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Abstract: Magnetization reversal processes in the NiFe/FeMn exchange biased structures with
various antiferromagnetic layer thicknesses (0–50 nm) and glass substrate temperatures (17–600 ◦C)
during deposition were investigated in detail. Magnetic measurements were performed in the
temperature range from 80 K up to 300 K. Hysteresis loop asymmetry was found at temperatures
lower than 150 K for the samples with an antiferromagnetic layer thickness of more than 10 nm.
The average grain size of FeMn was found to increase with the AFM layer increase, and to decrease
with the substrate temperature increase. Hysteresis loop asymmetry was explained in terms of the
exchange spring model in the antiferromagnetic layer.

Keywords: exchange bias; exchange spring; AFM grain size; substrate temperature; hysteresis loop
asymmetry; magnetization reversal

1. Introduction

For thin film materials with exchange-coupled ferro- (FM) and antiferromagnetic
(AFM) layers, below the Neel temperature and at the induced uniaxial anisotropy, magnetic
hysteresis loops are shifted. This phenomenon is called the exchange bias and is widely used
in modern spintronics, magnetic recording, and magnetic sensorics, for example, in giant
magnetoresistance (GMR)-based or giant magnetoimpedance (GMI)-based elements [1–3].
Depending on the application, the most important property of an exchange bias system
can be either the effect value [4], or layer thickness [2,5], or hysteresis loop shape [5–7].

Experimental studies show that the magnetic properties of an exchange bias system are
in the direct dependence on layer thickness, roughness, grain size, and deposition sequence [8].
The above characteristics of thin films prepared by magnetron sputtering can be varied by
changing the pressure or substrate temperature in the chamber during deposition [9,10].

Ni80Fe20 alloy (Permalloy) is one of the most useful materials for exchange bias sys-
tems due to its high initial and maximum magnetic permeability, as well as corrosion
resistance, when compared with other materials. For using it in GMR sensors, an optimal
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layer thickness is less than 20 nm. However, there are cases that require a thicker layer
of Permalloy. For example, in realizing a magnetoimpedance (MI) effect, Ni80Fe20 layers
are usually used with a thickness more than several tens of nanometers [2,11,12]. In such
structures, exchange bias is used to provide asymmetry in MI response, wherein an ex-
change bias value and magnetization reversal behavior define the functional characteristics
of exchange bias structures for their usage in applications such as GMI sensors. So, it is
important to tailor magnetic properties of NiFe-based exchange bias structures with NiFe
layer thicknesses of more than 10 nm.

Another important issue is the study of an AFM layer thickness influence on the
exchange bias effect. For each particular structure, this influence will be unique, but the
general tendency is an increase in the effect value with increasing AFM layer thickness
from a few to tens of nanometers [13–15]. In this work, the Fe50Mn50 alloy was chosen as
an antiferromagnetic material, which is commonly used in the mentioned industrial appli-
cations. Although it has poor corrosion resistance, it does not lead to a high enlargement
of a pinning FM layer coercivity [16]; in addition, it is less expensive in comparison with
other used AFM materials such as IrMn and PtMn [17].

Investigations of exchange bias, coercivity, and magnetoresistivity in FeNi/FeMn
structures were performed recently, and dependences of these properties on the glass
substrate temperature and annealing temperature were determined [3,18]. Experimental
studies show that, in some cases, in FeNi/FeMn structures, the magnetization reversal pro-
cess exhibits a hysteresis loop asymmetry [5,19]. In general, the two following features can
cause this effect. The first one is a noncollinearity of uniaxial and unidirectional anisotropies
in an FM/AFM system [20,21]. If the noncollinearity is presented, a hysteresis loop asym-
metry is more manifested when the FM/AFM interfacial exchange coupling is stronger
and FM anisotropy is larger. The second reason for the hysteresis loop asymmetry is
structural imperfections at the FM/AFM interface (e.g., roughness) [19,22] that can give rise
to the formation of exchange springs and planar domain walls in the AFM layer [19,22–24].
Recent studies show that the formation of exchange springs can be controlled by the tem-
perature [19]. Particularly, a decrease in the temperature can promote exchange springs
occurrence due to a weakening of thermal fluctuations and the enhanced ability of a domain
wall to overcome the interface imperfections-induced energy barriers. However, it is not
clear how the temperature conditions of a film growth and AFM-layer thickness affect
this mechanism.

