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Recent advances in optical mapping have allowed the construction of improved genome assemblies with
greater contiguity. Optical mapping also enables genome comparison and identification of large-scale
structural variations. Association of these large-scale genomic features with biological functions is an
important goal in plant and animal breeding and in medical research. Optical mapping has also been used
in microbiology and still plays an important role in strain typing and epidemiological studies. Here, we
review the development of optical mapping in recent decades to illustrate its importance in genomic
research. We detail its applications and algorithms to show its specific advantages. Finally, we discuss
the challenges required to facilitate the optimization of optical mapping and improve its future develop-
ment and application.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
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1. Introduction

Short-read sequencing (SRS) has made genomic and genetic
studies in various species affordable [1,2], but the limited sequence
lengths generated by SRS platforms prevent the reads from span-
ning most repetitive and complex regions, leading to fragmented
and collapsed genome assemblies [2,3]. The use of assemblies
based on SRS can therefore reduce the accuracy of downstream
analyses, such as those used for the detection of genomic varia-
tions [1,4]. Although different methods and computational algo-
rithms have been developed to solve this problem [5–9], it is
difficult to fully overcome the deficiencies inherited from the short
read length.

Long-read sequencing provided by Pacific Biosciences (PacBio)
and Oxford Nanopore technologies now help to cover most repeats
and produces more complete genome assemblies [10–13]. How-
ever, the read lengths (~15 kb on average) are still insufficient to
cover some large repetitive and complex genomic regions
[14,15], thus hampering biological studies of these regions. In addi-
tion, while PacBio or Oxford Nanopore sequencing can produce
substantial long-sequence reads for prokaryote genome assembly,
for eukaryotic genomes, the reads can generally only be assembled
to the scaffold-level, but not to the chromosome-level [16].

Short-read long-insert technologies, linked-read sequencing
technologies, high-throughput chromosome conformation capture
(Hi-C) technologies and optical mapping are used to solve these
assembly problems [10,17]. Extended from the concept of
paired-end reads to contain a fixed length insertion between
two sequences at the ends of a DNA fragment, the mate-pair
and similar methods construct libraries joining ends of circular-
ized longer fragments (2–5 kb) in single reads to resolve adjacent
sequences at longer intervals. Similarly, linked-read sequencing
technologies, such as those provided by 10x Genomics, and Hi-C
technologies such as those provided by Dovetail Genomics and
Phase Genomics, use fluidics and other ligation methods to cap-
ture proximity information. The variations in library preparation
ultimately rely on short-read sequencing [17]. Although the cost
of these technologies is relatively low, sequencing biases, such
as those caused by PCR amplification and enzyme selection
[18,19], can make these technologies error-prone [10]. Moreover,
Burton et al. [20] and Bickhart et al. [21] found that Hi-C tech-
nologies can lead to mis-assembly, such as false inversion and
scaffold misplacement, which has to be corrected with data from
orthogonal methods such as radiation hybrid maps. Compared to
single-molecule technologies, linked reads have coverage draw-
backs as they cannot fully cover the source DNA fragments. When
using linked reads, they can introduce gaps particularly during
eukaryotic genome assembly [22]. Additionally, the current
linked-read sequencing methods have a limited ability to process
polyploid genomes [23,24].

In contrast to the above technologies used to capture linkage
information or to determine 3D genome architecture, optical map-
ping uses a light microscope-based technique to physically locate
specific enzymes or sequence motifs to produce DNA sequence fin-
gerprints [25]. The resulting optical maps contain only the physical
locations of selected enzymes, rather than base-by-base nucleotide
information. Specifically, during the generation of optical maps,
selected enzymes are used to fluorescently label DNA molecules,
and images of the fluorescent signal patterns are then used to pro-
duce maps.

The average molecule length of optical maps (~225 kb) is sub-
stantially greater than the read length produced by short-read
sequencing (typically 150–300 bp) and long-read sequencing
(typically ~ 15 kb on average) [26]. Optical maps can easily span
genomic regions that are difficult to resolve by DNA sequencing.
The physical location and relative separation of the restriction/la-
belling sites obtained from optical mapping facilitate genome scaf-
folding, genome-assembly completeness validation, and large-
scale structural variation detection [27].

Optical mapping is intensively used in genomic studies of
microorganisms, plants, animals, and human diseases [10,28].
Ongoing efforts to improve optical mapping technology will enable
further increases in the accuracy of genomic research. Here we
review the development of optical mapping, detail its algorithms
and applications, and emphasize future perspectives and applica-
tions for optical mapping that could assist genomic research.
2. Development of optical mapping

Since being pioneered by Schwartz et al. [25] in 1993, the tech-
nology used in optical mapping has been improved substantially
(Fig. 1). Initially, optical mapping was used to assist genome
assembly of microorganisms, such as yeast and bacteria [29]. How-
ever, due to its low throughput, high error rate, and imprecise
DNA-length measurement, optical mapping has not been widely
adopted for genomic studies in higher species [14]. Recent
advances in technologies and algorithms have led to further
improvements in optical mapping, making it an important auxil-
iary tool in genomic research.

2.1. History of optical mapping

In 1993, Schwartz et al. [25] demonstrated the use of optical
mapping by constructing ordered restriction maps of Saccha-
romyces cerevisiae chromosomes. First, the stained and stretched
DNA molecules were fixed in agarose gel and then nicked by a
selected restriction enzyme. Next, specialized fluorescence micro-
scopy was used to observe and record the specific patterns of
single-molecule DNA restriction fragments. However, it was later
found that the thickness of agarose gel can affect image capture
by scattering light and attenuating signals.

