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Pancreatic adenocarcinoma (PDAC) is a devastating disease with an extremely poor life expectancy and no effective treatment.
Autophagy is a process of degradation of cytoplasmic component capable of recycling cellular components or eliminate specific
targets. The presence of autophagy in PDAC has been demonstrated. However, the implicated cellular pathways are not fully
understood and, more importantly, the role of autophagy in PDAC is matter of intensive debate. This review summarizes recently
published data in an attempt to clarify the importance of autophagy in this disease and try to reconcile apparently contradictory
results.

1. Introduction

1.1. Autophagy. Macroautophagy (hereafter named auto-
phagy) is a degradation process of cytoplasmic components,
including entire organelles [1–3]. Autophagy starts with
the presence of a single-membrane vesicle, the isolation
membrane [2], which invaginates in order to sequester dif-
ferent targets into a double-membrane vesicle to form the
autophagosome [4]. Eventually, autophagosomes fuse with
lysosomes where the lysosomal hydrolases degrade the cargo
[4]. Mechanistically, autophagy starts with the activation
of ULK1 and ULK2 proteins which were kept inactive
by mTOR activity [5, 6]. This event triggers the action
of the ULK1/2-Atg13-FIP200-Atg101 complex that allows
proper relocalization of a PI3KC3 (phosphatidyl-inositol-3-
kinase—class III) from microtubules to endoplasmic retic-
ulum (ER) to initiate vesicle nucleation [5–8]. The PI3KC3
complex also comprises p150, Ambra 1, and Beclin 1 proteins
and generates phosphatidyl-inositol-3-phosphate in nucle-
ation membrane to recruit additional autophagy-related
(Atg) proteins to the site of autophagosome formation
[9]. Afterwards, in an ubiquitination-like process, Atg12 is
conjugated to Atg5, and the Atg12-Atg5 conjugated is as-
sociated with Atg16L1 which homodimerizes in a large
structure named the Atg16 complex [10]. The Atg16 complex
associates with the autophagosomal membrane where its

activity is necessary for autophagosome membrane expan-
sion and autophagy progression [10]. Moreover, in another
ubiquitination-like process, LC3 protein is cleaved by Atg4
to expose a C-terminal glycine which is conjugated to
phosphatidylethanolamine (PE) [11], allowing the recruit-
ment of LC3-PE to autophagosome membrane. LC3-PE
is considered as the most specific marker of autophagy
[11]. Through this mechanism, autophagy was mostly
considered as a mechanism allowing cells to recycle cellular
component in order to generate energy during starvation
conditions. However, the recent years have seen a revolution
in autophagy with the demonstration that, in mammalian
cells, it is a more complex and proactive system. In addition
to its role during cell starvation, several reports evidenced
a selective form of autophagy, capable of discriminating the
target cargo for specific purposes or cellular requirements,
with a clear implication in numerous human diseases
[12–14]. For instance, selective autophagic degradation of
mitochondria, called mitophagy, involves selective targeting
and degradation of damaged mitochondria in Parkinson
disease [15, 16]. All these exciting data about autophagy
imply that it plays a role more important than expected in
several human diseases, a very good reason for stepping up
efforts to elucidate key autophagy mechanisms. Pancreatic
cancer is not an exception, with numerous reports about
autophagy associated with this devastating disease.
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1.2. Pancreatic Adenocarcinoma. Although the incidence of
pancreatic adenocarcinoma (PDAC) is the 10th among all
cancers, it is the 4th leading cause of cancer deaths making
PDAC a deadly disease with a relative 1-year survival rate of
only 24% and an overall 5-year survival rate of 3 to 5%. It has
a highly aggressive behavior with local invasion and distant
metastases during the early stages of the disease [17, 18].
PDAC development is characterized by an almost constant
sequence of gene mutations [19, 20]. Of these mutations,
the first genetic alteration observed is a gain-of-function
mutation of KRas which is present in nearly 100% in
advanced PDACs. The mutated KRas protein constitutively
triggers proliferation, differentiation, and survival signals.
Hence, the KRas mutation is proposed as the initiating
genetic lesion in PDAC. Moreover, homozygous deletion
of the 9q21 locus is found in about 40% of tumors.
Through different first exons and alternative reading frames,
the 9q21 locus encodes the p16INK4a and p19ARF tumor
suppressor proteins and therefore plays a key role in PDAC
progression. Finally, p53 mutation and loss of SMAD4
are also frequently observed in the late stages of PDAC
development [19, 20]. Morphologically, PDAC progresses
from precursor lesions named “Pancreas Intraepithelial Neo-
plasias” (PanINs). PanINs show glandular pattern with duct-
like structures and varying degrees of cellular atypia and
differentiation [19, 20]. They are classified from Grade I,
with presence of columnar mucinous epithelium to Grades
II and III, with nuclear atypia. High grade PanINs transform
into PDAC with areas of invasion beyond the basement
membrane.

