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ABSTRACT

PURPOSE Circulating tumor DNA (ctDNA) assays are promising tools for the prediction of
cancer treatment response. Here, we build a framework for the design of ctDNA
biomarkers of therapy response that incorporate variations in ctDNA dynamics
driven by specific treatment mechanisms. These biomarkers are based on novel
proposals for ctDNA sampling protocols, consisting of frequent samplingwithin
a compact time window surrounding therapy initiation—which we hypothesize
to hold valuable prognostic information on longer-term treatment response.

METHODS Wedevelopmathematicalmodels of ctDNA kinetics driven by tumor response to
several therapy classes and use them to simulate randomized virtual patient
cohorts to test candidate biomarkers.

RESULTS Using this approach, we propose specific biomarkers, on the basis of ctDNA
longitudinal features, for targeted therapy and radiation therapy. We evaluate
and demonstrate the efficacy of these biomarkers in predicting treatment re-
sponse within a randomized virtual patient cohort data set.

CONCLUSION This study highlights a need for tailoring ctDNA sampling protocols and in-
terpretationmethodology to specific biologic mechanisms of therapy response,
and it provides a novel modeling and simulation framework for doing so. In
addition, it highlights the potential of ctDNA assays for making early, rapid
predictions of treatment response within the first days or weeks of treatment
and generates hypotheses for further clinical testing.

INTRODUCTION

Circulating tumor DNA (ctDNA) assays—which detect cell-
free DNA fragments released by tumor cells into the
bloodstream—are a sensitive, noninvasive approach to
assessing tumor burden and genomic profiles without bi-
opsy. Serial ctDNA kinetics have also been explored as a
possible predictor of response to treatment in a variety of
cancer types, such as colorectal cancer1-5 and non–small cell
lung cancer.6-9 Some features of ctDNA longitudinal dy-
namics, such as the existence of transient peaks in ctDNA
levels, rapid clearance rates during therapy, or lower ctDNA
levels at baseline or a month after therapy, have been cor-
related with treatment efficacy.3,10-15 Specific features of
these early data vary greatly between different treatment
types,10 suggesting that any longitudinal biomarkers
designed for interpreting early ctDNA dynamics should be
specific to therapeutic class and mechanism of action.

Currently, serial ctDNA data studies typically collect samples
several months apart. Since the production and clearance
kinetics of ctDNA in the bloodstream occur on relatively

faster time scales (hours, minutes),16,17 this spacing may
overlook crucial early indicators of treatment response.
Sanz-Garcia et al10 provide an excellent review of the existing
data on ctDNA kinetics and biomarker trials under various
types of treatment, and Table 1 shows a partial summary of
existing studies on ctDNAbiomarkers. These studies not only
demonstrate significant potential in the use of ctDNA
analyses for prognostic predictions but also highlight the
need for increased prediction accuracy and an improved
understanding of how early ctDNA dynamics vary across
treatment types.

In this study, we explore the potential of early ctDNA dy-
namics as a prognostic indicator of treatment efficacy, using
mathematical modeling as a conceptual tool. We develop
mathematical models for ctDNA dynamics under targeted
therapy, chemotherapy, and radiotherapy, and leverage
these models to explore how ctDNA kinetics vary between
therapy classes. These results build upon the growing lit-
erature on mathematical and computational models of
ctDNA dynamics.2,8,23,24 For example, Avanzini et al25 in-
troduced a mathematical model of ctDNA dynamics in
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untreated tumors and estimated the increase in detection
lead time afforded by ctDNA analyses over imaging. Here,
using simulated virtual patient cohorts, we develop dynamic
biomarkers predictive of treatment response using early,
frequent ctDNA sampling. We demonstrate that these bio-
markers, on the basis of mechanistic biologic principles,
perform equally as well as standard neural network ap-
proaches while retaining mechanistic interpretation. These
modeling results suggest that frequent ctDNA collection in the
initial stages of treatment may provide early indicators of
whether treatment will be successful.

