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Abstract 

Background:  Identifying human protein-phenotype relationships has attracted 
researchers in bioinformatics and biomedical natural language processing due to its 
importance in uncovering rare and complex diseases. Since experimental validation of 
protein-phenotype associations is prohibitive, automated tools capable of accurately 
extracting these associations from the biomedical text are in high demand. However, 
while the manual annotation of protein-phenotype co-mentions required for training 
such models is highly resource-consuming, extracting millions of unlabeled co-men-
tions is straightforward.

Results:  In this study, we propose a novel deep semi-supervised ensemble framework 
that combines deep neural networks, semi-supervised, and ensemble learning for 
classifying human protein-phenotype co-mentions with the help of unlabeled data. 
This framework allows the ability to incorporate an extensive collection of unlabeled 
sentence-level co-mentions of human proteins and phenotypes with a small labeled 
dataset to enhance overall performance. We develop PPPredSS, a prototype of our 
proposed semi-supervised framework that combines sophisticated language models, 
convolutional networks, and recurrent networks. Our experimental results demonstrate 
that the proposed approach provides a new state-of-the-art performance in classifying 
human protein-phenotype co-mentions by outperforming other supervised and semi-
supervised counterparts. Furthermore, we highlight the utility of PPPredSS in powering 
a curation assistant system through case studies involving a group of biologists.

Conclusions:  This article presents a novel approach for human protein-phenotype 
co-mention classification based on deep, semi-supervised, and ensemble learning. 
The insights and findings from this work have implications for biomedical research-
ers, biocurators, and the text mining community working on biomedical relationship 
extraction.

Keywords:  Biomedical relationship extraction, Protein phenotype relationships, 
Human phenotype ontology, Semi-supervised learning, Ensemble learning, Deep 
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Background
Proteins perform a wide range of operations in cells, and they are considered the work-
horses of life. The cooperation of thousands of proteins provides the functionality of 
cells. However, genetic sequence errors of proteins may cause alterations in the pro-
tein’s structure. These may lead to a change in the protein’s function-specific structure, 
resulting in phenotype alterations [1]. Medically, a phenotype is a deviation from normal 
morphology or physiology [2]. Typically, the genotype-phenotype correlations are very 
challenging to interpret due to the scarcity of genomic variants that cause rare diseases 
[3]. Therefore, one way to increase certainty is to identify the patients who have the same 
phenotype characteristics and share the same or overlapping gene variants [3]. Overall, 
finding the relationships between proteins and phenotypes is essential for downstream 
applications, e.g., finding the treatments for rare diseases.

Human Phenotype Ontology, also known as HPO, is a standard and structured vocab-
ulary of phenotypic abnormalities observed in human diseases [4]. HPO comprises of 
five sub-ontologies including, Phenotypic abnormalities, Mode of inheritance, Clinical 
modifier, Clinical course, and Frequency. Clinical abnormalities are described in Pheno-
typic abnormalities, which is the main sub-ontology. It provides HPO terms with their 
unique HPO Identifiers (IDs), such as Parkinsonism (HP:0001300). HPO is structured as 
a Directed Acyclic Graph (DAG) in which the depth of a term correlates to how specific 
it is. The is-a relationships are also available for each parent-child pair. For the rest of this 
paper, we use the terms “HPO term” and “phenotype” interchangeably. Gold-standard 
annotations for an extensive collection of proteins are maintained in the official HPO 
website.1 Yet, the expansion of HPO annotations over time shows that the HPO database 
is still incomplete and requires more effort [4–6]. HPO database currently maintains 
annotations for a little of over 4,500 unique genes.

Gold-standard HPO annotations are typically acquired from biomedical literature 
using biocuration, which extracts knowledge from unstructured text and stores the data 
in knowledge bases. In general, biocuration is considered resource-consuming and tedi-
ous, often manually performed with some assistance from text mining tools. Hence, for 
quickly extending knowledge bases, biocurators require accurate computational tools to 
expedite their curation efforts [7]. Consequently, developing text mining tools to extract 
protein-phenotype relationships has attracted researchers working in biomedical natural 
language processing [8–13].

Recently [14], we presented a two-step novel approach capable of extracting the rela-
tionships between protein-phenotype terms from biomedical literature. In the first step, 
we identify the co-occurrences of proteins and phenotypes from abstracts and open 
access full-text articles from Medline and PubMed Central (PMC) using an advanced 
text mining pipeline developed by our lab [15]. Then, we extract co-occurrences at var-
ious levels concerning the particular span of text from which they are extracted: sen-
tence-level, paragraph-level, and document-level. We refer to these co-occurrences as 
protein-HPO term co-mentions. These co-mentions are currently maintained in ProPh-
eno,2 a dataset that maintains records of occurrences of proteins and phenotypes (HPO 

1  https://​hpo.​jax.​org/​app.
2  http://​proph​eno.​cs.​monta​na.​edu.

https://hpo.jax.org/app
http://propheno.cs.montana.edu
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terms), which is publicly available online [16]. The ProPheno dataset covers Phenotypic 
abnormality sub-ontology. Previously, we showed that these co-mentions are useful in 
the task of protein-phenotype prediction [15]. However, protein-phenotype co-mentions 
may or may not convey an actual biological relationship between the two entities (Fig. 1 
provides an example of an invalid co-mention).

In the second step, we develop a co-mention classifier for distinguishing good versus 
bad co-mentions. If the context surrounding the entities contains enough evidence sup-
porting a valid relationship, it is referred to as a good co-mention. Figure 2 depicts such 
a good co-mention. Hence, our previously proposed protein-phenotype relation extrac-
tion pipeline is a combination of a co-mention extractor and classifier. While the process 
of extracting co-mentions is demanding due to its resource-consuming nature, develop-
ing an accurate co-mention classifier is relatively more challenging.