1.3. Autophagy in PDAC. The first indication of the presence
of autophagy associated with pancreas malignancy was
provided in 1999 by Réz and colleagues who showed images
characteristic of autophagy in atypical acinar cell nodules
[21]. Increased autophagic activity was observed by electron
microscopy in premalignant cells, during progression of
pancreatic adenocarcinoma induced in rats by azaserine
and promoted by a row soya flour pancreatotrophic diet
[21]. In premalignant cells, the total volume of autophagic
vesicles increases upon treatment with vinblastine [21],
a microtubule-disruptive drug commonly used to inhibit
autophagosome-lysosome fusion [22]. Interesting details are
provided by Fujii and colleagues who conducted a retro-
spective analysis of autophagy in human pancreatic tumor
tissues [23]. They observed autophagy, characterized by LC3
immunohistochemistry, in patients before the beginning of
their pharmacological treatment [23] and found a positive
correlation between poor patient outcome and strong LC3
signal in the peripheral areas of pancreatic cancer [23]
suggesting that the presence of autophagy in these areas
could be associated with increased cancer progression.

2. Mechanisms and Molecules Involved in
PDAC-Associated Autophagy

2.1. Hypoxia. PDAC is characterized by a very abundant
stroma and poor vascularization. As consequence, PDAC
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Figure 1: Hypoxia induces autophagy. Hypoxia activates HIF-1α
which in turn induces expression of the BH3-containing proteins
BNIP3 and BNIP3L to compete with Beclin 1 for its interaction with
Bcl2. As a consequence Beclin 1 is released to induce autophagy.

cells are exposed to a shortage in nutrients and growth fac-
tors. Autophagy can be induced by hypoxia, which actually
occurs if vascularization is inadequate.

It seems to be dependent on the hypoxia-inducible
factor-1 (HIF-1α) which is the master transcriptional reg-
ulator of the adaptive response to hypoxia [24]. Among
target genes of the transcription factor HIF-1α are the genes
encoding BNIP3 and BNIP3L, both proteins being required
for hypoxia-induced autophagy [25]. Mechanistically, as
Beclin 1, BNIP3, and BNIP3L possess a BH3 domain
in their structure, and it is proposed that, through that
domain, they compete with Beclin 1 for the interaction
with Bcl2 and releasing Beclin 1, which induces autophagy
[24, 26] (Figure 1). In agreement with this hypothesis, PDAC
cells are characterized by high autophagic activity [27], a
probable consequence of the hypoxic and starving conditions
in which they are growing. Conversely, the behaviour of
BNIP3 is characterized by a negative correlation between its
expression and pancreatic cancer [28]. Interestedly, Okami
and colleagues demonstrated that BNIP3 is silenced in
PDAC by gene methylation, without downregulation of
other HIF-1α target genes [28]. Moreover, specific BNIP3
downregulation is associated with gemcitabine resistance
of pancreatic cancer cells [29]. In the work of Akada and
colleagues comparing pancreatic cancer cell lines sensitive or
resistant to gemcitabine, they identified by cDNA microarray
the genes responsible for gemcitabine resistance [28]. They
showed that BNIP3 expression was downregulated more
than 90% in resistant cell lines and in those with intermediate
sensitivity [28]. Nevertheless, microarray results indicated
overexpression of BNIP3 in gemcitabine-sensitive pancreatic
cancer cell lines [28]. Since BNIP3 is a hypoxia-inducible
proapoptotic molecule, these results suggest that BNIP3 may
have an important function during the initial stages of PDAC
development, inducing autophagy and contributing to the
response to hypoxia and starvation. As pancreatic cancer
evolves, concomitant downregulation of BNIP3 makes it
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necessary that autophagy is induced by alternative pathways,
as described hereunder.

