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ABSTRACT

Marine microbes play essential roles in global energy and nutrient cycles. A primary method of determining their diversity
and distribution is through sequencing of 16S ribosomal RNA genes from environmental samples. However, the perceived
community composition may vary significantly based on differences in methodology, including choice of 16S variable
region(s). This study investigated the influence of 16S variable region selection (V4-V5 or V6-V8) on perceived community
composition and diversity for bacteria, Archaea and chloroplasts by tag-Illumina sequencing. We used 24 samples from the
photic zone of the Scotian Shelf, northwest Atlantic, collected during a spring phytoplankton bloom. Taxonomic assignment
and community composition varied greatly depending on the choice of variable regions while observed patterns of beta
diversity were reproducible between variable regions. V4-V5 was considered the preferred variable region for future studies
based on its superior recognition of Archaea, which has received little attention in bloom dynamics. The V6-V8 region
captured more of the bacterial diversity, including the abundant SAR11 clades and, to a lesser extent, that of chloroplasts.
However, the magnitude of difference between variable regions for bacteria and chloroplast was less than for Archaea.
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INTRODUCTION

Marine microbes play essential roles in global biogeochemical
systems including nutrient cycling, photosynthesis and the bio-
logical pump. These contributions, coupled with their capac-
ity for rapid growth and adaptation (Arrigo 2005), underscore
the importance of increasing baseline knowledge and predictive
abilities for microbial communities. Most marine microbes still
lack environmentally representative cultured isolates (Epstein
2013; Rinke et al. 2013); thus, culture-independent methods are

key to determining diversity, distribution and ecological roles
of microbes. However, variations in the methodologies used to
extract and sequence DNA from field samples as well as clas-
sifying the resulting sequence reads significantly influence the
perceived community composition and subsequent conclusions
on microbial diversity and ecology (Sergeant et al. 2012; Hazen,
Rocha and Techtmann 2013; Cruaud et al. 2014).

Ribosomal RNA (rRNA) sequences, either 16S rRNA for
Archaea, bacteria and chloroplasts or 18S rRNA for eukaryotes,
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are the routinely accepted standards for identifying the mem-
bers of mixed microbial communities and defining the over-
all microbial diversity in the environment. Next-generation
sequencing has opened up approaches to analyse microbial
community in great details (Thompson et al. 2017). Although
entire 16S rRNA gene sequences would provide the best res-
olution for taxonomic characterization, technological limita-
tions on the length of sequence reads currently limit this
approach to sections of the gene. Universal primers that bind to
interspersed conserved regions, target-specific variable regions
within the SSU rRNA genes that provide phylogenetic informa-
tion on microbial taxa. The choice of ‘optimal’ variable region(s)
is an ongoing debate that depends both on the sequencing
technology at hand (Cruaud et al. 2014; Barb et al. 2016), the
research question (Choi et al. 2017), the targeted microbial taxa
(Parada, Needham and Fuhrman 2016), and the ability to com-
pare results obtained for microbial communities collected from
diverse environments by multiple investigators (Thompson et al.
2017). The level of conservation within a variable region dif-
fers between phylogenetic groups (Schmalenberger, Schwieger
and Tebbe 2001; Kim, Morrison and Yu 2011). Therefore, selec-
tion of variable region(s) and the primers to amplify them may
cause biases resulting in under- or overrepresentation of vari-
ous taxa and subsequent inferences of community diversity and
richness (Yu and Morrison 2004; Parada, Needham and Fuhrman
2016). Primer sets for both the V3-V4 and V6-V8 hypervariable
regions have been used previously for studies of Arctic bacteri-
oplankton (Comeau et al., 2011, 2012; Fadeev et al. 2018) as have
V1-V2 for classifying phytoplankton from chloroplast SSU rRNA
(Choi et al. 2017) and microbial communities of waste water
treatment (Guo et al. 2013). The recent global ocean microbiome
survey carried out in the Tara expedition used the V9 variable
region in addition to extensive metagenome sequencing (Suna-
gawa et al. 2015). Recent improvement in the design of univer-
sal primers for the amplification of the V4-V5 region resulted
in the ability to target both Archaea and bacteria within one
amplicon (Guo et al. 2013; Barb et al. 2016; Parada, Needham
and Fuhrman 2016; Yang, Wang and Qian 2016) supporting the
acceptance of the V4-V5 region as the current standard for char-
acterizing microbial communities from diverse environments.
The improved primers more accurately represented the propor-
tional abundance of SAR11 (Pelagibacterales) (Parada, Needham
and Fuhrman 2016), typically a dominant member of marine
bacterial communities (Morris et al. 2002; Giovannoni 2017).

