiz, J.; Aramendi, E.; Ruiz de Gauna, S.; Ayala, U.; Alonso, E. A high-temporal resolution
algorithm to discriminate shockable from nonshockable rhythms in adults and children. Resuscitation 2012,
83, 1090–1097. [CrossRef] [PubMed]

22. Li, Q.; Rajagopalan, C.; Clifford, G.D. Ventricular Fibrillation and Tachycardia Classification Using a Machine
Learning Approach. IEEE Trans. Biomed. Eng. 2014, 61, 1607–1613. [CrossRef] [PubMed]

23. Alonso-Atienza, F.; Morgado, E.; Fernandez-Martinez, L.; Garcia-Alberola, A.; Rojo-Alvarez, J. Detection of
life-threatening arrhythmias using feature selection and support vector machines. IEEE Trans. Biomed. Eng.
2014, 61, 832–840. [CrossRef] [PubMed]

24. Figuera, C.; Irusta, U.; Morgado, E.; Aramendi, E.; Ayala, U.; Wik, L.; Kramer-Johansen, J.; Eftestøl, T.;
Alonso-Atienza, F. Machine Learning Techniques for the Detection of Shockable Rhythms in Automated
External Defibrillators. PLoS ONE 2016, 11, e0159654. [CrossRef]

25. Krasteva, V.; Ménétré, S.; Jekova, I.; Stoyanov, T.; Jost, D.; Frattini, B.; Lemoine, S.; Lemoine, F.; Thomas, V.;
Didon, J.P. Comparison of pediatric and adult ECG rhythm analysis by automated external defibrillators
during out-of-hospital cardiac arrest. Comput. Cardiol. 2018, 45. [CrossRef]

26. Plesinger, F.; Andrla, P.; Viscor, I.; Halamek, J.; Jurak, P. Fast Detection of Ventricular Tachycardia and
Fibrillation in 1-Lead ECG from Three-Second Blocks. Comput. Cardiol. 2018, 45. [CrossRef]

27. Manibardo, E.; Irusta, U.; Ser, J.D.; Aramendi, E.; Isasi, I.; Olabarria, M.; Corcuera, C.; Veintemillas, J.;
Larrea, A. ECG-based Random Forest Classifier for Cardiac Arrest Rhythms. In Proceedings of the 2019 41st
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin,
Germany, 23–27 July 2019; pp. 1504–1508.

28. Fokkenrood, S.; Leijdekkers, P.; Gay, V. Ventricular Tachycardia/Fibrillation Detection Algorithm for 24/7
Personal Wireless Heart Monitoring. Lect. Notes Comput. Sci. 2007, 4541, 110–120. [CrossRef]

29. Rustwick, B.; Atkins, D. Comparison of electrocardiographic characteristics of adults and children for
automated external defibrillator algorithms. Pediatr. Emerg. Care 2014, 30, 851–855. [CrossRef]

30. Kuo, S.; Dillman, R. Computer detection of ventricular fibrillation. In Proceedings of the Computers in
Cardiology; IEEE Computer Society: Long beach, CA, USA, 1978; pp. 347–349.

31. Barro, S.; Ruiz, R.; Cabello, D.; Mira, J. Algorithmic sequential decision-making in the frequency domain for
life threatening ventricular arrhythmias and imitative artefacts: A diagnostic system. J. Biomed. Eng. 1989,
11, 320–328. [CrossRef]

32. Requena-Carrión, J.; Alonso-Atienza, F.; Everss, E.; Sánchez-Muñoz, J.J.; Ortiz, M.; García-Alberola, A.;
Rojo-Álvarez, J.L. Analysis of the robustness of spectral indices during ventricular fibrillation. Biomed. Signal
Process. Control 2013, 8, 733–739. [CrossRef]

http://dx.doi.org/10.1088/0967-3334/21/4/301
http://www.ncbi.nlm.nih.gov/pubmed/11110242
http://dx.doi.org/10.1088/0967-3334/23/2/309
http://www.ncbi.nlm.nih.gov/pubmed/12051305
http://dx.doi.org/10.1088/0967-3334/25/5/007
http://www.ncbi.nlm.nih.gov/pubmed/15535182
http://dx.doi.org/10.1186/1475-925X-4-60
http://www.ncbi.nlm.nih.gov/pubmed/16253134
http://dx.doi.org/10.1088/0967-3334/26/5/011
http://www.ncbi.nlm.nih.gov/pubmed/16088063
http://dx.doi.org/10.1016/j.bspc.2007.01.002
http://dx.doi.org/10.1109/TBME.2006.880909
http://dx.doi.org/10.1088/0967-3334/30/7/012
http://dx.doi.org/10.1007/s11760-009-0136-1
http://dx.doi.org/10.1016/j.resuscitation.2012.01.032
http://www.ncbi.nlm.nih.gov/pubmed/22322285
http://dx.doi.org/10.1109/TBME.2013.2275000
http://www.ncbi.nlm.nih.gov/pubmed/23899591
http://dx.doi.org/10.1109/TBME.2013.2290800
http://www.ncbi.nlm.nih.gov/pubmed/24239968
http://dx.doi.org/10.1371/journal.pone.0159654
http://dx.doi.org/10.22489/CinC.2018.15
http://dx.doi.org/10.22489/CinC.2018.037
http://dx.doi.org/10.1007/978-3-540-73035-4_12
http://dx.doi.org/10.1097/PEC.0000000000000149
http://dx.doi.org/10.1016/0141-5425(89)90067-8
http://dx.doi.org/10.1016/j.bspc.2013.06.013