Accordingly, this work is aimed at a better understanding of a relationship between
structural and magnetic properties of NiFe/FeMn thin films with thick layers up to 50 nm,
depending on the antiferromagnetic layer thickness and substrate temperature. The study is
also dedicated to a deeper understanding of the temperature dependence of magnetization
reversal mechanisms in the structures.

2. Materials and Methods

The samples of Ta/NiFe/FeMn structures were prepared on Corning glass substrates
using an ATC ORION-8 (AJA INTERNATIONAL) magnetron sputtering system in RF
and DC mode. The pressure of the Ar atmosphere was 1.6 mTorr. The buffer Ta layer
of 5 nm was preliminarily deposited on the substrate for better quality of other layer
growth [3]. The compositions of ferro- and antiferromagnetic layers were Ni81Fe19 and
Fe50Mn50, respectively. During the deposition, an in-plane magnetic field of 250 Oe was
used to create uniaxial magnetic anisotropy in the samples. The thickness of the films was
measured with a Dektak 150 stylus profilometer and the sputtering rate of NiFe, FeMn,
and Ta was 1.2, 0.9, and 0.3 Å/s.

We have prepared two series of samples depicted in Figure 1. The first series of sam-
ples were glass/Ta (5 nm)/NiFe (40 nm)/FeMn (20 nm) structures with temperatures of
the substrate during deposition of 17, 100, 200, 400, 500, 550, and 600 ◦C. The second series
of glass/Ta (5 nm)/ NiFe (47 nm)/FeMn (t (FeMn) nm) structures with the AF-layer thick-
nesses t (FeMn) = 0, 5, 10, 20, 30, 40, and 50 nm was prepared at room temperature (17 ◦C).
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Figure 1. Schematic representation of the samples.

Structural properties of the samples were carried out by transmission electron mi-
croscopy (TEM) using a Hitachi HT7700 at 100 kV accelerating voltage. Planar-view
samples were prepared using a Hitachi FB 2100 (FIB) single-beam focused ion beam system.
Powder X-ray diffraction (XRD) analysis was performed using the Phillips X’Pert Pro MPD
with CuKα1 and CuKα2 radiation. The measurements were carried out in a 2θ range of
10–120◦ (0.02◦ step, 12 s per step) with 40 kV and 40 mA tube settings. Magnetic properties
of all samples were investigated in the temperature range 80–300 K using the vibrating
sample magnetometer (VSM) by Lake Shore 7400. In-plane hysteresis loops were obtained
along the easy and hard magnetization axis.

3. Results

The Selected Area Electron Diffraction (SAED) and TEM techniques were used to
study the influence of the substrate temperature on the film structure. It was revealed
that the growth of the AFM layer at the substrate temperature of 100 ◦C (Figure 2a,b) is
formatted with the FeMn phase. At 600 ◦C (Figure 2b,c), there is a set of phases beyond
the FeMn one: FeMn3, FeMn4, pure Fe phase, and Fe3O4 oxide phase. Apparently, at the
substrate temperatures higher than 100 ◦C, the migration of atoms during deposition leads
to the formation of these phases. This can happen because Mn atoms are known to have
a relatively good diffusion mobility at a thermal treatment [25,26], as well as the FeMn
layer having an increased oxidation ability [27]. Formation of the additional phases may
reduce the amount of the antiferromagnetic FeMn phase that can lead to an exchange bias
decrease as the temperature increases [18]. From the dark-field images (Figure 2b,d), it
can be observed that an average grain size at the substrate temperature of 100 ◦C is larger
than at 600 ◦C.
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Figure 2. Planar TEM images and SAED patterns (insets in (a,c)) for thin films NiFe (40 nm)/FeMn
(20 nm) deposited at: (a,b) 100 ◦C; (c,d) 600 ◦C of the substrate temperature.