In our preliminary attempts at formulating a co-mention classifier, we developed 1) 
PPPred [14], which uses Support Vector Machines (SVMs) and a large collection of 
semantic and syntactic features, and 2) DeepPPPred [17], an extended version of PPPred, 
which utilizes an ensemble of PPPred and deep neural networks. We randomly selected 
a relatively small subset of sentence-level co-mentions stored in the ProPheno database 
and then curated them with biologists’ assistance. This final gold-standard dataset com-
prised of 1685 co-mentions.3

While both of the aforementioned supervised classifiers (i.e., PPPred and DeepPPPred) 
were effective at outperforming baseline methods, we observed that their performances 
plateaued due to the scarcity of the labeled data [14]. We considered two potential solu-
tions to this problem: 1) manually annotating more co-mentions, 2) taking advantage 
of unlabeled co-mentions without manual intervention. As stated earlier, manual anno-
tation of data is highly resource consuming, and hence annotating more data was not 
a feasible solution for our task. However, millions of unlabeled protein-phenotype co-
mentions are available through the ProPheno [16], which could be utilized for improved 

Fig. 1  A bad (i.e. invalid) co-mention of the protein (“KIF4”) and the phenotype “cancer” extracted from the 
article PMID: 20711700. Here, the sentence by itself does not bear a meaningful relationship between the two 
entities

Fig. 2  A good (i.e. valid) sentence-level co-mention found in the article PMID:18596936

3  http://​doi.​org/​10.​5281/​zenodo.​39651​27.

http://doi.org/10.5281/zenodo.3965127
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performance with a semi-supervised learning setup. In fact, for many of the entity pairs, 
we have access to at least several sentences, such as the following examples (entities are 
underlined):

•	 “BRCA1, BRCA2, PALB2 and RAD51C should be included in the genetic testing 
panel of breast cancer patients in Argentina.” (PubMedID: 31446535)

•	 “Population frequencies of pathogenic alleles of BRCA1 and BRCA2: analysis of 
173 Danish breast cancer pedigrees using the BOADICEA model.” (PubMedID: 
31435815)

In this work, we study the problem of developing a more effective co-mention classifier 
by incorporating unlabeled data. More specifically, we describe a novel framework for 
co-mention classification that combines the advantages of deep learning, semi-super-
vised learning, and ensemble learning. Our proposed deep semi-supervised ensemble 
framework for relation extraction requires only a small labeled dataset, to begin with. 
Furthermore, we develop a prototype of our framework by instantiating it using a self-
trained BERT [18] (Bidirectional Encoder Representations from Transformers) classifier 
combined with an ensemble model composed of convolutional neural networks (CNN) 
and recurrent neural networks (RNN). We name this prototype PPPredSS (Protein-
Phenotype Predictor Semi-Supervised). Using the above-mentioned curated dataset of 
protein-phenotype sentence-level co-mentions, we demonstrate that PPPredSS provides 
state-of-the-art performance in human protein-phenotype co-mention classification. 
PPPredSS outperforms PPPred, DeepPPPred, and S3VM [19] (state-of-the-art SVM 
for semi-supervised learning). Also, we conduct a use-case study in which we inquire a 
group of biologists to evaluate the quality of PPPredSS retrieved sentences. The findings 
from this survey further highlight the utility of our approach. Our software repositories 
are made publicly available for the benefit of interested researchers.4

Related work

We categorize the existing biomedical relation extraction methods into three main cat-
egories: (1) co-occurrence-based methods, (2) rule-based methods, and (3) machine 
learning-based methods. Co-occurrence methods are the most straightforward tech-
nique for extracting the relationships between the entities of interest. They look for any 
co-occurrence of the two entities in a specific short span of text. These methods typi-
cally achieve lower precision yet higher recall values [20]. On the other hand, Rule-based 
methods extract the relationships using pre-defined linguistic patterns [21–25]. One 
or more subject matter experts typically provide these rules/patterns. Finally, Machine 
learning-based methods are also popular for biomedical relation extraction [11, 13, 26, 
27]. Various studies discuss supervised and unsupervised methods and show improve-
ment in various biomedical relation extraction tasks [9, 28–30].

Biomedical relation extraction has widely utilized deep learning in various studies [31–
37]. Some researchers have created hybrid models by combining RNNs and CNNs [12, 
17, 38]. For example, an ensemble composed of RNNs, CNNs, and SVMs, are introduced 

4  https://​doi.​org/​10.​5281/​zenodo.​45683​64.

https://doi.org/10.5281/zenodo.4568364
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by Peng et al. [12] to solve BioCreative VI’s chemical-protein relation extraction task.5 
However, deep neural networks typically are data-hungry. BERT, a pre-trained language 
representation based on bi-directional transformers, provides a solution to this prob-
lem by requiring only a relatively small labeled dataset. Since BERT comes pre-trained 
on large corpora of text, it only requires fine-tuning of its pre-trained parameters for a 
given task.

Several studies employ semi-supervised learning using neural networks [39, 40]. For 
instance, Lin et al. utilize self-training with neural networks for temporal relation extrac-
tion tasks, which achieves a new state-of-the-art performance on Clinical TempEval 
2017 Task [41]. Khordad and Mercer present a model for extracting the genotype-phe-
notype relations, which employs a self-supervised approach for enlarging the training 
set [11].

Deep neural networks, with the help of self-training, can overcome noisy labels with-
out additional supervision [42]. They are also instrumental in ensemble learning settings. 
Some of the best relation extraction methods, such as for extracting chemical-protein 
relations, use ensemble learning [12, 38]. Ensemble classifiers have several advantages: 
(1) Their general performance is higher than their constituent classifiers. (2) They offer 
a convenient method to combine several models bypassing the need for model selection 
[43].