To solve this problem, in 1995 Cai et al. [30] and Meng et al. [31]
fixed DNA molecules on glass surfaces that had been treated with
specific chemicals. Consequently, the DNA stretch rate was
improved to 60% of its contour length, compared with 30% on agar-
ose [29]. The number of cut sites was also increased. To increase
throughput, in 1998 Jing et al. [32] used the ‘‘fluid fixation” effect
in their design of the first automated approach to generate restric-
tion maps. The improvement of microfluidics and chemistries led
to further advances in optical mapping, and in 2007, Jo et al. [33]
reported a nanoslit approach that had higher accuracy and
throughput in restriction map production.



Fig 1. Optical mapping milestone timeline. Major breakthroughs in optical mapping over the past two decades are displayed.
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Throughout this time, companies such as OpGen, Bionano
Genomics, and NABsys have invested intensively in single-
molecule whole-genome mapping and have extended its applica-
tion from microorganisms to more complex organisms. OpGen
and Bionano Genomics have commercially released different plat-
forms to produce optical maps, such as Argus from the former and
Irys and Saphyr from the latter. However, with the acquisition of
the Argus platform by BGI in 2011, OpGen’s optical mapping ser-
vices were terminated. Bionano Genomics currently dominates
the optical mapping market and continues to invest in technology
development. Yet, given the pending release of the HD-mapping
system from NABsys, it is likely that some of the Bionano Genomics
market share will be taken by NABsys.

2.1.1. OpGen optical mapping
OpGen was licensed its technology from New York University

and the University of Wisconsin and was the first company to com-
mercialize optical mapping technology [34], represented by its
release of the Argus platform and its accompanying analysis soft-
ware, MapSolver [34–36]. OpGen applied the original restriction-
based method for map construction to produce maps of 200 kb
in length [10,29,36]. At first, Argus targeted simpler organisms,
such as bacteria and yeast. Later, OpGen expanded its support to
higher organisms across animals and plants, including humans,
domestic goat and legume Medicago [34,36–38]. A global align-
ment strategy was applied in the design of MapSolver to help
detect complex genome rearrangements [36,39]. However, with
the sale of the Argus system, OpGen discontinued its optical map-
ping services, and its optical mapping market share was then
assumed by its competitors.

2.1.2. Bionano optical mapping
Bionano Genomics is another optical mapping technology pro-

vider, originally named BionanoMatrix. The company rose to pop-
ularity in 2012 after the release of its massively parallel Irys
platform, which applies nanochannel-array fluidics technology to
produce optical maps [40]. This technology greatly enhances the
throughput and the accuracy of molecule length estimation by
use of a more uniform linearization [14,40], and the use of nicking
enzymes to create only single strand breaks preserve molecule
contiguity more than OpGen technologies do. The Irys platform
came bundled with the IrysView desktop application for data visu-
alization and management. Bionano also provides its proprietary
RefAligner for map alignment and Assembler for de novo map
assembly, together with an IrysSolve Scripts package to assist data
analysis. In 2016, two maps generated from the use of different
nicking enzymes were added to the Irys workflow to complement
the limited label density and increase map coverage. However,
double strand breaks at ‘‘fragile sites” where two nicking sites
locate closely (~400 bp) on opposite strands still hamper the con-
tiguity of optical maps.

Bionano recently developed Direct Label and Strain (DLS) tech-
nology to improve map contiguity to the chromosome-level [41].
The release of the DLS protocol was coupled with the new Saphyr
platform, which has improved optics and throughput. DLE-1, the
first enzyme in the DLS family, functions akin to a methyltrans-
ferase by labelling DNA without damaging it [29,42]. DLE-1 elimi-
nates the ‘‘fragile site” problem [43]. Currently, the Saphyr
platform guarantees a production of 1300 Gb of raw data per
flow-cell for human samples. The resolution of Bionano optical
mapping has been increased up to 500 bp, and there have been
attempts to develop algorithms to enable a resolution of 10 bp
[40,44]. Bionano has also updated their data analysis software to
a web application supported by Bionano Solve and Bionano Access,
to streamlining bioinformatics analysis and data management.

The Bionano Tools are freely accessible by the public. There is
constant advancement of instruments and chemistries, and the
software is continuously updated with new features by Bionano
Genomics, whilst the core components (RefAligner and Assembler)
remain proprietary.

2.1.3. Nabsys mapping
In contrast to OpGen and Bionano Genomics, NABsys is not like

a traditional optical-mapping technology provider. NABsys
eschews image capture and conversion in their technology and
instead directly detects the sequence-specific tags using an elec-
tronic nanodetector and uses the resulting data to produce maps
[45]. NABsys claims that their technology has greater sensitivity
and accuracy than existing optical mapping technologies. The res-
olution of NABsys maps is claimed to be much greater than that of
its competitors and is capable of resolving physical distances
between tags of fewer than 300 bp [45]. Because the NABsys HD-
Mapping platform has not been commercially released, it is diffi-
cult to publicly assess its performance. Nevertheless, NABsys map-



Fig 2. Workflow used in optical map production and analysis. Generally, the workflow can be divided into three parts: wet laboratory preparation, optical map generation,
and bioinformatics analysis and validation. The essential steps are listed in this figure to show how optical mapping works.

