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Abstract: Background: Thyroid carcinoma (TC) is the most common endocrine system malignancy,
and papillary thyroid carcinoma (PTC) accounts for >80% of all TC cases. Nevertheless, PTC
pathogenesis is still not fully understood. The aim of the study was to elucidate the role of the
FRMD5 protein in the regulation of biological pathways associated with the development of PTC.
We imply that the presence of certain genetic aberrations (e.g., BRAF V600E mutation) is associated
with the activity of FRMD5. Methods: The studies were conducted on TPC1 and BCPAP (BRAF
V600E) model PTC-derived cells. Transfection with siRNA was used to deplete the expression of
FRMD5. The mRNA expression and protein yield were evaluated using RT-qPCR and Western blot
techniques. Proliferation, migration, invasiveness, adhesion, spheroid formation, and survival tests
were performed. RNA sequencing and phospho-kinase proteome profiling were used to assess
signaling pathways associated with the FRMD5 expressional status. Results: The obtained data
indicate that the expression of FRMD5 is significantly enhanced in BRAF V600E tumor specimens and
cells. It was observed that a drop in intracellular yield of FRMD5 results in significant alternations
in the migration, invasiveness, adhesion, and spheroid formation potential of PTC-derived cells.
Importantly, significant divergences in the effect of FRMD5 depletion in both BRAF-wt and BRAF-
mutated PTC cells were observed. It was also found that knockdown of FRMD5 significantly alters
the expression of multidrug resistant genes. Conclusions: This is the first report highlighting the
importance of the FRMD5 protein in the biology of PTCs. The results suggest that the FRMD5 protein
can play an important role in controlling the metastatic potential and multidrug resistance of thyroid
tumor cells.

Keywords: FRMD5; papillary thyroid carcinoma; BRAF V600E; migration; RNA sequencing

1. Introduction

Tumors of the endocrine system are relatively rare. Nevertheless, thyroid cancers
(TCs) are an exception. TCs belong to the five most frequently diagnosed cancers in
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women, where the highest number of thyroid carcinoma cases is recorded in middle-aged
patients [1]. The most frequently diagnosed TC type is papillary thyroid carcinoma (PTC; up
to 80% of all TC cases). The other, less frequent types of TCs are follicular thyroid carcinoma
(FTC), anaplastic thyroid carcinoma (ATC), and medullary thyroid cancer (MTC) [2,3]. A
large fraction of PTCs is accompanied by the presence of certain genetic alternations,
such as single nucleotide mutations in the BRAF gene (especially BRAF V600E) and RET
gene rearrangements (e.g., RET/PTC). Both genes are important regulators of the mitogen-
activated protein kinase (MAPK) signaling pathway. RET encodes for receptor tyrosine
kinase and RET/PTC fusion results in ligand-independent activation of the RET kinase.
Similarly, single base mutations in the BRAF gene, which encodes serine-threonine kinase,
lead to constitutive activation of MAPK signal transduction [4]. Mutations in these targets
are mutually excluded, and BRAF mutant alleles are found in most (up to 80%) of all
papillary tumors [5]. Moreover, it has been shown that the presence of the BRAF V600E
allele in PTC is associated with an altered expressional profile of several other genes [6].
Therefore, such BRAF V600E-deregulated genes can be considered as potential drivers of
malignant transformation and important prognostic or therapeutic targets.

Although the survival rate of the TCs is relatively high, the number of new cases is still
growing [7]. Therefore, identification of new molecular players involved in carcinogenesis and
understanding their factual biological functions might be a key factor for effective selection of
groups of risk among patients and administration of more personalized treatments.

Here, we present a study on the FERM-domain containing protein 5 (FRMD5), which
we found to be predominantly expressed in BRAF-mutated PTCs. FRMD5 is encoded by
the FRMD5 gene located on chromosome 15 (15q15.3). This 65 kDa protein belongs to
the FERM-domain containing protein family, which occupies a unique position in cellular
metabolism, performs structural functions, and participates in signal transduction. Al-
though several members of this family have already been linked with tumor progression [8],
the role of FRMD5 in cellular biology and tumorigenesis remains unclear. However, Braz-
dova et al. (2009) marked FRMD5 as a p53(R273H) target in U251 glioblastoma cells [9].
Additionally, the role of FRMD5 in p120-catenin-based cell–cell contact and regulation
of lung tumor cell progression has been reported [10]. In other studies, Hu et al. (2014)
proposed that FRMD5 may regulate lung cancer cell migration by interacting with integrin
β5 cytoplasmic tail and ROCK1 [11]. Studies performed on the deregulation of the Wnt
signaling pathway in colorectal cancer have highlighted FRMD5 as a novel target of the
β-catenin/TCF7L2 complex, which plays an important role in tumorigenesis [12].