Comparison and evaluation of variable regions have been
conducted in silico, with mock communities, and with field sam-
ples (Klindworth et al. 2013; Barb et al. 2016; Parada, Needham
and Fuhrman 2016; Yang, Wang and Qian 2016). The first two
approaches assess the accurate assignment of sequence reads
from different variable regions to known full length reference
sequences, while the latter assess the congruence of results
obtained from a microbial community of unknown composi-
tion. Comparison of variable regions to known full length 16S
rRNA gene sequences is a first step in assessing the applica-
bility of primer sets to diverse microbial taxonomic groups.
However, analysis of field samples of unknown microbial com-
munity composition collected from diverse regional environ-
ments is an important follow up in uncovering otherwise unde-
tected differences, or differences of greater magnitude (Parada,
Needham and Fuhrman 2016).This is especially important for
regions that have been undersampled with respect to micro-
bial diversity because there are few isolated strains that can
be used to build a representative mock microbial community
(Zorz et al. 2019).

Blooms on the Scotian Shelf occur annually in spring and,
to a lesser extent, fall due to changes in the stratification of
the water column providing favourable conditions for phyto-
plankton in terms of access to light and nutrients (Therriault
et al. 1998). Environmental microbial plankton samples from the
seasonal phytoplankton bloom on the Scotian Shelf, northwest
Atlantic off eastern Canada, were used to assess the similarities
and differences in the characterization of the microbial commu-
nity from 16S rRNA gene metabarcoding by comparing results
obtained from the V4-V5 (Parada, Needham and Fuhrman 2016)
and V6-V8 (Comeau, Douglas and Langille 2017) variable regions.
We evaluated the resulting perceived communities to assess
the differences and similarities incurred by the choice of either
V4-V5 or V6-V8 variable regions on the perceived spring bloom
microbial community composition of coastal North Atlantic
Ocean. To these ends, amplicons of both V4-V5 and V6-V8 vari-
able regions from 24 samples collected during the spring bloom
in 2016 were sequenced and the taxonomic assignments of bac-
terial, Archaeal and chloroplastic 16S rRNA from both variable
regions were compared.

METHODS

Sample collection

Microbial plankton samples were collected on the spring 2016
AZMP mission (HUD2016003 April 9–25) aboard the CCGS Hud-
son along three stations from the Halifax Line (HL, Figure S1)
with samples from four depths each: HL2 (44.2664, −63.3169; 1
m, 20 m, 40 m, 80 m), HL4 (43.4813, −62.4541; 1 m, 20 m, 40 m,
60 m) and HL6 (42.8321, −61.7324; 1 m, 20 m, 50 m, 80 m). At
each station water samples were collected via 12 L Niskin bot-
tles on a CTD rosette. From each depth, 4 L of water was collected
and strained (333 μm) to remove copepods and other large zoo-
plankton. The water was then sequentially filtered through 3 μm
(large/‘L’) and 0.2 μm (small/‘S’) Isopore filters (Milipore, USA) by
peristaltic pump. After filtration, filters were immediately stored
at −80◦C.

Sample processing

DNA extraction
DNA was extracted using Qiagen’s DNeasy Plant Kit (German-
town, Maryland, USA) with some modifications to manufac-
turer’s instructions. 50 μL of lysozyme (5 mg/mL, Fisher BioRe-
agents, Loughborough, Leicestershire, UK) was initially added to
each filter sample, after which the sample was vortexed on high
for 30 seconds. 400 μL of lysis buffer AP1 (from the DNeasy kit)
was added to each sample followed by 45 μL of proteinase K (20
mg/mL, Fisher BioReagents, Loughborough, Leicestershire, UK).
The samples were then incubated at 55◦C with shaking for 1
hour. Following incubation, 4 μL of RNase A (from the DNeasy
kit) were added to the samples, which were then kept on ice
for 10 minutes. From here, the extraction followed manufac-
turer’s instructions. A NanoDrop 2000 (Thermo Scientific, USA)
was used to confirm DNA concentrations and purity.