2.2. Reactive Oxygen Species. In recent years, reactive oxygen
species (ROS) have gained an increased importance in tumor
development. As demonstrated by DeNicola and colleagues,
it is of vital importance for cancerous cells to keep under con-
trol their redox state [30]. They provide evidence that several
oncogenes induce the antioxidant Nrf2 protein, in order
to reduce ROS level [30]. Indeed KRasG12D/Nrf2−/− mice
present with a significant reduction in number of PanINs,
highly supporting that ROS detoxification reduces tumori-
genesis in vivo [30]. Moreover, the receptor for advanced
glycation end products (RAGE) [31] and ROS could play a
preponderant role in PDAC-associated autophagy. RAGE is a
member of the immunoglobulin superfamily [32] implicated
in ROS generation [33, 34] and in proinflammatory response
[35, 36]. RAGE is overexpressed in PDAC, and it is associated
with tumor resistance, proliferation, and invasiveness [37–
40]. Furthermore, depletion of RAGE in PDAC cells increases
sensitivity to chemotherapeutic agents [40], associated with
caspase-3 cleavage [40]. On the contrary, overexpression of
RAGE reduces apoptosis with a concomitant increase in
autophagy [41]. Among ligands described for RAGE [32],
the high-mobility group box 1 (HMGB1) plays a key role
in PDAC. HMGB1 is a chromatin-associated nuclear protein
involved in chromatin remodeling and regulation [42],
which may also participate in inflammation and tumor pro-
gression [41, 42]. In fact, HMGB1 is released from necrotic
and inflammatory cells, acting as an extracellular signaling
molecule [41, 42]. HMGB1 has been proposed as mediator
of pancreatic tumor cell resistance to antitumoral drugs [42]
since interference RNA-mediated silencing of HMGB1 makes
PDAC-derived cells more sensitive to the apoptotic cell death
induced by melphalan treatment. The authors hypothesize
that HMGB1 is released by necrotic tumor cells and enhances
cell resistance by activating RAGE, inducing autophagy,
and inhibiting apoptosis [40]. The molecular mechanism
implicated in RAGE-HMGB1-mediated autophagy involves
ROS. Kang and colleagues have demonstrated that PDAC
cells exposed to H2O2 increase RAGE expression in a
NF-kB-dependent manner [43]. Furthermore, PDAC cells
show increased sensitivity to oxidative stress when RAGE
is silenced [43]. In the same way, autophagy is induced
in PDAC cells upon ascorbate treatment, but this effect is
reversed by adenovirus-mediated downregulation of catalase
expression [44, 45]. RAGE expression is upregulated by H2O2

treatment [43] through a pathway inhibited by inhibitors
of the NF-kB pathway such as curcumin and Bay 11-
7085 [46], or antioxidants such as N-acetylcysteine (NAC).
Altogether, these results implicate the NF-kB pathway in
RAGE-mediated autophagy and reveal a direct link between
ROS and RAGE in PDAC. Kang and colleagues hypothesized
that extracellular HMGB1, released by necrotic cells, is
responsible for RAGE-mediated induction of autophagy in
tumor cells [40]. However, they were not able to completely
inhibit that effect with an anti-HMGB1 neutralizating anti-
body [40], suggesting the presence of at least one additional
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Figure 2: HMGB1 and RAGE induce autophagy. HMGB1 is
released by necrotic and inflammatory cells. Expression of RAGE
is induced by ROS in a NF-kB-dependent manner. On one hand,
HMGB1 induces autophagy by its direct binding to the RAGE.
On the other hand, HMGB1 induces autophagy by interacting
with Beclin 1 which results in dissociation of Beclin 1-Bcl2 and
subsequent induction of autophagy.