In the performed comprehensive analysis, we were particularly interested in studying
the relationship between the expressional status of FRMD5 and proliferative, invasiveness,
and metastatic potential of PTC cells, as well as the expression of multidrug resistance
proteins (MDRs). Our findings supported by NGS and phospho-kinase proteome profiling
indicate significant discrepancies in the role of FRMD5 in both wild-type BRAF (BRAF-wt)
and BRAF-mutated PTC cells. The data suggest that the mutational status of the cancer-
driver BRAF gene might be crucial for the regulation of the expression of FRMD5 and its
activity in PTC cells.

2. Results
2.1. FRMD5 Expression Is Significantly Enhanced in BRAF-Mutated PTC Specimens and
PTC-Derived Cell Lines

Primarily, the expressional status of FRMD5 in TC specimens was analyzed using The
Cancer Genome Atlas (TCGA) and Genotype Tissue Expression (GTEx) databases. The
performed analysis using the GEPIA tool revealed that overall, the expression of FRMD5
in PTC sections is enhanced (n = 393) comparing to control, non-cancerous tissues (n = 337).
The average expression of FRMD5 in tumor samples was ~3-fold higher than in non-tumor
controls (Figure 1A).



Int. J. Mol. Sci. 2021, 22, 6726 3 of 23

Figure 1. Analysis of FRMD5 expression in human thyroid tissues. (A) Boxplot of FRMD5 gene
expression in papillary thyroid cancer (PTC) sections using The Cancer Genome Atlas (TCGA)
databases and the Genotype Tissue Expression (GTEx) (tumor (T) vs. non-cancerous tissue (N)).
(B) Boxplot of FRMD5 gene expression in BRAF-like and RAS-like PTC subtypes vs. non-cancerous
tissues. (C) Boxplot of FRMD5 gene expression in PTC bearing the wild-type (BRAF-wt) and mutated
BRAF (BRAF V600E) gene determined by microarray analysis. (D) Western blot analysis of FRMD5
protein expression in BRAF-wt and BRAF V600E PTCs and non-tumoral (NT) tissues. β-actin serves
as a loading control. Data are presented as mean ± SD.* p < 0.05; *** p < 0.0001.

As a particular focus was given to the expressional status of FRMD5 in BRAF-mutated
PTCs, an analysis of FRMD5 activation status was performed on the BRAF-like molecular
subtype of PTC and compared with other TC types and non-tumor (control) specimens.
Altogether, BRAF mutations and RET rearrangements are termed as BRAF-like carcinomas
and present similar expression patterns. As the predominantly harbored mutation is BRAF
V600E (observed in up to 80% of PTCs cases), most BRAF-like samples correspond to BRAF
V600E-mutated TCs [13].

The performed examination showed significant and strong upregulation of FRMD5
in the BRAF-like cohort (n = 275; Figure 1B). Detailed analysis of PTC specimens also
unfolded a significant disproportion in the FRMD5 expressional status between BRAF-like
and RAS-like samples (n = 118; Figure 1B). Accordingly, the same prevalence was found
in a cohort of 54 samples of PTCs (30 BRAF-wt and 24 BRAF V600E) used for microarray
data characterization and analysis of PTC expressional profiles in previous studies [6,14].
As shown in Figure 1C, the subset of BRAF V600E PTC samples presented significant
upregulation of expression of the FRMD5 gene when compared to BRAF-wt PTCs. An
observed predominant activation of FRMD5 in BRAF-mutated specimens was tested in
BRAF V600E tumor samples using Western blot analysis. In some cases, an increased yield
of the FRMD5 protein in BRAF V600E specimens was observed (Figure 1D).
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2.2. Depletion of FRMD5 Affects Migration, Invasive Potential, and Spheroid Formation of
PTC Cells