METHODS

Impact Of Therapeutic Mechanisms On ctDNA Dynamics

We first explore how therapeutic mechanisms of action may
drive differences in ctDNA dynamics. We develop mathe-
matical models of ctDNA kinetics arising from tumor cell
population responses to targeted therapy, chemotherapy,
and radiotherapy and examine how these mechanisms drive
distinct features in ctDNA data. For simplification, we will
refer to and define all cytotoxic traditional forms of systemic
chemotherapies using the term “chemotherapy” and use
“targeted therapy” to refer to molecularly targeted agents
including small-molecule inhibitors.

Targeted Therapy

We consider a mechanistically motivated model of ctDNA
shedding under cytotoxic targeted therapy, as described in
Figure 1A. Therapies often fail because of the emergence of
drug-resistant cell subpopulations; thus, we incorporate both
drug-sensitive and drug-resistant subpopulations within the

model. Each population evolves as a stochastic birth-death
process, where cells divide and die stochastically with ex-
ponentially distributed waiting times governed by their re-
spective birth and death rates, which may vary according to
cell type and drug concentration. Specifically, the drug-
sensitive population has birth rate bs;1, death rate ds;1, and
net growth rate ls;1 ” bs;12ds;1 in the absence of drug; it has
birth rate bs;2, death rate ds;2, and net growth rate
ls;2 ” bs;22ds;2 in the presence of drug. We assume that this
population on average expands in the absence of therapy and
declines in the presence of drug (ie, lfs;1g .0. lfs;2g). The
drug-resistant population has birth rate br;1, death rate dr;1,
and net growth rate lr;1 ” br;12dr;1 in the absence of drug; it
has birth rate br;2, death rate dr;2, and net growth rate
lr;2 ” br;22dr;2 in the presence of drug. We assume that
therapy can affect the growth of drug-resistant cells, but that
the drug-resistant population increases on average, in both
the presence and the absence of drug (ie, lfr;1g $ lfr;2g .0).

Similar to the study by Avanzini et al,25 to model the process
of ctDNA production, we assume that during each cell death
from either population, one human genome equivalent
(hGE) of ctDNA is shed into the bloodstreamwith probability
q. The ctDNA is eliminated from the bloodstream at random
exponential rate e. We assume that themodeled ctDNA tracks
a generic tumor genomic marker that does not distinguish
whether the ctDNA originated from the drug-sensitive or
drug-resistant subpopulation; future work will consider
more detailed models of individual mutational frequencies.
In our treatment model, cytotoxic drug is applied continu-
ously starting at time 0 and may alter the birth and death
rates of the tumor subpopulations. Under this model, we
derive summary statistics for the abundance of ctDNA under
treatment, which are available in the Data Supplement.

CONTEXT

Key Objective
How can circulating tumor DNA (ctDNA) be used for the early prediction of treatment response, and how should treatment
mechanism influence the interpretation of ctDNA dynamics?

Knowledge Generated
The current study establishes a general framework for the design of treatment-specific biomarkers for guiding the sampling
and interpretation of ctDNA analyses, on the basis of mechanistic modeling and the generation of virtual randomized
patient cohorts. Longitudinal ctDNA biomarkers for predicting treatment response were identified for targeted therapy,
chemotherapy, and radiation using mathematical models.

Relevance
Frequent, early ctDNA sampling on the basis of a mechanistic understanding of therapy-driven tumor dynamics may enable
rapid identification of patients who are likely to benefit from a specific treatment. Such tailored ctDNA biomarker strategies
could guide timely treatment modifications, potentially improving patient outcomes and reducing unnecessary treatment
exposure.
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Figure 2A shows anexample simulationof a tumorpopulation
that not only initially consists primarily of drug-sensitive
cells but also harbors a small resistant subpopulation. On
application of treatment at time 0, the tumor population
decreases and is accompanied by a sharp increase in ctDNA
followed by a gradual decrease in ctDNA below baseline
levels; this transient peak arises because of the sharp in-
crease in cell apoptosis at the start of therapy application,
resulting in a significant amount of released ctDNA. If the
initial resistant subpopulation frequency is increased, the
size of the initial peak is decreased (Fig 2C). Similarly,
increasing drug effectiveness on the sensitive cell pop-
ulation results in higher initial peaks (Figs 2D), suggesting
that the presence and magnitude of transient peaks may
be predictive of responsiveness in targeted therapy. Al-
though data sets with sufficiently frequent, early samples
of ctDNA are too rare to fully parametrize and validate this
model, we fitted our model to evaluate consistency with
one existing longitudinal data set. Riediger et al12 examined
daily ctDNA levels in a patient with non–small cell lung
cancer treated with tyrosine kinase inhibitors. The patient
responded well to treatment and exhibited an 11-fold peak
in ctDNA levels at 26 hours followed by a subsequent de-
crease. An example fitting of our derived expectation for
ctDNA under the targeted model with these data is shown
in Figure 2B. Similarly, Husain et al13 observed spikes in
ctDNA levels in the first week of therapy in eight patients
with non–small cell lung cancer who exhibited clinical
benefit from osimertinib.