Fig 3. Optical-mapping data analysis. The major bioinformatics analysis steps are illustrated from in silico genome digestion, data quality control, de novomap assembly, map
alignment, scaffolding, and SV detection.
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ping is a potential option for use in genome assembly, structural
variation (SV) detection, and strain typing.
3. Workflow and algorithms used in optical mapping

Optical mapping workflows generally commence with experi-
ment design, followed by high-molecular-weight DNA extraction,
DNA labelling, DNA molecule loading and image capture, and then
data conversion, bioinformatics analyses, and validation (Fig. 2).
Standard data processing involves molecule-map quality control,
map alignment, de novo assembly, and scaffolding (Fig. 3). Down-
stream analyses include but are not limited to genome-assembly
improvement, SV detection, strain typing, and comparative
genomics.
3.1. In silico digestion

It is important to select the correct enzyme and the label den-
sity required for an optical mapping experiment, because a low
label density may limit the resolution of maps and reduce the cov-
erage of useful molecules, whilst a high label density may con-
found data grouping [46]. During genome digestion in silico, a



Table 1
State-of-the-art tools used in optical mapping analysis.

Key feature Tool Description URL Ref

Data simulation OMSim A tool for producing synthetic Bionano optical maps https://github.com/biointec/omsim [144]
BMSIM A tool for producing and mimicking real Bionano molecules https://github.com/pingchen09990102/

BMSIM
[43]

Data correction cOMet A tool for raw map error correction using k-mer seeds https://github.com/kingufl/cOMet [50]
Elmeri A tool for raw map error correction using spaced-mer seeds https://github.com/LeenaSalmela/Elmeri [51]

Map alignment RefAligner An aligner for map alignment owned by Bionano Genomics using a dynamic
programming framework

https://
bionanogenomics.com/support/software-
downloads

NA

OMBlast An aligner for map alignment using a modified seed-and-extend method https://github.com/TF-Chan-Lab/
OMBlast

[56]

OMMA An aligner for multiple map alignment in a population-scale study https://github.com/TF-Chan-Lab/
OMTools

[62]

Maligner An aligner for raw map alignment based on a dynamic programming
framework for large eukaryotic genomes and an indexed method for
identifying discordances in the reference

https://github.com/
LeeMendelowitz/maligner

[57]

OPTIMA An aligner for whole genome alignment using a novel seed-and-extend global
alignment method

https://github.com/verznet/OPTIMA [39]

Genome
assembly

Assembler An assembler for de novo map assembly owned by Bionano Genomics https://
bionanogenomics.com/support/software-
downloads

NA

Novo&Stitch A tool for assembly reconciliation and scaffolding https://github.com/ucrbioinfo/Novo_
Stitch

[80]

BiSCoT A tool for scaffold contiguity improvement based on map alignment https://github.com/institut-de-
genomique/biscot

[79]

Assembly
evaluation

BionanoAnalyst A tool for reporting and visualizing potential errors in the genome assemblies
based on discordances in the alignment

https://github.com/
AppliedBioinformatics/BioNanoAnalyst

[76]

misSEQuel A tool for reporting and resolving mis-assemblies using optical maps and
paired-end reads

https://www.cs.colostate.edu/seq/
missequel

[85]

SV detection OMSV A tool for SV detection based on map alignment from OMBlast and RefAligner
using a complete error model

http://yiplab.cse.cuhk.edu.hk/omsv [117]

Structome A tool for SV detection using Bionano Irys data and map alignment https://github.com/RyanONeil/structome NA
Data

management
and
visualization

IrysView A tool bundled with the Bionano Irys platform for data analysis, data
management and visualization on a window system

https://
bionanogenomics.com/support/software-
downloads

NA

Bionano Access A tool package bundled with the Bionano Saphyr platform for data analysis,
data management and visualization on multiple operating systems

https://
bionanogenomics.com/support/software-
downloads

NA

MapOptics A tool for viewing comparisons of in silico maps, empirical optical maps, and
hybrid scaffolds

https://github.com/FadyMohareb/
mapoptics

[75]

OMTools A toolkit for data processing, map alignment and visualization https://github.com/TF-Chan-Lab/
OMTools

[47]

Pipeline
wrapper

runBNG A wrapper of Bionano IrysSolve Scripts package for data processing and
analysis on Linux systems

https://github.com/
AppliedBioinformatics/runBNG

[74]

Irys-scaffolding A refined pipeline for genome assembly based on Bionano RefAligner and
Assembler

https://github.com/kstatebioinfo/Irys-
scaffolding

[26]

OMWare A refined pipeline for genome assembly based on Bionano RefAligner and
Assembler

https://github.com/sharpa/OMWare [73]
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draft genome assembly is usually used to check the label density
generated by a selected enzyme in a genome (Fig. 3). This process
is based on a sequence motif finding and can be performed with
several tools. For instance, Bionano Genomics provides Bionano
Knickers, Label Density Calculator, and ‘‘fa2cmap_multi_color.pl”
in the Bionano Solve package to assist with in silico genome diges-
tion. OMTools [47] and Nucleomics (https://github.com/Nucle-
omics-VIB/bionano-tools) also implement such a function in their
packages to assist with enzyme selection.