Two classic model PTC-derived cell lines, TPC1 and BCPAP, were selected to establish
an in vitro cellular model for analysis of biological properties of FRMD5 in PTC. TPC1 and
BCPAP cell lines harboring the RET/PTC alternation or BRAF V600E allele, respectively,
presented significant imbalance in the FRMD5 expressional status, as determined by
RT-qPCR and Western blot analyses. As shown in Figure 2, BRAF-mutant BCPAP cells
(BCPAP/siNEG) presented 2-fold greater expression (Figure 2A) and intracellular yield
(Figure 2B) of FRMD5 than TPC1 cells harboring the BRAF-wt allele (TPC1/siNEG). The
observed discordance in FRMD5 expression overlaps with the FRMD5 transcript pattern
detected in clinical specimens. The FRMD5 gene was targeted with specific small interfering
RNA (siFRMD5) to examine the role of FRMD5 in the biology of PTC. Cells treated with
non-targeting siRNA (siNEG) served as controls. It was observed that the expression of
FRMD5 was decreased by 75% in both the TPC1/siFRMD5 and BCPAP/siFRMD5 cells
(Figure 2A). Similarly, Western blot analysis showed a strong reduction in FRMD5 protein
yield in siFRMD5-treated samples in comparison to the controls (Figure 2B).

Figure 2. FRMD5 expression at transcript (A; RT-qPCR) and protein level (B; Western blot) in TPC1
and BCPAP cell lines transfected with FRMD5-specific siRNA (siFRMD5) and a scrambled control
(siNEG). (C) Native yield of FRMD5 in non-transfected TPC1 and BCPAP cells determined by Western
blot. β-actin served as a loading control. Graphical data are presented as mean ± SD. *** p < 0.0001.

Biological analysis revealed significant alternations in the motility potential of both
TPC1 and BCPAP cells treated with siFRMD5. The performed wound-healing assay showed
that FRMD5-silencing in TPC1 triggers a strong anti-migratory phenotype, while BCPAP
cells deficient in FRMD5 migrate faster than control cells. A graphical summary of the
data showed a statistically significant (p < 0.05) ~3-fold reduction in distance traveled by
TPC1/siFRMD5 cells and a nearly two-fold increase in distance traveled by siFRMD5-
treated BCPAP cells, comparing to respective controls (cells treated with siNEG; Figure 3).
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Figure 3. Silencing of FRMD5 results in discrepant migratory and invasive potentials of TPC1 and
BCPAP cells. The left panel shows representative images (10× lens) of wounds in monolayers of
TPC1 and BCPAP cells transfected with siNEG (controls) or siFRMD5, at two time points: t0 (scratch
area at time point 0) and t2 (scratch area at time point 24 h for TPC1 and 48 h for BCPAP) after
scratch application. The right panel shows a graphical analysis of relative migration of transfected
cells measured at t0, t1 (scratch area at time point 12 h for TPC1 and 24 h for BCPAP), and t2 time
after scratch application. The cell migration distance was calculated by measuring the wound width,
dividing it by two, and subtracting this value from the initial half-wound width. Data are presented
as mean ± SD. * p < 0.05.

Congruently, FRMD5 depletion resulted in the opposite migratory and invasive ca-
pabilities of the tested TPC1 and BCPAP cells, which was confirmed using the transwell
migration and invasion assays. The obtained data confirmed a 3-fold and 2-fold reduction
in migration and invasiveness potential, respectively, in FRMD5-deficient TPC1 cells, in
comparison to the siNEG treated controls. Respective to scratch assay data, knockdown of
FRMD5 in the BRAF-mutated BCPAP cell line resulted in a statistically significant (up to
two-fold) surge in the number of migrated and invasive cells (Figure 4).

Additionally, the effect of FRMD5 depletion on the cells’ metastatic capability in vitro
was investigated. A scaffold-free cell spheroid in a suspension model was used, which has
been established to mimic the growth of naturally occurring tumors. It was found that
deficiency of FRMD5 expression promotes the expansion of BCPAP cells. In contrast, no
significant effect on the size and integrated density of spheroids for TPC1/siFRMD5 cells
was observed in comparison to the control (TPC1/siNEG; Figure 5).
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Figure 4. FRMD5 depletion alters the migration and invasion capacities of TPC1 and BCPAP cells.
Cells were resuspended in null medium and seeded in migration and Matrigel invasion insert cham-
bers (8-µm pore size), then placed in 24-well plates filled with medium containing a chemoattractant
(10% fetal bovine serum; FBS). After 24 h of incubation, the migrated cells were stained and pho-
tographed using a light microscope equipped with a camera (40× lens). Representative images are
shown on the bottom panel. The obtained data indicating the number of migrated cells are presented
on the graphs (top panel). FRMD5-knockdown significantly reduced migration and invasiveness of
TPC1 cells. Depletion of FRMD5 promoted motility of BCPAP cells. Data are presented as mean ± SD.
* p < 0.05; ** p < 0.001; *** p < 0.0001.