The targeted therapy model can also be adapted to model
ctDNA kinetics under chemotherapy. Under the chemo-
therapymodel, a birth event of a sensitive cell has probability
Ks of becoming a death event instead and the birth event of a
resistant cell has probability Kr of converting to a death. This
results in birth and death rates

bs;2 5bs;1ð12KsÞ;

ds;2 5ds;1 1bs;1Kr;

br;2 5br;1ð12KrÞ;

dr;2 5dr;1 1br;1Kr;

for the sensitive and resistant cells. Thus, the chemotherapy
model is a special case of the targeted therapy model where
the changes in the birth and death rates are dictated by Ks

and Kr.

The behavior of the chemotherapymodel is similar to that of
the targeted therapy model, with responsive patients
exhibiting ctDNA peaks followed by gradual declines.
However, for parameters yielding similar tumor dynamics,
chemotherapy yields a smaller peak in ctDNA (Figs 2E and
2F). Clinically, Tie et al3 observed moderate ctDNA spikes at
day 3 ( ≤three-fold), followed by a rapid decline in three
patients with metastatic colorectal cancer who exhibited
tumor reduction from chemotherapy.

TABLE 1. A Partial Summary of ctDNA Biomarker Analysis in Targeted Therapy, Chemotherapy, and Radiotherapy

Author(s) Treatment Type No. Time Points Biomarker Definition Efficacy

Parikh et al11 Targeted therapy 138 Baseline, 2, 4, 8,
and 16 weeks

Decrease from baseline to week
4

Predicted clinical benefit at a 90% specificity and a
60% sensitivity

Vidal et al18 Chemotherapy and tar-
geted therapy

100 Baseline and C3
(week 4-6)

Decrease from baseline Correlation with PFS (HR, 0.23, P 5 .001)

Magbanua et
al19

Chemotherapy 295 Baseline, 3 and 12
weeks, post-
treatment

Concentration, clearance, and
others

Early clearance correlated with pathologic complete
response (OR, 13.06, P 5 .0002)

Garlan et al4 Chemotherapy 82 Baseline, 2 and 4
weeks

Concentration at baseline, de-
crease from baseline

Dividing patients into good and bad ctDNA re-
sponders. Good responders had better objective
response rate (41.3%) than bad responders (0%)

Tie et al3 Chemotherapy 53 Baseline, day 3,
and days 14-21

≥10-fold reduction from
baseline

Seventy-four percent with -≥10 fold had radiologic
response, compared with only 35% of patients
with lesser reductions

Leung et al20 Radiotherapy and chemo-
radiotherapy

107 Baseline, 4 weeks,
and post-
treatment

Detectable ctDNA at 4 weeks Correlated with worse PFS (HR, 4.05, P 5 .0001)

Chera et al21 Chemo-radiotherapy 103 Baseline, 1, 2, 3,
and 4 weeks

Favorable clearance profile:
high baseline and >95%
clearance by day 28

Nineteen of 67 patients had favorable clearance
profiles: none had persistent or recurrent disease.
Thirty-five percent of patients with unfavorable
profiles had persistent or recurrent disease (P 5
.0049)