3.2. Data conversion

Converting images or electronic signals into labels of physical
distances is a prerequisite for optical mapping data analysis
(Fig. 2). Usually, this process is performed after image capture by
Semi-AutoVis in the OpGen Argus platform, AutoDetect in the Bio-
nano Irys platform, or Bionano Access in the Bionano Saphyr plat-
form. The conversion process can be summarized as extracting
skeletal segments, tiling restriction maps, grouping segments,
and handling sizing errors [48]. The algorithms used in each tool
must deal with ambiguities in sizing and end-point location
because they can be easily affected by image signal intensities
and noise [46]. Moreover, the thermal motion of DNA under imag-
ing may blur fluorescent patterns, which then require correction
via kymograph alignment. Weighted Path Align is an algorithm
that may enable kymograph alignment of nanochannel images in
linear time [49].
3.3. Data correction

The raw restriction maps produced by various platforms may be
error prone. This is mitigated by the use of raw-map error-
correction to enable efficient use of data. This correction is per-
formed by software such as cOMet, which corrects raw optical-
mapping data by detecting maps with significant overlaps using
k-mer seeds (Table 1) [50]. However, cOMet is demanding of com-
puting resources, particularly for processing of large genomes. To
solve this problem, a spaced-mer method, Elmeri, was developed
[51]. On a human data test-set, it was found that Elmeri outper-
formed cOMet in both running speed and accuracy and used sub-
stantially fewer CPU hours than cOMet (15 CPU hours vs. 10 CPU
days). Furthermore, the quality of raw maps generated with Elmeri
show more than four times improvement of alignment scores over
those generated by cOMet.
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3.4. Map alignment

Alignment is an essential step in the analysis of opticalmap data.
It can be performed by grouping data to quickly identify maps
homologous to target genome regions (Fig. 3). Alignment reveals
discordances betweenquery and referencemaps,which can provide
useful information for SV detection or mis-assembly identification
[48]. However, the alignment of optical mapping data is more com-
plicated and challenging than sequence alignment because a greater
diversity of errors (e.g. missing and spurious labels) can be intro-
duced during enzyme digestion or labelling. DNA breaks can occur
during sample preparation. Image noise can also introduce false-
positive and false-negative label signals [46]. Moreover, imprecise
scaling can lead to errors in molecule length and label distance esti-
mation. To cope with these problems, algorithms are used in
sequence alignment, such as local and global alignment and
dynamic programming, accompanied by scoring approaches.

In 2006, Valouev et al. [52] introduced a technique to assist opti-
cal map alignment, in which the nature of errors in optical mapping
are embedded ina scoring system inadynamicprogramming frame-
work. Later, SOMAwas developed, based on dynamic programming
with a heuristic scoring scheme [53]. During benchmarking, it was
found that SOMA performed better than Valouev et al.’s technique
[53,54]. Similarly, theBionanoRefAligneralsoadopts adynamicpro-
gramming framework to perform local alignment between maps.
RefAligner then penalizes unaligned labels at alignment ends fol-
lowed by applying a likelihood to select for global alignment [26].

Another method, TWIN, uses dynamic programming and
attempts to accelerate alignment by using an FM-index method
[55]. However, the error intolerance of TWIN limits its application
[56,57]. OPTIMA (Table 1), a recently developed application, uses a
seed-and-extend global–local alignment method with a
technology-agnostic statistical model to evaluate alignment per-
formance [39]. Maligner, on the other hand, combines a fast and
stringent dynamic programming framework and an index-based
method to align single-molecule maps or in silico maps to a refer-
ence. A new alignment-score normalization method has also been
implemented in Maligner [57]. OMBlast was recently designed to
align maps using a seed-and-extend approach that indexes refer-
ence as k-tuples to save memory. After seeding, OMBlast recur-
sively extends the alignment with different scaling factors. Its
performance is considerably better than that of other tools [56].

Overlapping unassembled raw maps in the optical map assem-
bly step is challenging but necessary for building consensus optical
maps. The index-based Kohdista is a recent solution that formu-
lates the alignment problem as an automaton path-matching prob-
lem to index and query restriction maps [58]. Kohdista has been
tested on E. coli data to demonstrate its fast alignment perfor-
mance. It is likely that Kohdista will be used or modified to perform
high-quality pairwise restriction-map alignments of large eukary-
otic organisms.

Multiple alignment is also useful in comparative analysis to
identify similar regions that may have functional, structural, or
evolutionary relationships. Multiple alignment of nucleotide
sequences has been achieved with a number of algorithms, such
as those used in ClustalW [59], Muscle [60], and MAFFT [61]. To
solve the multiple alignment problem in optical mapping, Leung
et al. [62] published a two-step pipeline based on optical mapping
by multiple alignment to separate genomic segments into collinear
blocks, thereby enabling population-scale comparison of complex
genomic features.

3.5. Map assembly

De novo single-molecule map assembly is useful for identifica-
tion of novel genomic features, such as large insertions in a gen-
ome (Fig. 3). It can also be used to detect genetic features of a
species without a reference genome.

The concept of de novo single-molecule map assembly is similar
to that of assembly in sequence contexts. The fragment assembly
problem was first modelled mathematically by Lander and Water-
man, suggesting that two reads should be merged if the overlap
exceeds a threshold and that, therefore, the short-read lengths
can be compensated by deeper coverage [63,64]. Contig construc-
tion can be well approached using graphs, where fragments are
represented as nodes, connected by edges when the overlap justi-
fies a merge. The overlap-layout-consensus (OLC) paradigm [65]
and the de Bruijn graph (DBG) [66] are the common methods to
construct sequence assemblies, where the former performs pair-
wise alignment for all combinations and the latter computes the
overlap information implicitly between neighbouring artificially
chopped fragments of a fixed size k called k-mer [64]. A major dif-
ference between the two approaches lies in repeat handling. OLC
places repeats as separate nodes and DBG collapses them into sin-
gle nodes, resulting in higher computation and memory demand in
pairwise comparison involving repeats in OLC graphs [66].