Besides text mining methods, several other approaches use gene expression data and 
network-based models. For instance, Ren et al. present a similarity network for pheno-
type ontology, followed by network analysis methods for discovering phenotype/disease 
clusters [44]. Subsequently, they perform the prediction of protein-phenotype associa-
tions using machine learning. Zhang et al. [45] employ advanced feature selection meth-
ods: Monte Carlo feature selection (MCFS) and incremental feature selection (IFS) for 
biomarker selection followed by an SVM classifier. Other similar studies utilize Gene 
Ontology  (GO) [46] and KEGG pathways [47, 48], a network embedding algorithm 
(i.e., node2vec) [49] for discovering disease-related genes and a Convolutional Neu-
ral Network for the identification of cell cycle-regulated genes [50]. The random walk 
with restart algorithm and Laplacian heat diffusion are also extensively studied for gene 
expression and detection of disease-related genes [51–53].

Despite considerable recent progress on relationships extraction (including a few 
methods that can extract gene-phenotype relationships), only two methods are explic-
itly designed for extracting the relationships between human proteins and HPO terms 
directly from biomedical literature. They are (1) PPPred [14], and (2) DeepPPPred [17], 
previously developed by our lab. Hence, we use these two previously developed methods 
as comparators for evaluating the proposed deep semi-supervised ensemble model for 
co-mention classification. While there are other methods for predicting HPO terms for 
a given protein using heterogeneous data sources such as PHENOstruct [15, 54], Notaro 
et al. [55], HPO2Protein [56], AiProAnnotator [57], DeepPheno [58], HPOLabeler [59], 
HPOAnnotator [60], and HPOFiller [61], they do not employ any text-mining techniques 

5  https://​biocr​eative.​bioin​forma​tics.​udel.​edu/​tasks/​biocr​eative-​vi/​track-5/.

https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vi/track-5/
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to directly extract relations from biomedical literature. Therefore, these methods are not 
directly comparable to our proposed model.

Results and discussion
Supervised learning component of PPPredSS

In our proposed framework, we required an accurate supervised model to make pre-
dictions on the unlabeled instances. We compared several models to select the most 
accurate model for predictions. We trained them on the training set and evaluated them 
on the validation set to evaluate the models. Table 1 shows the results of this compari-
son.  The highest obtained Precision, Recall, F1, and AUROC values are bolded in the 
table.

BERT model achieved the best performance on the validation set. So, we used that as 
our primary model for making predictions on the unlabeled instances. Note that in this 
comparison, we excluded DeepPPPred [17] since it has a relatively long training time, 
and it is not feasible to be used for making predictions on millions of unlabeled sen-
tences. Another observation is that CNNs and RNNs perform relatively worse on the 
validation set. This reduction in performance may be because deep neural networks 
using CNNs and RNNs require a lot of data to be trained well compared to a BERT 
model. However, combining the predictions of CNNs and RNNs achieves better perfor-
mance than the individual CNN model and the RNN model, leading to the ensemble of 
two models performing better than its constituent models.

Semi‑supervised learning component of PPPredSS

In our method, the supervised learning model is used to make predictions on unlabeled 
data. Then a randomly selected set of top predictions are added to the training data for 

Table 1  Comparison of the performance of various supervised models trained on the training set 
and evaluated on the validation set

CNN & RNN is the model using the average prediction probabilities of the individual CNN and RNN models

Method Precision Recall F1 AUROC SD

PPPred 0.741 0.89 0.809 0.657 N/A

RNN 0.75 0.795 0.772 0.651 0.006

CNN 0.732 0.763 0.747 0.623 0.008

CNN & RNN 0.732 0.822 0.774 0.658 0.005

BERT 0.745 0.936 0.83 0.671 0.005

Table 2  performance using various sizes of added training examples to the original training set

The models have been trained on several subsets with various sizes of unlabeled data combined with our training set, and 
the evaluation is performed on the validation set

Added training size

1000 2000 3000 5000 10000

Precision 0.774 0.78 0.776 0.78 0.782
Recall 0.864 0.87 0.876 0.882 0.864

F1 0.804 0.81 0.82 0.829 0.824

AUROC 0.664 0.69 0.704 0.712 0.71

SD 0.004 0 0.006 0.006 0.004
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its expansion. To determine the best size of added unlabeled instances to the training 
set, we performed experiments with the BERT model and various sizes of 1000, 2000, 
3000, 5000, and 10,000 instances. We are reporting the average performance of 10 exe-
cutions. According to F1 scores reported in Table 2, we select 5000 as the default value 
for the size of added training instances.

Overall performance of PPPredSS versus others

Table 3 provides a comparison between our proposed deep semi-supervised ensemble 
model with S3VM, which is the state-of-the-art semi-supervised model based on SVMs 
[19]. We ran S3VM with features introduced in PPPred study [14] and TFIDF (term fre-
quency-inverse document frequency) features. We used the hyperparameter values rec-
ommended by its authors for text data [19]. We fed our training set and all the unlabeled 
co-mentions into S3VM as input. This approach ensured that S3VM has access to the 
same data as PPPredSS. Furthermore, we compared our proposed model with PPPred 
[14] and DeepPPPred [17]. We observed that our proposed model outperformed its 

Table 3  Comparison of our proposed model (PPPredSS) versus semi-supervised SVM  (S3VM), 
PPPred, and DeepPPPred

The p values are computed between PPPredSS and others. The p value for S3VM was not computed