Illumina miseq sequencing
Sequencing by Illimina MiSeq followed the Microbiome Ampli-
con Sequencing Workflow (Comeau, Douglas and Langille
2017). Samples were amplified using dual-indexing Illumina
fusion primers that targeted either the 412 bp V4-V5 region
of the 16S rRNA gene (515F-Y 5′-GTGYCAGCMGCCGCGGTAA
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and 926R 5′-CCGYCAATTYMTTTRAGTTT) (Parada, Need-
ham and Fuhrman 2016) or the 438 bp V6-V8 region
(B969F 5’-ACGCGHNRAACCTTACC and BA1406R 5’-
ACGGGCRGTGWGTRCAA) (Comeau, Douglas and Langille
2017). Raw sequence files are available at the NCBI Sequence
Read Archive under accession PRJNA506220.

16S rRNA sequence classification
Processing of 16S samples was conducted using QIIME1
version 1.8.0 (Caporaso et al. 2010b) following the Langille
lab’s workflow (Comeau, Douglas and Langille 2017, also at
https://github.com/LangilleLab/microbiome helper/wiki/16S-B
acteria-and-Archaea-Standard-Operating-Procedure). Demul-
tiplexed, paired-end sequences were merged by PEAR version
0.9.6 (Zhang et al. 2014). Sequences less than 400 bp in length
or with a quality less than 30 over 90% of bases were discarded.
Chimeric sequences were removed with VSEARCH (Rognes
et al. 2016). Operational Taxonomic Units (OTUs) were picked
based on 97% similarity using sortmerna (Kopylova, Noe and
Touzet 2012) for reference picking and sumaclust (Kopylova
et al. 2016) for de novo picking. The Greengenes database ver-
sion 13.8, which provides chimera-checked full-length 16S
rRNA sequences (McDonald et al. 2012), was used for refer-
ence. Singletons and low-confidence OTUs that were likely
due to MiSeq bleed through between runs were removed.
For analysis of bacteria samples, chloroplast, mitochondrial
and Archaeal sequences were removed using the function fil-
ter taxa from otu table.py. Chloroplast sequences were classified
using the PhytoRef database (Decelle et al. 2015).

Rarefaction of samples were used to allow for meaningful
standardization and comparison of samples (Gotelli and Colwell
2001). Bacteria sequencing depth was selected as 3500 reads to
include all 24 samples. Chloroplast sequences were subset to
exclude depths >40 m due to low sequence abundance at depth
and rarefied to a sequencing depth of 145 reads. Few Archaea
were recognised by the bacterial-specific V6-V8 primer sets and
thus rarefaction was not conducted as the two variable regions
could not reasonably be compared in detail.

Data analysis

All data analysis was conducted in R version 3.5.1 (R Core Team
2018) using packages as indicated. Figures were created with
ggplot2 (Wickham 2009). All null hypothesis significance tests
used α = 0.05. Shannon diversity was calculated using the func-
tion diversity from the package vegan (Oksanen et al. 2017).

Bacteria and chloroplast sequences from the differing vari-
able regions were compared by proportional bar plots of taxa
abundance, permutational multivariate analysis of variance
(PERMAMOVA), non-metric multidimensional scaling (nMDS)
and linear discriminant function analysis (DFA). These were
done at the class level. PERMANOVA used the function adonis
from the package vegan (Oksanen et al. ) with 1000 permuta-
tions. nMDS used the function metaMDS, also from vegan. DFA
used the function lda from the package MASS (Venables and Rip-
ley 2002). For PERMANOVA, nMDS and DFA, only taxa shared
between variable regions were used. The proportional abun-
dances of included taxa were Hellinger transformed prior to
analyses as recommended for abundance data (Legendre and
Gallagher 2001). nMDS and PERMANOVA used the Bray–Curtis
dissimilarity on the Hellinger transformed data. Leave-one-out
cross validation was conducted for both DFAs to investigate the
separation of the groups and predictive abilities of the DFAs.

Numerically dominant Bacteria OTUs were investigated by
category determined by variable region, size fraction, station
(with HL2 and HL4 combined due to their geographic proxim-
ity and similar community composition) and depth (shallow or
deep). Depth was categorised based on whether samples were
above or below the mixed layer depth, which was determined
using the minimum depth at which the density gradient was
≥0.01 kg/m4 and verified by visual observation (Johnson et al.
2014).