While DBG offers more efficient performance in sequence
assembly, it is not yet readily adopted in de novo whole genome
map assembly due to the error properties of optical mapping data
that affect its alignment principles as discussed above [67]. The
first optical map assembly algorithm was described by Ananthara-
man et al. [68] in 1997, modelling the errors using Bayesian prob-
ability and determining the best alignment pair by dynamic
programming. This algorithm uses a greedy heuristic global search
for islands of connected fragments to combine and hence is sensi-
tive to data quality. While the algorithm has been demonstrated in
several microorganism genomes, the search space remains unscal-
able [67]. Valouev et al. [69] implemented the OLC graph by first
sorting pairwise alignment with a confidence score to construct a
layout graph. Although this solution is scalable, it is time-
consuming when performing error correction and could drop
potential connectivity during strict graph correction [67]. In
2011, Goldstein et al. [70] briefly proposed an idea of using a
DBG algorithm Germinate and Grow to assemble restriction maps
tested on the Medicago truncatula genome (~500 Mb). The algo-
rithm first uses geometric k-mer hashing to identify potential
error-free nodes in the DBG to assemble subsets of restriction maps
as seed maps. Then those assembled restriction maps are itera-
tively extended and refined to cover more parts of the genome.
While the algorithm has been reported to be used in the local
map assembly of a domestic cow genome, in regions that are lar-
gely discordant with the sequence reference from prior alignment,
and whole genome map finishing, the tool has not been officially
published [71]. Among the latest development, Li et al. [67] pro-
posed an iterative algorithm (IOMA) for optical map assembly,
where the consensus map from one OLC contig construction is
taken forward as input for the next iteration, until the alignment
coverage stops increasingly generate consensus genome maps.
Currently, the iterative OLC-based Bionano assembler is the de
facto tool for single-molecule optical map assembly, with a cus-
tomizable fixed number of extensions (Table 1) [72]. Some pipeli-
nes, such as AssembleIrysCluster [26] and OMWare [73] are based
on the Bionano assembler.
3.6. Data visualization and other processing

Data visualization is an important way to check the quality of
data analysis. IrysView, which is bundled with the Bionano Irys
platform, is an application that helps with data visualization by
enabling plotting of raw data metrics, repeat content, and map
alignment by enabling raw-image viewing. However, its reliance
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on a Microsoft Windows (Microsoft Inc, USA) operating system
limits its application [74].

In contrast, OMView implemented in OMTools is the first appli-
cation to allow data visualization on multiple platforms [47].
OMView accepts separate input maps, pairwise and multiple align-
ments in standard data formats, and supports annotation visualiza-
tion. OMView also marks large-scale SVs, such as insertion or
deletion of bases (indels) and inversions, with symbols. Options
are also provided in OMView to help visualize segment stretch fac-
tors with the use of color. Conversely, whilst OMView provides
multiple panes to visualize alignments to the same reference,
MapOptics provides three way-alignment view features, thus
allowing view comparisons of in silico maps, empirical optical
maps, and hybrid scaffolds. This is convenient for assessing the
performance of hybrid scaffolding [75].

Another cross-platform software is BioNanoAnalyst, which
visualizes mis-assemblies as conflicts between sequence and opti-
cal map assemblies [76]. Bionano Genomics recently renewed its
data visualization tool and integrated Bionano Solve in a web
application that incorporates draggable three-way alignments,
conflict viewing, resolution viewing, and a Circos-like whole-
genome SV-distribution plot to assist Bionano data analysis. An
image displayer is installed on the new Bionano workstation com-
puter to visualize the raw image files in a JXR format. The image
displayer provides adjustable contrast and export options to help
reduce artefactual problems during data conversion. Irys Extract
makes further use of raw images by providing a function to crop
raw images for specified molecules, which is useful for showing
special label patterns [77].
4. Applications of optical mapping

Optical mapping is increasingly used in various areas of geno-
mic research due to its improved accuracy, decreasing cost, and
high throughput. Generally, optical mapping is used to improve
genome assembly, to facilitate large-scale SV detection, and for
strain typing. Although these applications can also be achieved
by other technologies, such as genome scaffolding by using linked
reads, mate-pair reads or Hi-C reads, compared to optical mapping,
the read length and physical read coverage of these alternatives
can be lower, and they generally depend on short-read sequencing
to produce reads. Therefore, optical mapping remains one of the
best options to facilitate these genomic research tasks mentioned
above. With recent advances in technologies, optical mapping is
also expected to improve haplotyping on different ploidy levels
and to be applicable to other research, such as epigenomic studies.
4.1. Genome assembly improvement

Initially, optical mapping was developed to assist genome
assembly, during which two approaches are used to piece together
fragmented genome drafts. A scaffolding-based approach is com-
monly used, in which sequence contigs are aligned, validated,
and scaffolded in an a priori assembly fashion. In an alternative
approach, the long-linkage information from optical mapping data
is incorporated into the de Bruijn graph for assembly building.