Lv et al22 Radical induction chemo-
therapy and chemo-
radiotherapy

673 One sample per
cycle for four
cycles

Used supervised statistical
clustering to create four
prognostic phenotypes

Clusters associated with different risks of tumor
relapse

Abbreviations: ctDNA, circulating tumor DNA; HR, hazard ratio; OR, odds ratio; PFS, progression-free survival.
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Radiotherapy

We developed a model of ctDNA dynamics driven by tumor
responses to radiation therapy delivered in fractionated
doses. The tumor population NðtÞ is modeled by a stochastic
birth-death process as in our base model, with each death
accompanied by probability q of shedding 1 hGE of ctDNA.
Fractionated radiation treatments are applied at times
ft1;…; tng. The effect of each dose is modeled with the well-
established26 linear quadratic cell kill model, where the
survival probability of a cell after treatment with dosage D
Gray is given by S5 ef2aD2bD2g.27 For each dose, SNðtiÞ of the
cells survive and are unaffected and ð12 SÞNðtiÞ become le-
thally irradiated cells, which die off at rate l and can no longer
divide. Derivations of summary statistics for the abundance
of ctDNA under radiotherapy treatment are available in the
Data Supplement.

Figure 3A shows an example simulation of the radiotherapy
model with a fractionation schedule (vertical gray lines) of
four cycles of weekday treatments starting on day 7. Under
this model, the ctDNA dynamics gradually peak several days
after the first treatment date and exhibit a slow decline

afterward that tracks the tumor burden decline. We have not
considered a radioresistant subpopulation in this model yet;
thus, partial response (PR) indicates eventual complete
response. Figure 3C shows ctDNA kinetics for simulations
with varying values of S, the survival fraction. Increased
treatment efficacy results in a larger increase over the first
week of treatment and a greater decrease in the second week
of treatment. Figure 3D shows simulations for varying l2 1

values, which represents the mean lag time between irra-
diation and cell death/ctDNA release. Lower lag times result
in increased ctDNA during the first week of treatment.

The kinetics of ctDNA under radiation treatment are sum-
marized in a review by McLaren and Aitman28 and support
predictions from our mechanistic model. As in targeted
therapy and chemotherapy, radiotherapy patients have
exhibited transient rises in ctDNA followed by eventual
decreases within 2 weeks of treatment initiation.15,29,30

However, in contrast to the ctDNA peaks observed at
26 hours in targeted therapy,12 peak ctDNA levels from ra-
diation treatment have generally been observed 3-6 days
after the first treatment in both xenograft models29 and
patients with human nasopharyngeal carcinoma.15
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FIG 1. Schematics of models for ctDNA kinetics: baseline without treatment, targeted therapy, and radiotherapy. Created in
BioRender.com. (A) Base model: Without treatment, the tumor population is modeled as a stochastic birth-death process, starting with an
initial population with birth rate b and death rate d. For each cell death, one hGE of ctDNA is released with probability q. ctDNA is eliminated
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RESULTS

Biomarker Design Using Virtual Patient Cohorts

We next use our models of treatment response to propose
and evaluate various candidate biomarkers of response to
each therapy, with the goal of early treatment response
prediction. Table 1 shows the existing ctDNA biomarker
analyses, indicating not only the potential of ctDNA assays
for prognostic prediction but also inconsistency in bio-
marker design and efficacy across cancer and treatment
types. Current ctDNA biomarker usage is limited by the lack
of higher time resolution data and the focus on the decrease
in ctDNA alone as a prognostic indicator. A few case studies

with daily ctDNA sampling during the beginning of treat-
ment exhibit interesting features such as transient ctDNA
peaks in responsive patients.3,12,15 Rational biomarker de-
sign, on the basis of a quantitative, mechanistic models of
treatment effects and ctDNA dynamics, has the potential to
leverage these features for making personalized and rapid
treatment decisions. However, no such data are currently
available for larger groups of patients. Thus, here, we
use the models developed in the Impact of Therapeutic
Mechanisms on ctDNA Dynamics section to simulate ran-
domized virtual patient cohorts with higher time resolution
early ctDNA sampling for the development of treatment
mechanism-specific biomarkers that predict treatment
response.
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Targeted Therapy Biomarkers

The targeted therapy model from the Targeted Therapy sec-
tion was used to generate a randomized cohort of 1,500 pa-
tients treated with targeted cytotoxic treatment. Details of the
randomized cohort generation are provided in the Data Sup-
plement.We simulated a dense data collection protocol, taking
three evenly spaced ctDNA samples in the 24 hours imme-
diately before and three samples immediately after the start of
treatment, and explored the development of biomarkers using
these sampled data to predict treatment response.