XRD analysis was used to find out whether FeNi and FeMn layer grain size changes
with the increasing substrate temperature. Figure 3 shows diffractograms of the films
deposited at substrate temperatures of 17, 100, 200, 400, 500, and 600 ◦C. The XRD patterns
show peaks corresponding to the FeMn and NiFe layers to have the fcc structure with (111)
orientation that is usually observed in such structures [28–31]. Moreover, one can see that
the peak intensity of the FeMn layer decreases with the increasing substrate temperature,
while the width of the FeMn peaks increases with the increasing TSUB. The average grain
size d of the layers was calculated using the Scherrer equation d = kλ/ Lcosθ [32], where k
(0.89) is the Scherrer constant, λ is the X-ray wavelength, L is the relative value of the full
width at half maximum (FWHM) of a peak, and θ is the Bragg angle.
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Figure 3. XRD patterns of NiFe (40 nm)/FeMn (20 nm) thin film structures deposited at different
substrate temperatures (TSUB (◦C)).

The grain size d (FeMn) of FeMn (111) phase as a function of the substrate temperature
during deposition is presented in Table 1.

Table 1. Average grain sizes of the FeMn (111) phase at various substrate temperatures during deposition.

TSUB (◦C) d (FeMn) ± 1 (nm)

17, 100 12
200, 400, 500 7

600 <7

For the FeMn layer, the average grain size is 12 ± 1 nm at the substrate temperatures
of 17 ◦C and 100 ◦C. The average grain size of the FeMn layer decreased down to 7 ± 1 nm
as the substrate temperature is increased from 200 ◦C to 500 ◦C. There is no visible peak
of the FeMn phase in the XRD pattern at the substrate temperature of 600 ◦C. This means
probably that the FeMn layer has too small average grain size. The observed tendency can
be due to the found changes of the AFM layer with the increasing temperature, described
above. Namely, it is possible that the occurrence of the Fe, FeMn3, and FeMn4 phases
discourages an increase in the FeMn grain size.

For the NiFe layer, the average grain size is 21 ± 1 nm and does not show any changes
as a function of substrate temperature. The obtained values of grain size for both layers are
consistent with previously obtained ones for similar structures [29,31].

Thus, based on the above diffraction studies, we can suppose that with an increase
of the substrate temperature, an amount of the pure FeMn phase decreases, as well as its
grain size decreases that is accompanied with an increase in the pure Fe phase.

For the structure of Ta (5 nm)/NiFe (40 nm)/FeMn (20 nm) deposited at different
substrate temperatures, hysteresis loops along the easy axis have a rectangular shape
(Figure 4), i.e., the magnetization reversal goes by a sharp domain wall propagation, while
along the hard axis it goes by a gradual rotation of the magnetization. This behavior is
typical for the NiFe/FeMn systems [33]. The coercivity along the hard axis is about zero
for all samples except for the film deposited at the substrate temperature of 600 ◦C. With
increasing substrate temperature, the slope of magnetization curves along the hard axis
decreases. Thus, the last two findings indicate the weakening of the uniaxial anisotropy in
the samples with the increasing substrate temperature.
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Figure 4. Hysteresis loops, measured at room temperature for the samples NiFe (40 nm)/FeMn
(20 nm) with different temperatures of substrate during deposition, along a sample easy axis and
hard axis.