Figure 5. FRMD5-knockdown affects the growth of tumor spheroids. TPC1 and BCPAP cells deficient
in FRMD5 and grown in a 3D model present significantly reduced or increased dimensions and
shape of the formed spheroids, respectively. (A) Graphical plots summarizing the average integrated
density of spheroids formed by cells treated with siNEG (controls) or siFRMD5. (B) Representative
images of the formed spheroids on day 6. Magnification: 10× lens. Data are presented as mean ± SD.
** p < 0.001; ns, non-significant.
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2.3. FRMD5 Does Not Impact the Viability and Apoptosis of PTC Cells

The obtained data collectively indicated that FRMD5 may be an important factor con-
trolling the migration, invasiveness, and 3D cellular aggregation of PTC cells. In order to
examine whether the observed pro- and antimetastatic properties of FRMD5 are associated
with alternations in viability or proliferation, trypan blue-based, MTS [3-(4,5-dimethylthiazol-
2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium]-based and BrdU (5-
bromo-2′-deoxyuridine) incorporation analyses were performed.

Despite significantly altered migratory and invasive capacities of the tested FRMD5-
deficient cell lines, only minor changes in the cell’s viability, growth, and division were
observed (Figure 6).

Figure 6. Effect of FRMD5 silencing on the viability of TPC1 and BCPAP cells. (A) Trypan blue
dye exclusion assay; (B) MTS-based cells viability analysis; (C) BrdU-based cell proliferation assay.
Data showed non-significant changes in viability and proliferation between the control (siNEG) and
siFRMD5-deficient cells. Data are expressed as mean ± SD.

Additionally, flow cytometry-based apoptosis analysis was performed. After 48 h post-
transfection with designated siRNA, TPC1 and BCPAP cells were stained with Annexin
V-fluorescein isothiocyanate (FITC) conjugate and propidium iodide. Flow cytometry
revealed that the fraction of viable, apoptotic, and necrotic cells in all the tested samples
was similar (Supplementary Figure S1).

2.4. FRMD5 Alters the Adhesion of PTC Cells

To further study the properties of FRMD5 linked with metastasis, the effect of FRMD5-
knockdown on the attachment capabilities of cells to extracellular matrix (ECM) proteins
was investigated. A commercial ECM adhesion array assay was used for analysis, as
described in the Materials and Methods section. After 72 h post-transfection, the tested cells
were seeded on collagen I-, collagen II-, collagen IV-, fibronectin-, laminin-, tenascin-, and
vitronectin-coated wells for 2 h. Cells seeded on wells coated with bovine serum albumin
protein (BSA) served as a negative control. The cell adhesion characteristics showed that
FRMD5 silencing led to opposite effects in the tested cells. Overall, FRMD5 suppressed the
adhesion of TPC1 cells, as it was found that depletion of FRMD5 significantly increased the
binding of TPC1 cells to collagen IV, laminin, and vitronectin. In contrast, FRMD5 likely
acted as a promotor of cell-matrix interaction in BCPAP cells, as cells deficient in FRMD5
exhibited reduced adherence to collagen II, fibronectin, laminin, and tenascin (Figure 7).
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Figure 7. FRMD5-knockdown affects cell-extracellular matrix (ECM) interactions of TPC1 and BCPAP
cells. The left and right panel shows adhesion assay performed on TPC1 and BCPAP cells, respectively.
Data are expressed as optical density (OD560), which refers to the number of attached cells. The
graphs present the fraction of attached cells to collagen I-, collagen II-, collagen IV-, fibronectin-,
laminin-, tenascin-, and vitronectin-coated wells. Bovine serum albumin (BSA)-coated wells served
as a negative control. Gray bars mark FRMD5-silenced cells, and dark-color bars indicate cells treated
with control siRNA (siNEG). Data are presented as mean ± SD. * p < 0.05; ** p < 0.001.

2.5. FRMD5 Depletion Is Associated with Activation of Multidrug Resistance Genes and
Increased Chemoresistance

One of the major therapeutic problems leading to high cancer-related mortality is the
phenomenon of multidrug resistance (MDR) observed in various tumors. MDR signifi-
cantly reduces the effectiveness of administered drug therapies, and there are several mech-
anisms involved in its induction. High expression and activity of several ATP binding
cassette (ABC) transporters, such as P-glycoprotein (ABCB1/P-gp), breast cancer resistance
protein (ABCG2/BCRP), and multidrug resistance-associated proteins 1 and 6 (ABCC1/MRP1;
ABCC6/MRP6, respectively), play a crucial role in the MDR phenomenon.