Sequences for Pelagibacteraceae OTUs 1) shared between
variable regions and/or 2) the top 10 numerically dominant OTUs
from each variable region were extracted. Reference 16S rRNA
sequences from 21 SAR11 isolates were obtained from the Inte-
grated Microbial Genome site of the Joint Genome institute and
were used in the construction of a phylogenetic tree. OTUs
and trimmed reference sequences were then aligned in Mega
X (Kumar et al. 2018) using Muscle. A phylogenetic tree for each
variable region was constructed based on Maximum Likelihood
in Mega X with the Kimura 2-parameter model (Kimura 1980)
using a gamma distribution with invariant sites, which was
selected based on output of the model selection tool in Mega X
by minimum Bayesian and Akaike (corrected) Information Cri-
teria. 500 bootstraps were used to test the robustness of the
models. Clades of reference sequences which consistently clus-
tered together were trimmed to declutter the trees. Tree graph-
ics were done in Interactive Tree of Life version 4.2.3 (Letunic
and Bork 2016). Single nucleotide variants (SNVs) for the V4-V5
and V6-V8 hypervariable regions were calculated in Geneious
(version 11.1.5, https://www.geneious.com), with the following
parameter settings: minimum coverage of 1; minimum variant
frequency of 0.1; maximum variant P-value of 10–6 (0.0001% to
see variant by chance).

RESULTS

Bacteria

The number of bacterial taxa recognised and proportions of the
taxa in samples differed between 16S variable regions. Signifi-
cantly fewer bacterial taxa were recognised by V4-V5 than V6-
V8 (paired Wilcoxon rank sum test: V = 0, P = 0.031; Figure
S2, Supporting Information), thus resulting in higher ecologi-
cal richness in the latter. At the level of OTU, V6-V8 recognised
2321 OTUs, of which 680 were singletons (i.e. occurred only once
across all samples). In contrast, V4-V5 recognised fewer OTUs
(894) but did not have any singletons.

The proportional abundance of classes across the 24 samples
differed significantly between variable regions (Fig. 1a) although
on average, this was due to only a few classes. Examining the
dominant classes, V4-V5 proportions of Flavobacteria, OM190,
Phycisphaerae, and Gammaproteobacteria were greater than
those in V6-V8 and the proportions of Alphaproteobacteria and
Deltaproteobacteria were lower in V4-V5 than in V6-V8 (Table
S1, Supporting Information). The classes that were recognised
by V6-V8 and not V4-V5 (Table S1, Supporting Information) each
represented at most 0.08% of the community and therefore
contributed little to the proportional differences in the domi-
nant classes. However, the Shannon diversity index was similar
between variable regions (V4-V5: 4.51, V6-V8: 4.38). Of the shared
classes, the proportional abundances were significantly differ-
ent (PERMANOVA: F1,46 = 10.6, P < 0.001). Variable region choice
thus influenced perceived community composition but had less
influence on the measured Shannon diversity index within a
community.

https://github.com/LangilleLab/microbiome_helper/wiki/16S-Bacteria-and-Archaea-Standard-Operating-Procedure
https://www.geneious.com
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Figure 1. Comparison of marine bacteria communities sequenced by 16S rRNA V4-V5 or V6-V8 (n = 24). (A) Proportional community class composition with partial
legend of dominant classes. See Table S1 (Supporting Information) for full legend. Sample IDs are station (HL#), depth (m), size fraction (L or S). (B) Non-metric mul-
tidimensional scaling analysis of proportional Hellinger transformed class abundances using the Bray–Curtis dissimilarity matrix. (C) Linear discriminant function
analysis of proportional Hellinger transformed class abundance. X-axis indicates standardised discriminant score of each sample, y-axis within-group score frequency.

The nMDS of bacteria taxa indicated clear distinction
between variable regions as expected from the differences in
community composition (Fig. 1b). Separation of the size frac-
tions into two nMDSs (Figure S3) confirmed that within each size
fraction the two variable regions formed distinct clusters, indi-
cating dissimilarity. However, separation of the variable regions
into two nMDSs (Figure S4) showed similar trends in beta diver-
sity between variable regions. Variable region choice may thus
not have greatly influenced perceived beta diversity in our sam-
ples.