Dependences of the easy axis coercivity HC (TSUB) and the exchange bias HEX (TSUB)
on the substrate temperature are shown in Figure 5. The maximal exchange bias of 23 Oe is
achieved for the sample with the substrate kept at room temperature during deposition.
With the increase in the substrate temperature, the exchange bias decreases inconsistently,
meaning there is a large decline between TSUB of 100 and 200 ◦C, and a small decline at the
TSUB range of 200–500 ◦C. We suppose it could be correlated with the observed change in
the FeMn (111) phase grain size, indicated in Table 1, but this needs an additional study. At
600 ◦C, exchange bias almost vanishes. Thus, with the increasing substrate temperature
the interfacial exchange energy weakens as it is in direct ratio with the exchange bias [8],
wherein the increase in the substrate temperature does not change the magnetization
reversal mechanism. In addition, coercivity of the samples does not change significantly as
the substrate temperature increases, although the slight decrease up to 8 Oe is observed
starting from 400 ◦C, which is related to a weakening of the AFM layer anisotropy. As the
anisotropy weakens, AFM spins can follow FM spin at the interface during magnetization
reversal, thus leading to the increase in the coercivity.
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Thus, it was found that as the substrate temperature increases, the FeMn grain size
decreases as well as the exchange bias. This can be explained in terms of the thermal
stability model [34,35], according to which at small grain sizeses below the critical dCRIT,
an AFM layer contains a large fraction of thermally unstable grains (Figure 6). At grain
sizes larger than some dSET, an AFM contains a portion of thermally stable grains but not
set under applied magnetic field. Only at d in between these two critical values a larger
fraction of AFM spins align with FM. In our case, at the given AFM layer thickness of
20 nm, the lower substrate temperature was during the film deposition, the smaller grain
size was formed in the antiferromagnetic layer. This results in the formation of a larger
fraction of thermally unstable grains in the FeMn layer, which leads to a decrease in the
interfacial exchange coupling. A decrease in the exchange bias with decreasing FeMn grain
size was also reported previously [36].
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NiFe (47 nm)/FeMn (t nm) structures were deposited at room temperature to study the
effect of FeMn layer thickness on the sample properties. Figure 7 shows the diffractograms
of the samples with 0, 5, 10, 20, 30, 40, and 50 nm thicknesses of the FeMn layer. Both layers,
NiFe and FeMn, exhibit an fcc structure with (111) plane orientation.
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The average grain size of NiFe layer is 18 ± 1 nm for all studied samples of this series
that correlates with the structural features of NiFe layer observed by V. Vas’kovskiy et al. [3].
The estimated value of average grain size of the NiFe layer is less than in the previous
series (NiFe (40 nm)/FeMn (20 nm)) due to the difference in layer thicknesses (47 nm in
this series vs. 40 nm in the previous one). The grain size of the FeMn layer simultaneously
increases with an increase in the film thickness, and the calculated values of the grain size
are comparable with those previously obtained [37–39]. The grain size d (FeMn) of the
FeMn phase as a function of the layer thickness is presented in Table 2.

Table 2. Average grain sizes of the FeMn (111) phase at various thicknesses of the layer.

t (FeMn) (nm) d (FeMn) ± 1 (nm)

5 <7
10 7
20 12

30, 40, 50 18

Hysteresis loops for the samples with 0, 5, 10, 30, and 50 nm of the AFM layer thickness
are shown in Figure 8. All the loops along the easy axis have a rectangular shape that
corresponds to the magnetization reversal by a domain wall propagation. Furthermore,
along the hard axis, the slope of the hysteresis loops increases as the t (FeMn) increases.
Therefore, the uniaxial magnetic anisotropy of the NiFe/FeMn system increases with the
increase in the AFM layer thickness, wherein magnetization reversal mechanisms do not
change. At 5 nm of the FeMn layer thickness, the coercivity along the hard axis is enhanced
up to 5 Oe, and the exchange bias is only 2 Oe. This means that during magnetization
reversal the interfacial AFM layer spins follow the FM layer spins under the torque [23].
In this case, anisotropy energy of the antiferromagnetic layer is not enough for a high
exchange bias.
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The dependences of exchange bias and coercivity on the FeMn layer thickness are
presented in Figure 9 (for easy axis). HEX is 2 Oe for the 5 nm-thick FeMn layer and 22 Oe
for the 10 nm thick layer. A further increase in the antiferromagnetic layer thickness has
no significant effect on the exchange bias. This behavior of the exchange bias vs. AFM
layer thickness is typical for NiFe/FeMn bilayered systems [38]. After reaching a critical
thickness, which in our case is 10 nm, the exchange bias does not noticeably increase. It can
be explained via the observed AFM grain size change. Particularly, when the layer thickness
is 5 nm, it contains small grains, and the AFM spins are thermally unstable, so they cannot
contribute to a strong exchange bias. With the FeMn layer thickness increase up to 10 nm, a
portion of unstable grains reduces, so the exchange bias correspondingly increases. As for
the coercivity, it changes insignificantly in the range of 2–5 Oe, except at 5 nm for the AFM
layer thickness, where HC reaches the value of 11 Oe. This can happen due to the fact that
unstable AFM spins are at the interface with FM ones, and upon magnetization reversal,
affect the coercivity [8].
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Magnetization reversal processes were studied using VSM at temperatures of 300 K,
150 K, and 80 K. Figure 10 shows hysteresis loops along the easy axis for the NiFe
(47 nm)/FeMn (t nm) films deposited at room temperature. At 5 and 10 nm of the FeMn
layer (Figure 10a,b), the hysteresis loop shape is rectangular, no asymmetry is observed,
and the magnetization reversal process is irreversible [20,40] (i.e., domain wall propagation)
and remains the same in the given temperature range. At t (FeMn) = 30 nm (Figure 10c) hys-
teresis loops are asymmetrical. At 80 K and 150 K, it is clearly seen that the hysteresis loops
have regions with a more rounded shape (empty symbols in Figure 10c) which represents a
reversible magnetization switching (i.e., gradual rotation of magnetic moments).
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Figure 10. Hysteresis loops measured at 80 K, 150 K, and 300 K for the samples NiFe (47 nm)/FeMn
(t nm) deposited at room temperature of the substrate. The thicknesses of the FeMn layer are:
(a) 5 nm; (b) 10 nm; (c) 30 nm.