Method Precision Recall F1 AUROC p Value

PPPred 0.898 0.906 0.902 0.845 3.7E-4

DeepPPPred 0.871 0.973 0.919 0.846 0.0486

S3VM 0.854 0.785 0.818 0.761 NA

PPPredSS 0.914 0.962 0.938 0.881 -

Table 4  Top-five false positives of our proposed model

Sentence Protein Phenotype

“Heterozygous PU.1 mutations were reported in some patients with 
PHENO (AML), but not in AML with translocation t(8;21), which gives rise 
to the fusion gene PROT-ETO”

AML1 Acute myeloid leukemia

“PROT is also involved in the proteolytic breakdown of the extracellular 
matrix in PCa tumorigenesis, which contributes to tumor invasion and 
metastasis, and high serum PSA correlates with mutations in p53 and 
the overexpression of the B-cell lymphoma 2 protein, which inhibits 
apoptosis in PHENO cells”

PSA Tumor

“This spectrum of somatic mutation differed from PROT mutations 
identified in human peripheral blood T lymphocytes and from germ-line 
HPRT mutations identified in Lesch-Nyhan syndrome or PHENO patients”

HPRT Hyperuricemia

“However, a recent study, in PHENO cells, has demonstrated the involve-
ment of p27 (increase of expression) rather than cyclin D1 in G1 cell 
cycle arrest induced by tunicamycin and another study, in human breast 
cancer cells, showed that knockdown of PROT, results in cell cycle arrest 
in G2/M phase”

PERK Melanoma

“The disease is characterized by two major sets of defects; i.e., systemic 
purine metabolism expressed as hyperuricemia, gouty arthritis and 
PHENO, and dysfunction of basal ganglia and other neural pathways 
associated with the hallmark biochemical defect in HPRT deficiency; i.e., 
markedly reduced neurotransmitter dopamine (DA) in the basal ganglia 
in both the human and mouse PROT-deficient brain and resulting 
dystonia”

HPRT Renal calculi
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comparators significantly, suggesting that the addition of unlabeled co-mentions is ben-
eficial for improved performance.

Analysis of false positives predicted by PPPredSS

Table 4 shows the top-five false positives predicted by PPPredSS. We observed that 
most of the false positive sentences conveyed relationships between multiple proteins 
or phenotypes. It is likely difficult for the model to understand which specific rela-
tion is in focus. This issue can potentially be solved by combining all the relationships 
extracted from one sentence and defining linguistic patterns to find the exact relation.

Training time

All experiments were performed on a GPU system with a Tesla V100 graphics card. 
The fastest model is the CNN model, which took 90 seconds for training. The RNN 
model took 4 min for training, whereas fine-tuning the BERT model needed 10 min. 
In addition, since DeepPPPred utilizes the same networks with an overhead of 2 min, 
its training time is 17 min. The training time of PPPred is 4 min. The slowest model is 
S3VM, which took 160 min for training on a computer with 24 CPU cores.

Demo curation assistant system powered by PPPredSS

Using PPPredSS as the underlying engine, we developed an in-house demo curator 
assistant system capable of providing the most relevant sentences for a given input. 
This exercise aimed to evaluate the effectiveness of PPPredSS in a real-life task; hence, 
we requested four biologists to test the output of this system. Our demo system’s 
input can be a protein name, a phenotype name, or a pair of them. For example, if 
the input to the system is “breast cancer”, it returns the most relevant sentences to 
“breast cancer.” But it can also be used to obtain a list of sentences related to a pair, 
e.g. “pneumonia” and “enhancer-binding protein alpha.” The predicted sentences are 
sorted according to the descending order of PPPredSS confidence scores, which are 
the average scores of probabilities output by the constituent CNN and RNN models 
for each class. The user had the option to adjust the number of retrieved sentences 
that are displayed.

When a user fed a pair composed of a protein name and a phenotype name to the 
demo system, it first found all the sentences stored in ProPheno [16] that co-mentions 
the input pair. PPPredSS generated a confidence score for each sentence in this list. 
These confidence scores were then used to rank the sentences. A higher confidence 
score indicated a higher chance that a sentence conveyed a relation between the two 
entities in question. Top-k sentences along with their publication venues and dates were 
displayed to the user. This complete process took three seconds on average for returning 
the ranked sentences.

Case study: BRCA2‑breast cancer

Table 5 shows the output (top-5 sentences) of the demo system for a well-known input 
pair of a human protein and an HPO term. The input protein is BRCA2 that has been 
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mentioned in various studies for its effect on breast cancer [62, 63]. We observe that all 
of the top-5 returning sentences convey valid relationships between BRCA2 and breast 
cancer according to the column “Curator”, which reports the biologists’ manual vali-
dation. While this is not surprising given that this specific protein is well-known to be 
associated with breast cancer, this observation still verifies the ability of PPPredSS.

Case study: LMP7‑Hepatitis

Then we evaluated PPPredSS on a more challenging task. Table 6 demonstrates the out-
put of the demo system for an input pair of a human protein and an HPO term that is 
not available in the HPO database at the time of experiments. In other words, the HPO 
database did not report any association between these two entities. This pair is LMP7 
(“Proteasome subunit beta type-8”), and Hepatitis. According to the biologists’ manual 
validation, four of the top-5 sentences returned by PPPredSS conveyed valid relation-
ships between the protein and the HPO term. This observation suggested that PPPredSS 
could help retrieve relevant co-mentions of pairs of entities that are not well-studied. It 
also indicated that the information obtained using PPPredSS could be utilized to expand 
the Human Phenotype Ontology database and expedite the process by assisting curators. 