DFA of variable regions on proportional class abundance
of bacteria resulted in clear separation of variable region DFA
scores (Fig. 1c). Leave-one-out cross validation was able to pre-
dict group (i.e. variable region) membership of each sample with
100% accuracy. The classes with the greatest weight in the DFA
were Epsilonproteobacteria and Betaproteobacteria (Table S2,
Supporting Information). The classes with the greatest weight-
ing in the DFA were generally those with low proportional abun-
dance. Overall, the DFA supported the results of differences in
perceived community composition, as proportional abundance
of classes differed enough to distinguish clearly between vari-
able regions through DFA.

The 10 dominant OTUs by category differed both with respect
to the specific OTUs and their class, especially in the small size

fraction (Fig. 2). In the large size fraction, all variable region com-
parisons by category shared at least 2/10 OTUs and the dom-
inant OTU belonged to the same class in all but one sample
(HL6 S Shallow). In the small size fraction, the V6-V8 dominant
OTUs were almost entirely Alphaproteobacteria, while the V4-
V5 OTUs were more diverse. The OTU with the greatest within-
category % abundance was OTU637092, belonging to the Pelag-
ibacteraceae family (SAR11 class 1a.1), which was the dominant
OTU in the V6-V8 small size fractions. However, this specific OTU
was not recognised in the V4-V5 reads, possibly because of a
more distributed assignment to several OTUs classified as Pelag-
ibacteraceae.

Overall, OTUs classified as Pelagibacteraceae differed
between variable regions, as previously reported by Parada,
Needham and Fuhrman (2016). The V4-V5 recognised 43 OTUs
assigned to Pelagibacteraceae while V6-V8 recognised 413
(176 singletons), with only 18 shared Pelagibacteracea OTUs
between variable regions. The proportional abundance of
Pelagibacteraceae between variable regions varied greatly, with
a maximum of 17% of the community by V4-V5 and 69% by
V6-V8 in specific samples. To further explore the origin of this
difference in OTU assignment, we constructed a phylogenetic
tree with the sequences from each of the variable regions
that included reference sequences from known ecotypes of



Willis et al. 5

Figure 2. Top 10 proportionally dominant bacteria OTUs by variable region and category coloured by class. NR equals ‘New Reference’. Percent is within variable region
category. L and S refer to large and small size fractions; shallow and deep to above and below the mixed layer depth, respectively. One asterisk indicates an OTU shared

between variable regions of the same category, two indicate a shared most common OTU. The Greengenes database version 13.8 (McDonald et al. 2012), which contains
chimera-checked, full-length 16S rRNA genes, was used for reference.

Pelagibacteraceae (Fig. 3a). The longer branch length and
higher bootstrap values observed in the tree generated from the
V6-V8-assigned OTUs suggest that this variable region has a
higher taxonomic resolution for the Pelagibacteraceae than the
V4-V5 variable region. This result is corroborated by the higher
number of SNVs (Kearse et al. 2012) observed in the V6-V8 (40
SNVs) variable region relative to the V4-V5 region (29 SNVs)
(Fig. 3b and c).

Chloroplasts

The number of chloroplast orders recognised and their propor-
tional abundance also differed between variable regions, though
to a lesser extent than bacteria (Fig. 4a; Table S3, Support-
ing Information). The dominant classes were Pymnesiophyceae,
Mamiellophyceae, Cryptophyceae and Bacillariophyta, which
were all recognised by both variable regions. Of the less abun-
dant classes, Bolidophyceae and Pelagophyceae were recog-
nised only by V4-V5, while Chrysophyceae and Nephroselmido-
phyceae were recognised only by V6-V8, as was an ‘other’ cate-
gory of unrecognised sequences. As for bacteria, these excluded
taxa represented small proportions of the average community
across the 16 shallow samples (at most 2.63%). The classes’ pro-
portional abundances across the samples were similar for HL2

and HL4 but differed for HL6, with relatively greater proportions
of Mamiellophyceae using V4-V5 compared to V6-V8. The Shan-
non diversity index was similar between variable regions (V4-
V5: 3.80, V6-V8: 3.91). Of the shared orders, the proportional
abundances were not significantly different across all samples
(PERMANOVA: F1,30 = 0.64, P = 0.501). Variable region choice
thus influenced perceived community composition, primarily
via recognition of rare taxa. However, the effect was less pro-
nounced than for bacteria.