mechanism of action. In fact, Tang et al. gave evidence that
endogenous HMGB1 may regulate autophagy by moving
from nucleus to cytoplasm to interact with Beclin 1 in
place of Bcl-2 [26, 47] (Figure 2). This is supported by the
fact that HMGB1 translocation is induced by rapamycin
and enhanced by ROS or by downregulation of superoxide
dismutase [47]. Altogether, these data indicate that HMGB1
may play a double role in PDAC, on one hand by activating
RAGE in neighbour cells and, on the other hand, by inter-
acting with Beclin 1 in response to ROS.

3. Role of Autophagy in PDAC

Although the role of ROS in autophagy induction is generally
accepted, the role of autophagy in PDAC remains to be
elucidated. Several lines of investigation are based on the
ideas that autophagy is detrimental to tumor cells and that
several antitumoral drugs act through this mechanism. In
this way, it is important to note that chemotherapeutic agents
generate ROS in patients [48]. Indeed, the effect of ascorbate
on PDAC cells is totally dependent on H2O2 generation
[44, 45]. Pardo and colleagues demonstrated in several
PDAC-derived cell lines the induction of VMP1-mediated
autophagy in response to gemcitabine treatment [49]. In this
setting, gemcitabine-induced autophagy leads tumoral cells
to apoptotic cell death. It is noteworthy that the inhibition
of autophagy by 3-mehtyladenine or by knockingdown
VMP1 reduces gemcitabine-induced apoptotic cell death
[49]. These results are supported by data from Donadelli and
colleagues who demonstrated an enhanced cytotoxic effect
of gemcitabine when combined with cannabinoids, which
induce ROS-mediated autophagy in pancreatic tumor cells
[50]. Mechanistically, cannabinoid-dependent autophagy is
induced by upregulating ER stress-associated genes such as
p8, CHOP, TRB3, and ATF4 [51–53]. Interestingly, Donadelli
showed that gemcitabine treatment activates expression of
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Figure 3: Chemotherapeutics agents induce autophagy. Gemc-
itabine induces expression of the autophagy starter protein VMP1
and CB1 and CB2 cannabinoids receptors, and production of
ROS. Cannabinoids induce autophagy by activating ER stress and
enhance gemcitabine action.

both cannabinoids receptors, CB1 and CB2, in a NF-kB-
dependent manner [53]. In turn, cannabinoid treatment
induces ROS production, ER stress, and autophagic cell
death [50] (Figure 3). Again, this effect is inhibited when
cells are treated with the free radical scavenger NAC [50].
Sulforaphane (SFN), a natural product extracted from broc-
coli, is able to eliminate highly resistant PDAC cells [54].
Naumann and colleagues showed that SFN induces auto-
phagy and apoptosis in several PDAC-derived cells and,
more interestingly, that autophagy and apoptosis, although
independent from each other, are both dependent on ROS
generation [55].