Table 5  The output of demo system for a well-known pair of human protein and HPO term, i.e. 
BRCA2 and Breast cancer

Sentence PubMed ID Year Curator

“BRCA2, also known as FANCD1, is the most known gene that causes FA when 
both alleles are mutated and is associated with breast cancer risk when one allele 
is disrupted”

24765528 2014 Related

“Even more prominently, inactivation of the distal FA pathway through mutations 
in the BRCA2 (FANCD1) gene has been reported in breast cancer [14] (familial 
cases [15-17]), pancreatic cancer [18, 19] and ovarian cancer [20], among others”

26843614 2016 Related

“Our results rule out a major role of FANCI, FANCL and FANCM in familial breast 
cancer susceptibility, suggesting that among the 13 known FA genes, only 
FANCD1/BRCA2 plays a major role in high-risk breast cancer predisposition”

19737859 2009 Related

“In addition, FANCD1 gene has been shown to be identical to BRCA2, one of the 
two breast cancer susceptibility genes”

16115458 2005 Related

“Specifically, mutations in FANCD1 (BRCA2) carry an 82% lifetime risk of breast 
cancer, and 23% risk of ovarian cancer [24, 25]”

28157704 2017 Related

Table 6  The output of demo system for a pair of human protein and HPO term, i.e. LMP7 and 
Hepatitis, that is less well-known

Sentence PubMed ID Year Curator

“Other reports have revealed that LMP2/LMP7 genes are strongly correlated with 
the hepatitis B infection[12],[13]”

23554652 2010 Related

“[Association between LMP2/LMP7 gene polymorphism and the infection of 
hepatitis B virus]”

16224524 2005 Invalid

“One report from Japan revealed that LMP7-145 SNP is one of the important 
host factors which independently influences the response to IFN in patients with 
chronic hepatitis C[18]”

23554652 2010 Related

“Hepatitis C virus non-structural protein NS3 interacts with LMP7, a component of 
the immunoproteasome, and affects its proteasome activity”

15303969 2004 Related

“These findings suggest that a single nucleotide polymorphism of LMP7 gene is 
one of the important host factors which independently influence the response to 
IFN in patients with chronic hepatitis C”

12225333 2002 Related



Page 10 of 22Pourreza Shahri and Kahanda ﻿BMC Bioinformatics          (2021) 22:500 

Note that the second retrieved sentence, which is the title of an article, does not explic-
itly convey a relation by itself (and hence labeled as “invalid” by the biologists). But note 
that the corresponding article does contain evidence of a valid relationship.

General‑purpose Search vs. PPPredSS

Biologists and other researchers typically end up using general-purpose search engines 
such as Google6 for document triage due to the lack of domain-specific search engines 
for biological entities such as proteins and phenotypes. Therefore, we compare the out-
put of our demo system with the Google search engine results for the same entity pairs 
to highlight the utility of PPPredSS.

When the query “Effect of BRCA2 on breast cancer” was fed to the Google search 
engine, it returned a list of “hits.” It also returned the following text span that expresses 
a relationship between the input protein and phenotype: “Women who carry a germline 
mutation in either the BRCA1 or BRCA2 gene face a lifetime risk of breast cancer of up 
to 70%, and once they receive a diagnosis of breast cancer, they face high risks of both 
second primary breast and ovarian cancers.” (see Fig. 3).

Similarly, we also obtained the output of Google for the pair of LMP7 and Hepatitis. 
However, as shown in Fig. 4, by feeding the query “Effect of LMP7 on Hepatitis”, only a list 
of articles was displayed (i.e., Google did not extract a relevant text span as in the previous 
example). This observation suggested that while Google may help with well-known pairs of 
entities, it may be inadequate for other challenging queries. In this situation, the user must 

Fig. 3  The output of Google search engine with the query “effect of BRCA2 on breast cancer”. Google 
extracted a text span that includes information about the pair. This search was performed on June 20, 2020 at 
11:18 PM MST

6  https://​www.​google.​com/.

https://www.google.com/
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manually read through the articles or, at the very minimum, read the abstracts of articles 
to acquire the desired information about the relationship between the pair, which could be 
time-consuming. However, our demo system powered by PPPredSS simplifies this process 
by immediately returning only the sentences containing a relationship between the protein 
and phenotype. The users can refer to the corresponding published articles only if they need 
additional information beyond what is mentioned in the sentences.

Fig. 4  The output of Google search engine with the query “effect of LMP7 on Hepatitis”. Google returns a list 
of published papers that include the input pair. This search was performed on June 20, 2020 at 11:25 PM MST

Table 7  Four biologists’ experience with finding a relationship between BRCA2 and Breast Cancer 
using Google and how it compares to PPPredSS retrieved sentences

# of Searches: number of queries used, Keywords: queries used for each search, Amount of reading: length of the text read, 
Winner: the tool that provides better results out of Google and PPPredSS

BRCA2 and breast cancer

Biologist 1 Biologist 2 Biologist 3 Biologist 4

# of Searches 1 1 1 1

Keywords brca2 breast 
cancer associa-
tion

The relationship between 
BRCA2 and breast cancer

brac2 breast cancer brca2 breast cancer

Amount of reading A few sentences Reading highlighted text by 
Google

One sentence Skimming the first 
page of results

Duration 1 min 1 min 1 min 1 min

Winner Tie PPPredSS PPPredSS PPPredSS
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Biologists’ feedback

We wanted to understand how a typical researcher/biologist queries for biological 
entities of interest and how their experience of using a general-purpose search engine 
compares to our curation assistant system (powered by PPPredSS). So, we asked four 
biologists to query for the above two entity pairs (i.e., BRCA2-breast cancer and LMP7-
Hepatitis) using Google. In other words, we requested them to find evidence that the two 
pairs had relationships without restricting how they perform the tasks (i.e., no restric-
tion on the number of searches/queries or the amount of reading). As a comparison, 
we provided them the top-5 sentences retrieved by PPPredSS for the same pairs of enti-
ties (shown in Tables 5, 6 ) and was asked whether and how PPPredSS sentences enrich 
their experience. Furthermore, we created a questionnaire to understand and describe 
their process completely. Their complete responses to the questionnaire are given in the 
Appendix. The summary of their feedback is shown in Tables 7 and 8 for BRCA2 and 
LMP7, respectively. The consensus was that the four biologists found PPPredSS-based 
output more convenient and informative than Google output, especially for the less-
well-studied pair of entities (i.e., LMP7-Hepatitis).