Sensors 2020, 20, 2875 23 of 24

33. Mjahad, A.; Rosado-Muñoz, A.; Bataller-Mompeán, M.; Francés-Víllora, J.V.; Guerrero-Martínez, J.F.
Ventricular Fibrillation and Tachycardia detection from surface ECG using time-frequency representation
images as input dataset for machine learning. Comput. Methods Programs Biomed. 2017, 141, 119–127.
[CrossRef] [PubMed]

34. Zhang, X.S.; Zhu, Y.S.; Thakor, N.V.; Wang, Z.Z. Detecting ventricular tachycardia and fibrillation by
complexity measure. IEEE Trans. Biomed. Eng. 1999, 46, 548–555. [CrossRef] [PubMed]

35. Tripathy, R.K.; Sharma, L.N.; Dandapat, S. Detection of shockable ventricular arrhythmia using variational
mode decomposition. J. Med. Syst. 2016, 40, 79. [CrossRef]

36. Heaton, J. Deep learning and neural networks. In Artificial Intelligence of Humans; Heaton Research Inc.:
Chesterfield, UK, 2015; Volume 3.

37. Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, TensorFlow: Concepts, Tools, Techniques to Build
Intelligent Systems, 2nd ed.; O’Reilly Media Inc.: Sebastopol, CA, USA, 2019; pp. 1–856.

38. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT press: London, UK, 2016.
39. Chiang, H.T.; Hsieh, Y.Y.; Fu, S.W.; Hung, K.H.; Tsao, Y.; Chien, S.Y. Noise Reduction in ECG Signals Using

Fully Convolutional Denoising Autoencoders. IEEE Access 2019, 7, 60806–60813. [CrossRef]
40. Zhong, W.; Guo, X.; Wang, G. Non-invasive Fetal Electrocardiography Denoising Using Deep Convolutional

Encoder-Decoder Networks. Lect. Notes Electr. Eng. 2020, 592, 1–10. [CrossRef]
41. Lee, J.S.; Lee, S.J.; Choi, M.; Seo, M.; Kim, S.W. QRS detection method based on fully convolutional networks

for capacitive electrocardiogram. Expert Syst. Appl. 2019, 134, 66–78. [CrossRef]
42. Silva, P.; Luz, E.; Wanner, E.; Menotti, D.; Moreira, G. QRS detection in ECG signal with convolutional

network. Lect. Notes Comput. Sci. 2019, 11401, 802–809. [CrossRef]
43. Sereda, I.; Alekseev, S.; Koneva, A.; Kataev, R.; Osipov, G. ECG segmentation by neural networks: Errors

and correction. In Proceedings of the 2019 International Joint Conference on Neural Networks, Budapest,
Hungary, 14–19 July 2019.

44. Kiranyaz, S.; Ince, T.; Gabbouj, M. Real-time patient-specific ECG classification by 1-D convolutional neural
networks. IEEE Trans. Biomed. Eng. 2016, 63, 664–675. [CrossRef]

45. Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adam, M.; Gertych, A.; Tan, R.S. A deep convolutional
neural network model to classify heartbeats. Comput. Biol. Med. 2017, 89, 389–396. [CrossRef]

46. Xu, X.; Liu, H. ECG heartbeat classification using convolutional neural networks. IEEE Access 2020, 8,
8614–8619. [CrossRef]

47. Shaker, A.M.; Tantawi, M.; Shedeed, H.A.; Tolba, M.F. Heartbeat Classification Using 1D Convolutional
Neural Networks. Adv. Intell. Syst. Comput. 2020, 1058, 502–511. [CrossRef]

48. Zubair, M.; Kim, J.; Yoon, C. An automated ECG beat classification system using convolutional neural
networks. In Proceedings of the 2016 IEEE Conference on IT Convergence and Security (ICITCS), Prague,
Czech Republic, 26 September 2016; pp. 1–5.

49. Fan, X.; Yao, Q.; Cai, Y.; Miao, F.; Sun, F.; Li, Y. Multiscaled Fusion of Deep Convolutional Neural Networks
for Screening Atrial Fibrillation from Single Lead Short ECG Recordings. IEEE J. Biomed. Health Inf. 2018, 22,
1744–1753. [CrossRef] [PubMed]

50. Rubin, J.; Parvaneh, S.; Rahman, A.; Conroy, B.; Babaeizadeh, S. Densely connected convolutional networks
for detection of atrial fibrillation from short single-lead ECG recordings. J. Electrocardiol. 2018, 51, S18–S21.
[CrossRef] [PubMed]
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