An early developed tool, SOMA, applies a dynamic-
programming algorithm to scaffold short-read assemblies with
assembled maps. SOMA models segment-length distribution and
calculates the extent of matches between reference and query
maps with scoring functions [53]. OMACC is another tool that fur-
ther improves the accuracy of genome assembly by rescaling opti-
cal maps and applying length constraints in path selection [78].
OMACC considers the gap sizes and copy numbers of repeats in
the gap between two contigs to generate better assemblies.
In addition to the hybrid pipeline provided by Bionano Geno-
mics for Bionano scaffolding, the Irys-scaffolding pipeline is the
first refined pipeline to help scaffolding [26]. This pipeline applies
a threshold minimum percent of total aligned length to filter local
alignments. Although the source code of the Irys-scaffolding pipe-
line is available on GitHub (Table 1), the alignment still relies on
RefAligner, which is difficult to optimize due to the many unex-
plained configuration parameters provided. A pre-released Bio-
nano SCaffolding COrrection Tool (BisCoT) was recently claimed
to use pre-existing optical assembly to generate better scaffolds
than the Bionano hybrid scaffolding pipeline by closing gaps. How-
ever, the accuracy of this new method is yet to be evaluated [79].

Multiple genome assemblies can be merged to improve the con-
tiguity of genome assembly. Novo & Stitch is such a tool to produce
the best assembly merged from several assembly versions [80]. The
pipeline iteratively selects the optimal non-conflicting alignments
and stitches up sequence contigs by aligning two original contigs
to the new one. In contrast, OMGS takes a more streamlined scaf-
folding approach as it incorporates information frommultiple opti-
cal maps by correcting raw maps with cOMet [81].

There are two algorithms that directly align optical maps to a
DBG to help sequence-based genome assembly. Optical maps are
used as a guide to connect paths and to search for correct paths
instead of grouping repeats into single paths. The first algorithm
was AGORA, which uses assembled restriction maps to eliminate
inconsistent alternatepaths [82]. Then cameomGraph, an algorithm
designed to use the shorter and error-prone raw restrictionmaps by
first performing map error-correction [83]. Both algorithms were
designed to support restriction maps, whilst tests and optimization
are needed to apply them to non-restriction-based data, as the latter
are known to have different error models [84].

In addition to improving the contiguity of genome assemblies,
optical maps can be used to detect mis-assemblies. Several special-
ized tools are available for this purpose. For instance, BioNanoAn-
alyst uses a scoring approach to detect mis-assemblies in a draft
genome assembly by identifying discordances between consensus
optical maps and the reference [76]. MisSEQuel detects break-
points of errors using paired-end sequence reads and optical map-
ping data [85]. MisSEQuel can also be used to detect artificial
genomic rearrangements in a genome caused by a sequence
assembler. Chimericognizer is an alternative that uses one or more
sets of Bionano optical maps to detect chimeric contigs or maps by
concatenating multiple sequence assemblies [86]. The assemblies
can be obtained from different assembly tools or one assembly tool
with different parameter settings.

Optical mapping was successfully used in the microbial genome
assembly of species such as Deinococcus radiodurans [87] and Plas-
modium falciparum [88] during the early development. Later,
OpGen enabled optical mapping to the genome assembly of
advanced species. In a goat genome assembly, OpGen optical maps
helped anchor 2090 fosmid scaffolds into 315 super-scaffolds and
demonstrated that optical mapping is a useful technique in gen-
ome assembly for species with larger genomes. After that, optical
mapping was gradually adopted for analysis of the genomes of ani-
mals species such as the ostrich [89] and the yellow croaker [90].

The adoption of optical mapping is further increasing with the
development of long-read sequencing. In current genome-
assembly pipelines, optical maps are commonly used with a com-
bination of PacBio or Oxford Nanopore reads with Hi-C data to
build reference-quality genome assemblies. This technology com-
bination has been applied to genome analysis in various species,
such as humans [91,92], other animals [93–96], and plants [97–
110]. In particular, the Genome Reference Consortium (GRC), in
an effort to improve the quality of reference genomes by error cor-
rection, gap closure, and variation representation, has been pro-
ducing optical mapping data for humans and other model
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organisms [36]. Another ambitious application of optical mapping
is implemented in the Vertebrate Genome Project (VGP) [111],
which is affiliated with the Genome 10K Consortium. The data
and assemblies for approximately a hundred species among the
260 species targeted in Phase I are currently available at https://
vgp.github.io/genomeark.

4.2. Large-scale SV detection

Genetic variations are important resources for the study of evo-
lution and domestication. Nevertheless, the investigation of
genetic variations has long been technically limited to small vari-
ants, such as single nucleotide polymorphisms (SNPs) and small
indels. Large genomic SVs of kilobases or more in length have been
challenging to study. In 2008, Kidd et al. [112] mapped eight
human genomes from the Human Genome Structural Variation
Project and refined 1695 SV locations larger than 6 kb. They used
fosmid end-sequence pairs to validate 11 loci of potential SVs that
are greater than 40 kb. This study set a foundation for SV study by
optical mapping. Optical mapping has since been applied to vari-
ous comparative genomic studies.

In 2016, Mak et al. [113] demonstrated systematic genome-
wide SV detection by comparing assembled optical maps, which
were generated with the Nt.BspQI nickase from a father-mother-
daughter trio selected from the 1000 Human Genome Project
(1KGP) [113]. This study identified 59 insertions and 156 deletions
over 5 kb and 16 inversions. The detection of the integration sites
of Epstein–Barr Virus (EBV) during cell-line transformation
demonstrates the application of optical mapping in large-scale SV
identification. In 2019, Levy-Sakin et al. [114] mapped genomes
of 154 individuals among the 26 populations in the 1KGP and
found that genes located in copy-number variation regions seem
to agree with the evolutionary patterns.