In summary, the above case studies demonstrate the ability of PPPredSS to facilitate 
expediting the biocuration process by extracting the most relevant sentences on human 
protein-phenotype pairs. They also exemplify how it can be integrated into a curation 
pipeline employed by bio-curators to expand knowledge bases and ontologies such as 
HPO. Even though the accuracy of PPPredSS is very high, we are in no way suggesting 
that the curation process should or can be fully automated. The process of biocuration of 
HPO, or any other knowledge base, is highly nuanced and involved than merely finding 
relevant sentences. Therefore, we recommend our model to be a complementary tool for 
bio-curators to expedite the process by prioritizing which articles to dig deeper into.

Conclusion
This work proposes a novel deep semi-supervised ensemble framework to classify sentence-
level co-mentions of proteins and phenotypic abnormalities associated with human diseases. 
Our framework’s inputs are a corpus of biomedical articles, a list of protein and phenotype 

Table 8  Four biologists’ experience with finding a relationship between LMP7 and Hepatitis using 
Google and how it compares to PPPredSS retrieved sentences

# of Searches: number of queries used, Keywords: queries used for each search, Amount of reading: length of the text read, 
Winner: the tool that provides better results out of Google and PPPredSS

LMP7 and hepatitis

Biologist 1 Biologist 2 Biologist 3 Biologist 4

# of Searches 5 1 1 1

Keywords LMP7 and hepatitis, LMP7 and 
hepatitis association, LMP7, What 
is LMP7

The relation-
ship between 
LMP7 and 
hepatitis

lmp7 hepatitis LMP7 and Hepatitis

Amount of reading A few minutes of reading Reading the 
conclusions of 
one paper

One sentence Skimming the first 
page of results

Duration 5 min 3 min 1 min 2 min

Winner PPPredSS PPPredSS Tie PPPredSS



Page 13 of 22Pourreza Shahri and Kahanda ﻿BMC Bioinformatics          (2021) 22:500 	

names, and a small labeled dataset of sentences. First, it extracts the complete list of sen-
tences containing protein-phenotype co-mentions from biomedical articles. Then, it trains a 
supervised classifier on the small labeled dataset. Next, using the trained model, it predicts 
the labels for unlabeled sentences. It then expands the training set and increases the num-
ber of labeled instances by picking a subset of top predictions. Eventually, using an ensemble 
of deep learning classifiers provides a more robust model that gives accurate predictions on 
unseen pairs of entities. This framework can return a list of the most relevant sentences for a 
given pair of a protein and a phenotype with their corresponding confidence scores.

We developed a prototype of our framework, PPPredSS, that used BERT as the first 
supervised classifier and utilized a combination of RNNs and CNNs as the ensemble 
classifier. Our experimental results demonstrated that PPPredSS provides excellent per-
formance compared to fully-supervised models such as PPPred and DeepPPPred. It also 
significantly outperformed S3VM (the state-of-the-art Semi-supervised SVM) trained 
using around one million additional instances. We further developed an in-house demo 
curation assistant system powered by PPPredSS and analyzed its output for two case 
studies compared to a general-purpose search engine. Feedback from the group of biolo-
gists on these outputs further highlights the utility of PPPredSS.

While PPPredSS is very accurate, there are many different avenues for future research. 
The accuracy of the named entity recognizer tools directly affects the quality of our 
framework. Our dataset of entities lacks some proteins and phenotypes due to errors 
in upstream named entity recognition tools. In other words, our dataset covers 2512 
unique proteins and 2277 unique phenotype names compared to 4589 and 9795 proteins 
and phenotypes currently curated in the official HPO database, respectively. One of the 
next steps is to investigate a plethora of entity recognition tools to improve the overall 
coverage of PPPredSS. Also, while BERT is very accurate, it is still costly to fine-tune 
BERT. Therefore, utilizing lighter models such as ALBERT is a potential future work. 
Another possible future work is to replace BERT with BioBERT [64] (i.e., a BERT model 
pre-trained on biomedical text), which would likely improve the overall performance.

Another limitation of PPPredSS is that it is restricted to sentence-level co-mentions. 
However, it is known that 10–15% valid relationships are expressed between entities 
mentioned across sentence boundaries. Therefore, we plan to investigate incorporating 
paragraph-level co-mentions while still maintaining similar runtimes. Finally, We would 
also like to develop a public interactive web-server powered by PPPredSS that can be 
used by both biocurators and researchers working in this area. A diverse collection of 
case studies including unclear/controversial proteins and phenotypes pairs would pro-
vide valuable feedback for setting up such a system.

Methods
Approach

Our proposed framework is a combination of semi-supervised learning, deep learning, and 
ensemble learning. Figure 5 depicts the proposed framework. The inputs to this frame-
work are (1) a small labeled dataset composed of labeled protein-phenotype co-mentions, 
(2) the entire corpora of biomedical articles, and (3) the names of proteins and phenotypes.