We consider two primary components as building blocks
for biomarker design: fpre and fpost, lines fit to the

samples before and after treatment initiation, respectively
(Fig 4A). These components were then combined in sev-
eral different candidate biomarkers (Fig 4B) and assessed
for predictive ability. These candidates were assessed on
the basis of their correlation strength with clinically
relevant metrics, the initial proportion of sensitive cells
(PSC), and the maximum tumor shrinkage (MTS). The
Data Supplement (Figs S1 and S2) shows the correlations
between each biomarker candidate and MTS or PSC, and
the table in Figure 4B summarizes the correlation coef-
ficients. The most effective biomarker in this analysis was
V1, a metric for the height of the jump in ctDNA levels on
initiation of treatment. These results suggest that larger
height of the ctDNA peak induced by the start of targeted
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cytotoxic therapy should be correlated with a stronger
tumor reduction.

Radiation Therapy Markers

The radiation therapy model from the Radiotherapy section
was used to generate a randomized cohort of 1,000 patients
treated with radiation. Details of the randomized cohort
generation are provided in the Data Supplement. The pa-
tients were treated with a 4-week schedule of daily weekday
radiation doses starting on day 7. ctDNA samples were
collected on Monday, Wednesday, and Friday of the first
2 weeks of treatment (days 7, 9, 11, 14, 16, and 18). This
extended sampling window, in comparison with targeted
therapy, is motivated by effects of the lag time between
radiation and apoptosis of lethally irradiated cells, observed
clinically15 and in simulations (Fig 3D).

Using these simulated cohort data, several candidate bio-
markers were explored using features of the sampled ctDNA

dynamics. Figure 4E provides definitions of candidate bio-
markers, which were evaluated by examining their corre-
lation with the survival probability S of each cell after each
fractionated dose of radiation (which measures efficacy of
treatment), and the MTS in the simulated cohort. By this
measure, the most predictive biomarker was R1, which ap-
proximates the AUC in the second treatment week divided by
the AUC of the first week.

Biomarker Performance in Predictions of PR

To further evaluate the performance of the top candidate
biomarkers ðV1;R1Þ, we assessed their ability topredictwhether
simulated patients would achieve at least PR, that is, at least a
30% decrease in tumor burden during treatment (MTS $0:3).
Note that simulated patients who achieve complete response
are considered in the PR group for this study. Figure 5 shows
the receiveroperating characteristic (ROC) curves for detection
of PR in the simulated cohorts of patients undergoing targeted
cytotoxic therapy, chemotherapy, and radiation. In each case,
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the top candidate biomarkers showed strong ability to predict
PR. Using V1 with our simulated targeted therapy cohort data
resulted in an ROC curve (Fig 5A) with an AUC of 0:92 for
detection of PR. In particular, the optimal threshold of V1 $76
predicted PR with an 87% sensitivity, an 88% specificity, and
an 81% positive predictive value. The V1 biomarker was also
evaluated as a predictor of PR for a randomly simulated cohort
of 1,000 randomly assigned chemotherapy patients. We found
that this produced an ROC curve with AUC 0:81 (Fig 5B). At the
optimal threshold of V1 $29, PR was predicted with an 80%
sensitivity, a 74% specificity, and a 61% positive predictive
value (PPV). Finally, R1 was evaluated as a classifier of PR in a
simulated radiotherapy cohort of 1,000patients; this produced
an ROC curve with AUC 0:96 (Fig 5C). The optimal threshold
was found to be R1 # 1:15, which predicted PR with a 91%
sensitivity, a 91% specificity, and a 93% PPV. Overall, the top-
performing biomarkers ðV1;R1Þ for targeted therapy, chemo-
therapy, and radiotherapy demonstrated strong performance
in predicting PR.