To distinguish whether the observed hysteresis loop asymmetry is just an effect of the
grain size increase, or if it is caused also by the AFM layer thickness increase, we performed
the study of magnetization reversal processes in the NiFe (40 nm)/FeMn (20 nm) sample
deposited at the substrate temperature of 600 ◦C. This sample has an average grain size of
the FeMn (111) phase less than 7 nm and the nominal layer thickness t (FeMn) = 20 nm.
Figure 11 shows both the normalized hysteresis loops (Figure 11a) along the easy axis, and
corresponding switching field distributions (SFDs) (Figure 11b) for the NiFe (40 nm)/FeMn
(20 nm) films deposited at the substrate temperature of 600 ◦C. At 80 K, HEX is 11 Oe and
HC is 16 Oe. The hysteresis loops at 80 K and 150 K are asymmetrical. At the descending
magnetic field, the corresponding SFDs have a complex shape and are much more extended
than at the ascending field.

Let us compare two samples: NiFe (47 nm)/FeMn (10 nm) deposited at room tem-
perature substrate, and NiFe (40 nm)/FeMn (20 nm) deposited at TSUB =600 ◦C. They
have grain size of FeMn (111) phase 7 nm and less than 7 nm, respectively. For the first
sample, the asymmetry of the hysteresis loop does not appear (Figure 10b), while for the
second sample the hysteresis loop asymmetry is clearly observed (Figure 11a). Thus, the
existence of the asymmetry for our samples is probably determined by the thickness of
the antiferromagnetic layer, taking into account also the above-observed AFM layer phase
separation. The observed type of the asymmetry can be attributed to the occurrence of an
exchange spring in the AFM layer [41], because it is energetically more favorable to deform
the antiferromagnet rather than to break the interfacial exchange coupling. In this case, the
domain wall parallel to the interface in the AFM layer can contribute to the magnetization
reversal [19,22,29,42,43]. In general, this effect is possible for promotion of a partial domain
wall [23]. In our case, the observed hysteresis loop asymmetry is observed for the samples
with AFM layer thicknesses above 10 nm. In this case, the appearance of the asymmetry
with decreasing temperature can be explained by a decrease in grain thermal fluctuations,
which leads to the stabilization of spins.
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4. Conclusions

In this work, we study the influence of temperature of the glass substrate and the thick-
ness of the antiferromagnetic layer on structural and magnetic properties of NiFe/FeMn
exchange biased thin films. It was found that the grain size of the AFM layer decreases
with the increase of substrate temperature from 17 ◦C up to 600 ◦C. In addition, the AFM
grain size increases with increasing layer thickness. Exchange bias behavior vs. FeMn
layer thickness, as well as vs. the substrate temperature, was explained in terms of the
thermal stability model. In addition, the features of magnetization reversal of the samples
were studied in the temperature range from 80 K up to room temperature. Asymmetry
of the hysteresis loops at 80 K and 150 K was observed for the sample with the FeMn
layer thickness more than 10 nm. This effect was explained by the appearance of the AFM
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domain walls parallel to the interface. In addition, the observed features can be useful for
developing novel methods [44] for tuning the exchange spring in the AFM.
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