First, we extracted an unlabeled list of sentences that contain a protein and a pheno-
type name from the biomedical articles. The “Co-mention Extraction” module takes a 
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corpus and a list of entities as input and returns text spans, e.g., sentences, which con-
tain a co-mention of the entities of interest as output.

The supervised module is trained on labeled data and is capable of generating labels 
for unlabeled instances. Using a supervised learning algorithm, we trained a model on 
the labeled dataset and made predictions on the unlabeled dataset. There are multiple 
options for the supervised module, including BERT, SVM, etc.

Semi-supervised learning helps increase the training set size by combining the labeled 
instances with the unlabeled dataset predictions. It can achieve this using self-training, 
co-training, or other approaches. The semi-supervised module takes a trained super-
vised module and a list of text spans containing the entities of interest as input. It returns 
labels for the unlabeled text spans as output. This module is also capable of improving 
itself in the training process.

The high-confidence predictions made by the semi-supervised module are added to 
the labeled data to expand it. After growing the labeled data, we had access to enough 
data for the data-hungry deep learning models, e.g., CNNs, RNNs, etc. Therefore, we 
trained multiple deep learning models on the expanded labeled data.

Next, we created an ensemble module by combining the deep learning models. The 
ensemble model can be obtained using either averaging or stacking. This framework’s 
final output is a classifier capable of classifying text spans composed of entities of inter-
est into either positive or negative classes.

This framework only requires a corpus, a list of entities, and a relatively small labeled 
dataset. It is independent of the type of entities and corpus. So, in theory, it can be uti-
lized for any task of binary relation extraction in other domains as long as the required 

Fig. 5  The proposed framework that combines supervised learning, semi-supervised learning, and ensemble 
learning
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three input data sources are available for those domains. The minimum number of labeled 
instances depends on the complexity of the domain and can be determined experimentally.

Data

We used the entire collection of Medline abstracts (downloaded on 07/01/2017) and 
PMC full-text articles (downloaded on 03/15/2018) as mentioned in [16]) as our cor-
pus. The names of proteins and phenotypes are fed using their corresponding UniProt 
IDs and HPO IDs, respectively. We employed the gold-standard dataset that we cre-
ated in our previous study [17], which comprises 1,685 co-mentions annotated by biolo-
gists. The gold-standard dataset is split into train, validation, and test data using random 
stratification. The number of sentence-level co-mentions in the training, validation, and 
test sets are 1010 (60%), 337 (20%), and 337 (20%). The training, validation, and test sets 
remain unchanged during training and inference.

Preprocessing

Because there are multi-word protein and phenotype names, we first replaced all the 
protein and phenotype entities in the sentences with “PROT” and “PHENO,” respec-
tively. Subsequently, we utilized tokenization to break the unstructured text into a list of 
words/phrases and converted them into a list of numerical sequences understood by our 
models. Next, we truncated/padded the sequences that are longer/shorter than a thresh-
old to ensure the same dimensionality across all the sentences.

Models

As mentioned before, we implemented PPPredSS as a prototype of the proposed frame-
work. We provided the unlabeled co-mentions extracted from ProPheno [16] and 
the small labeled dataset (i.e., gold-standard co-mentions) as input, and we trained 
PPPredSS using the algorithm given in Algorithm 1.

We first fine-tuned the BERT model on our small labeled dataset. BERT provides very 
accurate predictions when trained on labeled sentences. Therefore, by allowing it to make 
predictions on the unlabeled sentences, we obtained high-quality predictions on mil-
lions of unlabeled instances. Using the validation set, we iteratively looked for the sub-
set of such prediction that improves the BERT model’s overall accuracy. Next, we added 
this subset of top predictions to the training set and obtained an expanded training set. 
Details of pre-training and fine-tuning the BERT model are described elsewhere [17]. 
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The expanded training set is fed to a model that is composed of RNNs and CNNs. 
In our previous study [17], we showed that CNNs perform better on shorter sentences, 
whereas RNNs provide better performance on longer sentences. Therefore, we employed 
the same CNN and RNN architectures in the current study and averaged their predic-
tions to develop the ensemble model. These RNN and CNN models generate confidence 
scores, which is the average of probabilities returned by the RNN and CNN models for 
each instance in the validation set. We computed the average of each instance’s confi-
dence scores and reported it as the instance’s final confidence score. Model architectures 
and details of training individual RNN and CNN models are described elsewhere [17]. 
Finally, we used this ensemble model to make predictions on the test data to evaluate 
PPPredSS and compared it to other competitors.

Experimental setup

We used PyTorch7 and SciKit-learn8 packages for our implementations. We trained the 
CNN and RNN models for 20 epochs. We used the binary cross-entropy loss as the loss 
function and the Adam optimizer as the optimizer. The BERT model is fine-tuned in 
four epochs. All of these parameter values were obtained experimentally based on the 
validation accuracy.

We used various random seeds to perform 10-times hold-out validation (i.e., the same 
split with different seeds was used for repeats). Next, we averaged them to compare the 
performance of the presented model with other baseline models. Precision, recall, and F1 
metrics were used as the primary performance metrics. The formal definitions of those 
metrics are given below. We also report area under the receiver operating characteristics 

7  https://​pytor​ch.​org.
8  https://​scikit-​learn.​org.

https://pytorch.org
https://scikit-learn.org
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curve (AUROC) [65] values. Finally, we used paired t-tests to measure the significance of 
the performance differences across different models.

Appendix
This section provides the questionnaire used to acquire the biologists’ feedback on our 
in-house demo curation assistant system powered by PPPredSS.

•	 Question 1: how many Google searches did you perform to get the desired informa-
tion?