The nMDS of chloroplasts indicated little effect of variable
region on beta diversity, with no clear clustering by variable
region (Fig. 4b). The same result was found after separation
of the size fractions into two nMDSs (Figure S5). Separation of
the variable regions into two nMDSs (Figure S6) showed similar
trends in beta diversity between variable regions. DFA of variable
regions on proportional class abundance of chloroplasts resulted
in little separation of variable region DFA scores (Fig. 4c). Leave-
one-out cross validation was able to correctly predict group
membership of V4-V5 samples with 67% accuracy, and of V6-
V8 samples with 83% accuracy. Rappemonad had the greatest
weight in the DFA followed by Prasinophyceae (Table S4, Sup-
porting Information). The class with the least weight was Bacil-
lariophyta. The DFA supported the results of differences in com-
munity composition, as proportional abundance of orders dif-
fered moderately as identified by the partial overlap of DFA
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Figure 3. (A) Phylogenetic trees for Pelagibacteraceae by 16S variable region with 21 reference genomes representing the major clades of SAR11. Sequences used were
Pelagibacteraceae OTUs shared between variable region (blue), the top 10 numerically dominant Pelagibacteraceae OTUs from each variable region (red) and reference

sequences (black). Pelagibacteraceae OTUs that were both shared and top 10 are purple. Evolutionary histories were inferred using the Maximum Likelihood method
based on the Kimura 2-parameter model (Kimura 1980) using a discrete Gamma distribution with invariant sites. 500 bootstraps were used; fractions on the branches
indicate bootstrap values. Trees are drawn to scale, with branch lengths measured in the number of substitutions per site. The panels below the trees indicate the
% identity (green = 100% while yellow is <100%) and the SNVs of 16S rRNA genes from 21 isolated SAR11 strains and OTUs used in the phylogenetic trees generated

from the V4-V5 (B) and the V6-V8 (C) hypervariable regions compared to the reference strain HIMB083 that is widely distributed in the ocean (Delmont et al. 2017).

scores. Variable region choice in this case may thus have lim-
ited influence on the perceived beta diversity.

Archaea

The V4-V5 variable region has the ability to recover sequences
from Archaea, while the primers used for the V6-V8 region
are specific to bacteria. This was demonstrated by the num-
ber of archaeal sequences per sample recognised by the two
variable regions (Figure S7, Supporting Information), as V6-
V8 found 0 sequences in 14/24 samples (mean ± SD: 3 ± 7
sequences) while V4-V5 recognised Archaea in 21/24 samples
(mean ± SD: 600 ± 866 sequences). This low recognition by V6-V8
precluded further analyses as conducted with the bacteria and
chloroplasts 16S. A difference between variable regions was also
observed in the number of classified taxa, where V4-V5 identi-
fied more taxa at all taxonomic levels except genus (Table 1). At
the phylum level, V6-V8 recognised only Crenarchaeota, while
V4-V5 additionally recognised Euryarchaeota.

DISCUSSION

Perceived diversity of the Scotian Shelf microbial community
was affected by the choice of variable region. An increased
coverage of rare bacterial taxa was observed in V6-V8 and
the dominant OTUs differed between the V4-V5 and V6-V8
regions. The case study of Pelagibacteraceae highlighted the dif-
ferences in taxonomic assignment and proportional representa-
tion between the V4-V5 and V6-V8 variable regions. The relative
abundance of Pelagibacteraceae as determined from the V6-V8
region was higher than from the V4-V5 in general, a trend that
was accentuated in the deep water samples. The difference in
the assignment of OTUs taxonomically related to SAR11 may be
partially due to the size of the amplicons (412 nt in V4-V5 com-
pared to 438 nt for the V6-V8 regions). In addition, we demon-
strated that within the strains recovered from our study region,
V6-V8 amplicon had 30% as many SNV than the V4-V5 amplicon,
leading to an improved resolution for taxonomic assignment,
as seen in the comparison of phylogenetic trees for the V4-V5
and V6-V8 variable regions. Notably, the V6-V8 reads identified
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Figure 4. Comparison of marine chloroplast communities sequenced by 16S rRNA V4-V5 or V6-V8 hypervariable regions (n = 16). (A) Proportional community class
composition. See Table S3 (Supporting Information) for full legend. Sample IDs are station (HL#), depth (m), size fraction (L or S). (B) Non-metric multidimensional scaling
analysis of proportional Hellinger transformed class abundances using the Bray–Curtis dissimilarity matrix. (C) Linear discriminant function analysis of proportional

Hellinger transformed class abundance. X-axis indicates standardised discriminant score of each sample, y-axis within-group score frequency.