Since depletion of FRMD5 displays mixed oncogenic activity depending on the cancer
cell mutational status, the expressional profile of P-gp-, BCRP-, MRP1- and MRP6-encoding
genes was evaluated in FRMD5-knocked-down TPC1 and BCPAP cells using RT-qPCR.
It was observed that suppression of FRMD5 results in upregulation of the tested MDR
genes. BCPAP cells exhibited significant (up to two-fold) induction of all four MDR genes,
while TPC1 siFRMD5-treated cells showed an increase in the expression of MRP6- and
P-gp-encoding genes (Figure 8).

To further determine the linkage between the expression of FRMD5 and MDR genes’
activity, a MTS-based cell viability analysis was performed. TPC1 and BCPAP cells treated
with siNEG (control) or siFRMD5 were supplemented with 10 µM of doxorubicin (DOX)
and further incubated for 24 h. It was considered that since FRMD5 depletion leads to
activation of MDR-encoding genes, cells treated with the chemotherapeutic should present
increased tolerance for the drug and enhanced viability. The obtained data showed that
preincubation of cells with siFRMD5 resulted in a pro-survival effect in both the TPC1 and
BCPAP cell lines. A 20% and 50% increase in the number of viable cells in siFRMD5/DOX
treated TPC1 and BCPAP cells, respectively, was observed in comparison to the control
(Figure 9A). These observations were further evaluated, visualized, and confirmed using
confocal imaging (Figure 9B).
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Figure 8. Knockdown of FRMD5 significantly affects the expression patterns of the multidrug
resistance (MDR) genes in TPC1 and BCPAP cells. Transcript-level expression analysis of MDR genes
in TPC1 (A) and BCPAP (B) cell lines transfected with FRMD5-specific siRNA (siFRMD5) or siNEG
(control) using RT-qPCR. Graphical data are presented as mean ± SD. * p < 0.05; ** p < 0.001.

Figure 9. Knockdown of FRMD5 affects chemoresistance of TPC1 and BCPAP cells. (A) MTS-
based analysis of FRMD5-deficient TPC1 and BCPAP cells exposed to doxorubicin (DOX) for 24 h.
(B) Representative confocal microscopy images display intracellular DOX accumulation (red signal)
in fluorescently labeled (fluorescein isothiocyanate (FITC)-conjugated phalloidin; green signal) cells.
Images were recorded using 63×/1.4 oil DIC M27 lens. Cells treated with non-targeting siRNA
(siNEG) were used as a control. Graphical data are presented as mean± SD. ** p < 0.001; *** p < 0.0001.

2.6. FRMD5 Expression Deficiency Interferes with the Activation Status of Signal
Transduction Proteins

In order to gain insight into biological pathways and genes associated with biological
alterations resulting from FRMD5 depletion, the Proteome Profiler Human Phospho-Kinase
Array (R&D Systems, Minneapolis, MN, USA) analysis was performed. This membrane-
based sandwich immunoassay allows for a fast study of the antibody array to detect
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specific changes in phosphorylation of specific kinases involved in signal transduction
of major regulatory pathways and compare their activation between the tested samples.
TPC1 and BCPAP cells treated with siNEG (control set) and siFRMD5 were used. Among
37 examined phospho-kinases and 2 related total proteins, 17 molecules in total exhibited
an altered activation status. Ten of the kinases were deregulated in both FRMD5-deficient
TPC1 and BCPAP cell lines. Among deregulated proteins, YES kinase was suppressed,
while STAT5, Chk-2, SRC, PRAS40, STAT3 (S727), RSK1/2 were upregulated (Figure 10A
and Figure S2). Activation of two of the phosphokinases, AKT and CREB, was enhanced
in TPC1/siFRMD5, but downregulated in BCPAP/siFRMD5 cells. Only one protein, c-
JUN, was uniquely upregulated in TPC1 FRMD5-deficient cells, while only six kinases
(ERK, p53, PYK2, STAT1, STAT6, p70 S6) were activated in siFRMD5-treated BCPAP cells.
Additionally, Western blot analysis was performed to confirm the obtained immunoassay
data. As shown in Figure 10B–E, the activation status of five randomly selected kinases
(ERK1/2, STAT3, PRAS40, and SRC) overlapped with the phospho-kinase profiler data.