•	 Question 2: What were the keywords that you used for the searches?
•	 Question 3: Did Google pop up the answer to your input search query or you had to 

open the page and scan through the document?
•	 Question 4: How much did you have to read to get the answer?
•	 Question 5: How long did it take for you to get the answer?
•	 Question 6: How do you compare the results from Google search with the sentences 

provided by us?

The following are the responses by the four biologists.

Biologist 1 (Katrina Lyon)

BRCA2 and breast cancer

1	 Google searches to get desired information: 1
2	 Keywords used: “brca2 breast cancer association”
3	 A google search result directly identified BRCA as “the breast cancer gene”.
4	 A few sentences, maximum.
5	 Found the answer in less than a minute from nationalbreastcancer.org.
6	 The generated sentences largely describe BRCA2 in the context of both breast cancer 

and Fanconi anemia. Fanconi anemia did not pop up in the search results. It appears 
that the predictor pulled these sentences from literature comparing breast cancer 
susceptibility to BRCA2/FANCD1 expression. The generated sentences did not go 
farther than indicating an association between breast cancer risk and BRCA2.

LMP7 and hepatitis

1	 Google searches to get desired information: 5

Precision =
True Positives

True Positives+ False Positives

Recall =
True Positives

True Positives+ False Negatives

F1 =
2 ∗ Precision ∗ Recall

Precision+ Recall
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2	 Keywords used: “LMP7 and hepatitis” “LMP7 and hepatitis association” “LMP7” 
“What is LMP7”

3	 My google search results did not provide a direct answer as to the relationship 
between LMP7 and Hepatitis, so I had to do some scanning through the literature.

4	 A few minutes of reading were enough to find the relationship.
5	 Approximately 5 min.
6	 Sentences provided went into far more detail than the google search results yielded. 

The sentences were also more helpful in determining the relationship/extent thereof 
between LMP7 and Hepatitis.

Biologist 2 (Julia Schearer)

1	 Question 1: how many Google searches did you perform to get the desired informa-
tion? One Google search for each.

2	 Question 2: What were the keywords that you used for the searches? The relation-
ship between BRCA2 and breast cancer. The relationship between LMP7 and Hepati-
tis.

3	 Question 3: Did Google pop up the answer to your input search query or you had 
to open the page and scan through the document? For BRCA2 and breast cancer, 
Google popped up the answer to the search query. Shown below. For LMP7 and 
Hepatitis, I had to open a scientific journal article and scan through a document to 
find the answer.

4	 Question 4: How much did you have to read to get the answer? For BRCA2 and 
breast cancer, the answer popped up right away and therefore I just had to read 
that. I have read many journal articles and therefore have become efficient at finding 
answers in these papers. I scrolled down to the discussion/conclusions of the paper 
and found the relationship between LMP7 and Hepatitis by just reading these sec-
tions.

5	 Question 5: How long did it take for you to get the answer? 30 seconds for BRCA2 
and breast cancer. 3 min for LMP7 and Hepatitis.

6	 Question 6: How do you compare the results from Google search with the sentences 
provided by us? The sentences that were provided by you all were very helpful in 
showing the association, as well as providing more detail about how this associa-
tion occurs. On Google, usually, I would search something and find that there was 
an association between the two, but then have to do more searches or reading to find 
out how exactly they are related to one another.

Biologist 3 (Mandi M. Roe)

BRCA2/breast cancer

1	 Q1: One google search to get the desired information.
2	 Q2: I used the keywords: BRCA2 breast cancer
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3	 Q3: Google popped up with the answer of my research inquiry and answered the 
question without me having to open the page. It was from the CDC website.

4	 Q4: I had to read one sentence to get the answer to the relationship between BRCA2 
and breast cancer.

5	 Q5: It took me less than 1 min to get the answer.
6	 Q6: The results that I got from my google search did not include any information 

about FA or the connection between FANCD1 and BRCA2. The results I found were 
only associated with the two input words I put into the search.

LMP7/hepatitis

1	 Q1: One google search to get the desired information
2	 Q2: I used the keywords: LMP7 hepatitis
3	 Q3: Google did not pop up with the answer to my inquiry, however, I did not have 

to open a page to get the answer to my question. The first search result was a paper 
and the sentences beneath the title described hepatitis virus and LMP7, as well as, 
explaining interactions between the two.

4	 Q4: I had to read one sentence to get the answer to the relationship between LMP7 
and Hepatitis.

5	 Q5: It took me less than 1 min to get the answer.
6	 Q6: The sentence I read that was at the top of my google search was the same as sen-

tence 4 in the LMP7/hepatitis sentences you provided.

Biologist 4 (Gillian Reynolds)

1	 Question 1: how many Google searches did you perform to get the desired informa-
tion? BRCA2 and breast cancer - just a single google search is adequate to find infor-
mation geared towards the general public and even some scientific results. It’s a very 
high profile gene so this is unsurprising. LMP7 and Hepatitis - just a single google 
search is adequate to find scientific information of their association.

2	 Question 2: What were the keywords that you used for the searches? I simply used 
“brca2 breast cancer” and “LMP7 and Hepatitis”.

3	 Question 3: Did Google pop up the answer to your input search query or you had 
to open the page and scan through the document? Google popped up enough infor-
mation for me to get the general gist for both searches. If more detail/specifics is 
required then I’d have to search through the articles.

4	 Question 4: How much did you have to read to get the answer? I was able to skim the 
first page of results to get an understanding of their relationship.

5	 Question 5: How long did it take for you to get the answer? A couple of minutes per 
search.

6	 Question 6: How do you compare the results from Google search with the sentences 
provided by us? The google searches provide me some information on the protein/
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disease association, your sentences provide me more specific details of that relation-
ship.
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