Comparison With Neural Network Classifiers and Model
Generalizations

To investigate additional ctDNA features not captured by
these biomarkers that may improve prediction, we trained
and tested a three-layer neural network classifier imple-
mented in PyTorch on the same randomized cohort data
used for the biomarker analyses. The classifier was designed
to receive a patient’s ctDNA samples as input and predict
whether the patient would exhibit PR. The performance of
our proposed biomarkers was able to match that of the
neural network classifier (Fig 5), with the AUCmatching that
of the classifier closely for all three treatment types. This
suggests that the proposed biomarkers are optimal or near
optimal, while retaining interpretability.

The performance of the proposed biomarkers against the
neural network classifier was also assessed under alternate
model assumptions (Data Supplement) and with reduced
samples (Data Supplement, Fig S5). In our base model, the
tumor is assumed to be small relative to carrying capacity, so
that growth is not limited and ctDNA shedding can originate
from any cell. To analyze the validity and robustness of our
observations, we tested our proposed biomarkers using
simulations under logistic growth with a carrying capacity
and surface-only ctDNA shedding. In both cases, V1 was still
the best predictor for targeted therapy and chemotherapy
and R1 was still the best biomarker for radiotherapy. In all
scenarios, these biomarkers performed similar to the neural
network classifier (Fig 5D). This suggests that the predictive
power of these markers is robust to model assumptions.
When omitting the first and last of the six ctDNA samples,
the same biomarkers V1;R1 were still able to predict PR with
high accuracy (AUC 0.89, 0.75, and 0.94 for targeted therapy,
chemotherapy, and radiotherapy, respectively).

DISCUSSION

This study leverages mechanistic modeling of therapeutic
response and simulated randomly assigned patient cohorts
to develop ctDNA longitudinal biomarkers for predicting
prognosis in tumors treated with targeted therapy, che-
motherapy, and radiation therapy. In the case of cytotoxic
targeted therapy and chemotherapy, V1, a metric quantifying
the height of initial ctDNA peaks successfully predicted
future PR with AUCs of 0.92 and 0.81, respectively. For ra-
diotherapy, themetricR1, an approximation of theAUC in the
second treatment week divided by the AUC of the first week,
predicted PR with AUC 0.96. For all three treatment classes,
dynamic early ctDNA biomarkers that performed favorably
compared with existing biomarkers (Table 1) in terms of
accuracy and earliness, in simulated patient cohorts, were
identified. This biomarker performance was robust to al-
ternate model assumptions such as surface-driven ctDNA
shedding and resource-limited tumor growth. These results
suggest that early ctDNA kinetics with sufficient time res-
olution have the potential to provide valuable predictions of
clinical outcomes.

The proposed biomarkers rely on frequent ctDNA samples
collected within a short time window surrounding the ini-
tiation of therapy. For targeted therapy or chemotherapy, the
biomarker V1 uses six samples collected during a 48-hour
period (24 hours before and 24 hours after initiation of
therapy). For radiotherapy, the quantity R1 uses six samples
collected during the first 2 weeks after initiation of radio-
therapy. These proposed sampling approaches differ sig-
nificantly from most current sampling protocols in clinical
practice, where ctDNA is collected at time points occurring
several weeks or months apart.4,11,18,21 Our results suggest
that early treatment ctDNA signals may hold valuable in-
formation about biologic response to therapy. The rapid time
scales of ctDNA production and decay, which are driven by
biologic and chemical processes occurring on the scales of
hours and minutes, provide additional motivation for dense,
frequent sampling within this early treatment period.
Valuable prognostic information about tumor response to
therapies could be overlooked under sampling protocols that
are insufficiently dense or that miss the therapy induction
window.

The current study establishes a general framework for the
design of treatment-specific biomarkers for guiding the
sampling and interpretation of ctDNA analyses, on the basis
of mechanistic modeling and the generation of virtual
randomly assigned patient cohorts. However, comparison
with clinical observations, once available, is critical for
evaluating and refining the specific biomarkers and sam-
pling protocols proposed in this study. In addition, modeling
of pharmacokinetics, combination therapies, and tumor-
immune dynamics are the subject of the current work.
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