In addition to its application in human genomes, large-scale SV
detection is also important in other research. For example, the
mapping of a highly rearranged liposarcoma cell line generated
72 fusion maps representing 112.3 Mb highly rearranged regions,
suggesting that chained fusions and a higher level of complex
genomic architecture can occur in cancer [115]. In a soybean study,
optical mapping was used to reveal an inversion that causes loss of
soybean seed-coat color during domestication [106]. In a primate
evolutionary study, SVs were found to be enriched near genes
down-regulated in human cerebral organoids compared to those
of chimpanzees [116].

There are two tools used for optical mapping SV detection: Bio-
nano SVCaller and OMSV [117]. OMSV is a tool that identifies SVs
by combining molecule-to reference alignments generated from
RefAligner and OMBlast. During processing, RefAligner is used to
generate a homologous alignment, whilst OMBlast handles complex
rearrangements by split-alignment. Variations such as extra or
missing labels, large segment-size differences and complex SVs are
detected separately before being combined and deduplicated.

To facilitate the annotation of identified clinically relevant SVs,
an R package called nanotatoR has also been released [118]. It cal-
culates population frequencies of SVs using data from the Database
of Genomic Variants (DGV) and, to filter variants, overlaps primary
gene lists from the NCBI databases to SVs identified by Bionano
SVCaller. Although optical map-based SV detection tools have been
developed, their application and performance in higher ploidy con-
texts have not been demonstrated.

4.3. Microbial strain typing

Pathogen identification is essential in epidemiological surveil-
lance. Precise classification at a sub-species level, known as strain
typing, is necessary to provide insight into clonal evolution that
helps to trace transmission routes and formulate outbreak control.
Strain typing was one of the earliest common applications of opti-
cal mapping. In strain typing, the gold standard method is pulse-
field gel electrophoresis (PFGE), which enables the analysis of size
patterns of DNA restriction fragments, and multilocus sequence
typing (MLST), which involves Sanger sequencing of several
selected housekeeping gene loci to match the profile of allele com-
binations [119,120]. However, MLST relies primarily on the
assumption that housekeeping genes are evolutionarily conserved
but lacks whole genome information, whilst PFGE does not provide
the order of DNA fragments, which makes it difficult to resolve
fragments of similar sizes. These drawbacks limit the resolution
of these methods. Optical mapping, as a high-throughput profiling
alternative, can be easily applied to capture the size and order of
fragments from the whole genome.

Bacteria are known to exchange genetic materials via horizontal
transfer, including cassette elements that harbor toxin and antibi-
otic resistance with medical implications [121]. In 2007, Latreille
et al. [122] proposed to routinely use optical mapping combined
with DNA sequencing for bacterial genome assembly to aid identi-
fication, until simultaneous mapping of multiple bacterial genome
became possible [35]. Furthermore, optical mapping has proven
useful in various cases, such as the tracking of a food-borne out-
break of an enterohemorrhagic Escherichia coli O157:H7 and distin-
guishing five strains of a toxigenic Vibrio cholerae O1 under the
same serotype and biotype from different geographic origin [123].

4.4. Haplotype phasing

Haplotype phasing finds continuous stretches of DNA on the
same chromosome and can be viewed as a means of resolving gen-
ome assemblies at a higher resolution and detecting more SVs
between haploid genomes of the same organism [124]. Capturing
accurate allele structures not only refines the genome assembly,
but also contributes to better understanding of the population
structure and evolutionary process [125]. Various approaches can
be used to solve this problem, based on the use of population, fam-
ily trio, or a single-sample information and different molecular
methods [126].

The first comprehensive analysis of the diploid human genome
was performed using a hybrid assembly of Illumina short reads,
PacBio long reads, and Bionano optical maps [127]. This study
achieved 99% consistency with previous trio results. The phased
human genome of the Korean individual AK1 is a demonstration
of this application [91]. Haplotype phasing in nonhuman species
is not yet popular, and haplotype-aware assembly pipelines for
nonhuman samples are available but not yet officially supported
by Bionano. However, some attempts have been made to use opti-
cal mapping to perform haplotype genome phasing in buffalos
[128], cattle [129], and pigs [130]. In a recent African cassava study,
optical mapping was used to identify allelic variants and allele-
specific expression via haplotype comparison [131].

In contrast to DNA sequencing, optical mapping can produce
long single molecule maps to cover heterozygous genome regions
or loci with different haplotypes that cannot be easily spanned by
DNA sequence reads. Using optical mapping, it is possible to
resolve different alleles without the requirement of a family-trio
or population information. Nevertheless, due to the relatively low
resolution of optical mapping, DNA sequencing is needed to
retrieve the sequences of different haplotypes in the phased optical
map alignment.

4.5. Other genomic feature detection

Although optical mapping produces maps with superior
lengths, the molecule mapping rate and hence the accessibility of
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different genomic regions still depends on the distribution of the
enzyme recognition motifs. Moreover, the motifs of standard
enzyme choices often have no direct biological implications. For
more options and control, scientists are looking to alternative
labelling methods to target regions of interest.

Early proposals included labelling with peptide nucleic acids or
triplex-forming oligonucleotides [132]. In 2019, Müller et al. [133]
published a protocol for enzyme-free optical mapping by compet-
itive binding of YOYO-1 and netropsin. Their method blocks an AT-
rich region that highlights a DNA contour, preventing DNA damage
by nicking. This method also offers the potential to highlight DNA
damage lesions.