There is evidence suggesting that autophagy plays a role
in PDAC cell survival in response to cell stress induced by
ROS, tumor microenvironment, and antitumoral agents.
For instance, the metastasis-suppressor KAI1 [56, 57] was
shown to induce autophagy in PDAC cells, protecting them
from apoptosis and growth inhibition [58]. The 2-deoxy-D-
glucose, a glucose analog and glycolysis inhibitor, currently
under clinical evaluation as chemotherapeutic drug, reduces
cellular ATP and induces ER stress to eventually lead to cell
death [59, 60]. In this context, cancer cells, including PDAC
cells, respond to 2-deoxy-D-glucose by increasing autophagy
in order to avoid ER stress, rather than compensating ATP
depletion [60]. Moreover, Yang and colleagues show that
autophagy is indeed requested for tumor development [27,
61]. They demonstrate that tumor cells derived from PDAC
have a higher basal autophagy level than cell lines derived
from other tumor tissues [27]. In fact, their results suggest
that autophagy is not activated to control mitochondria
homeostasis but to fuel oxidative phosphorylation [27].
However, when autophagy is blocked by chloroquine or by
silencing ATG5, increased ROS detection is observed [27],
indicating that autophagy may occur in response to oxidized
reactive species as mentioned above. In addition, accumu-
lation of autophagosomes and improvement of gemcitabine
and 5-fluorouracile effect on pancreatic tumor cell lines
were reported when they are combined with omeprazole
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Figure 4: Autophagy of stromal cells fuel PDAC cells. PDAC release
ROS to the tumoral microenvironment to induce autophagy in
stromal cells. As consequence, stromal cells provide PDAC cancer
cells with a steady stream of recycled nutrients and energy-rich
metabolites.

[62]. Omeprazole is thought to interfere with lysosome
homeostasis [63, 64] and ROS formation [64]. Altogether,
these results support the hypothesis that autophagy is a
survival reaction in response to ROS produced by antitumor
drugs, leading to tumor cell resistance.

Recently, Guo and colleagues have confirmed that Ras
activation promotes cellular autophagy [65]. Working with
epithelial kidney cells, these authors demonstrated that con-
stitutively active Ras significantly increases basal autophagy
with, however, concomitant limitation of starvation-induced
autophagy. Importantly, depletion of Atg5 and Atg7, accom-
panied by accumulation of p62 and ubiquitinated aggregates,
reduces tumoral growth [65]. Similar results are observed
in p62−/− cells [65]. These results indicate that the role of
autophagy is not only to balance the higher metabolism
of tumor cells but to buffer the higher energy demand
by preserving the mitochondrial function [65]. Taking into
account the role of ROS in PDAC, it is tempting to speculate
about a yet unknown selective autophagy process able to
eliminate ROS and other oxidized substrates.

Another point that needs to be considered is the role
of the autophagy in PDAC stromal cells. Cancer cells acti-
vate autophagy in the tumor stromal compartment via
paracrine mechanisms involving oxidative stress, as recently
reviewed [66]. Autophagy in stromal cells provides PDAC
cancer cells with a steady stream of recycled nutrients and
energy-rich metabolites, which are reused by PDAC cells
to drive tumor growth and metastasis (Figure 4). Thus,
stromal catabolism fuels anabolic tumor growth. Therefore,
inhibition of autophagy in the tumor stroma could stop or
reverse tumor growth. This would explain the effectiveness
of known autophagy inhibitors as antitumor agents, such as
chloroquine and 3-methyladenine. Conversely, the induction
of autophagy in epithelial cancer cells would block or inhibit
tumor growth. This mechanism would explain the antitumor
activity of agents that activate autophagy, such as mTOR
inhibitors.
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4. Conclusion

There is little doubt that autophagy plays a relevant role in
PDAC development although several points remain to be
clarified. Many efforts have been made in order to under-
stand the mechanism(s) involved in the relationship between
autophagy and PDAC, but elucidation is far from being
completed. Data presented in this review let us to speculate
on a bivalent participation of autophagy in PDAC cells. In
this regard, autophagy may be a prosurvival process for
tumor cells where it can fuel cell metabolism in the tumor
microenvironment. However, autophagy can also be induced
to reduce the oxidative stress generated by accelerated cell
metabolism or chemotherapeutics treatments. On the other
hand, the induction of autophagy in tumoral cells could lead
to cell death. This model should resolve the “Autophagy Para-
dox,” where both inhibition and stimulation of autophagy
have the same net effect, which is to inhibit tumor growth.
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