Table 1. Comparison of number of classified Archaea taxa obtained
by sequencing 24 samples from spring 2016 with different 16S rRNA
variable regions (V4-V5 or V6-V8).

V4-V5 V6-V8

Phylum 2 1
Class 2 1
Order 2 1
Family 3 1
Genus 1 2
Distinct OTUs 26 4

a member of the SAR11 clade 1a.1, commonly found at high lat-
itude, as the most abundant OTU in the deep water samples. In
contrast, warm water SAR11 strains of the same clade (1a.3) were
rare in the spring (Morris et al. 2002; Giovannoni 2017). This sup-
ports the view that members of the SAR11 clade 1a.1 are impor-
tant members of the spring bacterial community on the Scotian
Shelf (Zorz et al. 2019), while warm water members of the same
clade (1a.3) were previously found in the fall months only. The
fact that the V6-V8 variable region may be more effective at cap-
turing the taxonomic diversity of the SAR11 clade than the V4V5
variable region is important given the dominance and versatility
of this clade in the marine ecosystem (Delmont et al. 2017).

The targeting of important Archaeal clades by the V4-V5
primers is an advantage relative to the V6-V8 primers used
here, which are specific for bacteria. Archaea have been largely
ignored in bloom dynamics (Needham and Fuhrman 2016),
but were detected in the V4-V5 sequence reads of almost all
samples across all depth of the HL transect. Conversely, V6-
V8 sequence reads detected very few Archaea sequences and
did not detect the phylum Euryarchaeota. This lack of recog-
nition was expected following previous studies (Comeau et al.
2012) and targeting of Archaeal diversity using the V6-V8 vari-
able region requires a specific primer set that was not used
here. The importance of recognition and analysis of Archaea
in bloom dynamics is underscored by the high focus on bacte-
ria and low focus on Archaea in the literature (Needham and
Fuhrman 2016).

Increased analysis of perceived diversity of rare taxa of bac-
teria and Archaea would be beneficial to further elucidate the
influence of variable region choice. This suggestion was sup-
ported by the DFA of bacteria between variable regions, as the
taxa with the greatest weightings (i.e. those that differed the
most) were generally low in proportional abundance. Rare or
conditionally rare taxa disproportionally contribute to commu-
nity dynamics (Shade et al. 2014). Given the observed superior
recognition of rare bacteria classes by V6-V8, interest in rare vs
dominant taxa may have a strong influence on variable region
selection.
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The influence of variable region choice on the community
composition and beta diversity of Bacteria is consistent with
results of other studies across multiple environments, as is the
difference in recognition of Archaea (Cruaud et al. 2014; Barb et al.
2016; Yang, Wang and Qian 2016). These differences indicate low
to moderate comparability of bacteria datasets sequenced by the
different variable regions in this study. Chloroplast sequences,
however, had relatively high comparability between the variable
regions.

The comparison of two of the widely used variable regions
in microbial community studies presented here furthers the
discussion on the optimal variable region choice for marine
microbes through the use of field samples compared to mock
communities or in silico (Barb et al. 2016; Yang, Wang and Qian
2016). Additionally, it looked at chloroplasts 16S rRNA, while
previous studies have focused on Bacteria and Archaea. Vari-
able region comparison with field samples is important (Parada,
Needham and Fuhrman 2016), as it focuses on the commu-
nity of interest and the choice of variable region will depend
on the study question. For example, studies on the optimal
variable region in wastewater (Guo et al. 2013) may not trans-
late well to the pelagic ocean. Our results showed that beta
diversity measures (nMDS and DFA) were less affected by the
choice of variable region than the alpha diversity measures (taxa
recognition and community composition). This suggests that
the influence of variable region choice may be minimal for stud-
ies focused on assessing the similarity of communities across
an environmental gradient but will have a greater impact on
studies aiming to characterise specific taxa. Given the contin-
uous and rapid advances in sequencing technology, the selec-
tion of variable regions may become less important in the future,
once full length 16S rRNA genes can be easily sequenced. How-
ever, assessing the performance of the commonly used variable
regions contributes to our current and future predictive ability of
the community, especially in the context of comparison to past
studies.
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