In terms of more direct biological relevance, a vibrant research
area of optical mapping is epigenetics. Methylation of CpG islands,
clusters of cytosine-guanine dinucleotide DNA motifs, is a key
mechanism in mammalian imprinting. In 2008, Ananiev et al.
[134] tested mapping methylation optically on E. coli and human
cell lines by using a methylation-sensitive restriction enzyme. In
2018, Gabrieli et al. [135] looked for 5-hydromethylcytosine, a pro-
duct of active DNA demethylation, on the Bionano platform. Later,
Sharim et al. [136] advanced methylation detection by using a syn-
thetic analog to ‘‘trick” methylases into transferring a fluorophore
instead of a methyl group. Hence, the protocol is compatible with
the high-throughput Bionano platform with the merit of minimiz-
ing DNA damage, similar to the DLS method discussed above.

In addition to epigenomics, the application of optical mapping
has been extended to other areas. In 2020, Young et al. [137] uti-
lized the CRISPR/Cas9 targeted-labelling technique developed by
McCaffrey et al. [138] to extend their previous study on subtelom-
eric regions that used nick-based genomemaps. By specifically tag-
ging fluorophores to the telomeric repeats, the location of
population-specific patterns identified in the subtelomeric region
using traditional labelling method were verified. The Bionano team
has recently announced an improved non-nicking targeted-
labelling method called CRISPR-Bind to further improve the appli-
cation of optical mapping [139].
5. Summary and outlook

While current advances in DNA sequencing have improved
genomic research by producing more complete genome assemblies
and detecting larger SVs, the use of DNA sequencing alone is often
not yet sufficient to produce a genome assembly of desired
reference-grade quality, particularly in eukaryotic organisms. The
application of other genomic methods such as optical mapping
usually help to overcome the shortfalls in sequencing data to
achieve a chromosome-level genome assembly for species with
large and complex genomes.

After three decades of development, optical mapping has
emerged as an important complementary method in genomic
studies. Although it cannot replace DNA sequencing due to a lack
of base-by-base nucleotide information, it can quickly report geno-
mic structural information that is not easily captured by DNA
sequencing. With the ability to map long molecule lengths at low
cost, optical mapping has facilitated genome assembly, large-
scale SV detection, and strain typing. Nonetheless, the resolution
of optical mapping is still low, which makes it unsuitable for anal-
ysis of maps shorter than 100 to 150 kb, where alignment reliabil-
ity is easily compromised by insufficient labelling sites [29].

Although some strategies have been implemented to improve
resolution, such as applying multiple enzymes or direct DNA label-
ling, most designs are based on human genomes and may not be
transferable to other species. Direct labelling is a promising solu-
tion to increase mapping resolution and avoid double-strand
breaks. However, only the enzyme DLE-1 is commercialized for
the Bionano Saphyr system. Due to the genome divergence
between different species, one sequence motif pattern may not suit
all species, and thus other labelling alternatives validated by com-
prehensive tests and demonstrations are required.

In addition, the key algorithms implemented in Bionano Tools
are not open source. Researchers cannot directly study or modify
the code used in RefAligner and Assembler to improve their perfor-
mance. Although other tools such as OMTools [47] and OMSV [117]
have been developed to assist optical mapping analysis, no other de
novo assembly tools are available to compete with Bionano Tools.
The direct use of the Bionano pipeline may also introduce false
positives and false negatives, particularly in non-human genomes.
Parameter tuning can be useful to customize the pipeline for differ-
ent studies, yet the limited instructions provided and the lack of
clarity on the algorithms behind RefAligner and Assembler make
the adjustment difficult. For de novo map assembly, although k-
mer hashing of optical maps has been suggested to be impractical
in the assembly context [67], with the development of k-mer based
alignment tools such as OMTools, this possibility may be worth re-
exploring.

Haplotype phasing in different ploidy levels is also important in
genomic research. Although Bionano Genomics has released a
haplotype-phased de novo assembly pipeline to assist haplotype
studies, the pipeline is human-genome oriented and little instruc-
tion has been released to assist pipeline tweaking. Different algo-
rithms and methods are needed in optical mapping to help
achieve a global phased genome for species with large and com-
plex genomes. With the advantages of optical mapping and an
increasing number of polyploid species being studied, optical map-
ping is expected to overcome the complications arising from poly-
ploidy [140]. Still, a polyploid-specific analysis pipeline remains to
be developed, and it is difficult to validate the reported results.

Graphs can be an efficient data structure to represent reference
sequence assemblies, where different alleles are separated into dif-
ferent paths, with preserved linkage information and identical
sequences grouped into single paths to save space [141]. A con-
densed graph structure presents advantages in both saving storage
and in minimizing extra computational demands during analyses
[142,143]. This might motivate the further development and appli-
cation of graph-based optical mapping analysis.

In the near future, it is expected that novel methods, such as
new DNA stretching, labelling, and analysis approaches will be
developed to increase the accuracy of optical mapping from signal
conversion, map alignment, and de novo assembly to downstream
analyses. Work is still needed to explore the possibility of optical
mapping in haplotype phasing and polyploid research. The low
efficiency of optical mapping in data visualization and examination
impedes its application to large-scale projects. An automated
checking and validation method is therefore required to further
improve the efficiency of optical mapping.

Overall, optical mapping has proven indispensable for genomic
studies. With growing application and development efforts, it is
expected that optical mapping will continue to improve genomic
studies, enabling the assembly of more complete genomes and
the discovery of novel variations. The consequent determination
of genotype and phenotype associations from optical mapping is
also becoming more practical. Although the current technologies
have some pitfalls, it is expected that refined optical-mapping
solutions will be developed in the near future to further enrich
genomic research.
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