Figure 10. Analysis of the impact of FRMD5 depletion on signal transduction pathways in the TPC1
and BCPAP cell lines. (A) Human phospho-kinase array analysis of cells transfected with FRMD5-
specific siRNA (siFRMD5) and non-targeting siRNA (siNEG; control). (B–E) Verification of human
phospho-kinase array results using the Western blot technique. β-actin served as a loading control.

2.7. FRMD5-Knockdown Significantly Alters the Transcriptome of PTC-Derived Cells

As the obtained data imply that the presence of certain genetic aberrations in genes
encoding for key trigger proteins of major signaling pathways is associated with FRMD5
depletion, RNA sequencing (RNA-Seq), which uses next-generation sequencing (NGS), was
used for transcriptome profiling of TPC1 and BCPAP cells treated with non-targeting siRNA
(siNEG; controls) or siRNA (siFRMD5) targeting the FRMD5 gene. Principal component
analysis (PCA) was completed on raw data by separating a group of siNEG from siFRMD5
samples (Figure 11). Comparison analysis of TPC1 cells deficient in FRMD5 and TPC1
cells treated with control siRNA showed a significantly altered expression of 1543 genes
(749 were upregulated and 794 downregulated; adjusted p-value < 0.05; Supplementary
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Tables S1 and S2). Further analysis of genes expressed in FRMD5-suppressed and siNEG-
treated BCPAP cells revealed deregulation of 1032 genes, where 517 of them presented
increased, and 515 showed decreased expression (adjusted p-value < 0.05; Supplementary
Tables S3 and S4).

Figure 11. Principal component analysis (PCA) of RNA sequencing (RNA-Seq) datasets for FRMD5-knocked-down TPC1
and BCPAP cell lines. PCA was determined from the abundance of all transcripts detected in RNA-Seq analysis. Cells
transfected with non-targeting small interfering RNA are marked as siNEG (control). Cells transfected with FRMD5-specific
siRNA are marked as TPC1/siFRMD5 and BCPAP/siFRMD5.

The most upregulated genes in FRMD5-depleted TPC1 cells included: CXCL6, ZNF718,
CPA4, KCNN3, and NUAK2, while the most often downregulated were: SH2D1B, CSF3,
NOX5, EGR1, and SERPINB2. In the FRMD5-silenced BCPAP cell line, CXCL5, WWC1,
KRTAP2-3, LRRC38, and PDGFB were found among the most upregulated genes, while
AMACR, CDH6, TNFRSF9, IDO1, and ARID5B were utmostly downregulated. According to
Gene Ontology (GO) enrichment analysis, the most commonly overexpressed genes in TPC1
were predominantly associated with regulation of the metabolic process, gene expression,
cellular component, organelle organization, and ion binding. In BCPAP cells, upregulated
genes are involved in integrin binding, chemokine activity, CXCR chemokine receptor
binding, hepatocyte growth factor receptor binding, transcription coactivator activity, and
protein binding, indicating significant discrepancies in the pattern of deregulated genes.

GO enrichment examination of the differentially expressed genes in FRMD5-deficient
TPC1 and BCPAP cells resulted in the identification of multiple GO terms belonging to
two ontology sources: biological processes and molecular functions. Out of 407 hits found
in upregulated TPC1/siFRMD5 samples, 375 GO terms were linked with biological pro-
cesses, while only 32 GO terms were associated with molecular functions (Supplementary
Table S5). In contrast, GO enrichment analysis of downregulated genes in TPC1/siFRMD5
cells was manifested by 773 GO terms linked with biological processes, among which at
least 5 are involved in cell migration, and 36 GO terms are linked with molecular functions
(Supplementary Table S6). The top of the GO terms in TPC1/siFRMD5 cells was related to
cellular biosynthesis, catabolic processes, and RNA binding (Figure 12, upper panel). A
similar analysis in BCPAP/siFRMD5 samples showed 1500 upregulated GO terms (1473 as-
sociated with biological processes and 27 linked with molecular functions; Supplementary
Table S7) and 111 downregulated GO terms (105 associated with biological processes and
6 linked with molecular functions; Supplementary Table S8). At least 13 GO terms be-
longing to the upregulated biological processes are related to cell migration. Top of the
GO terms determined in BCPAP/siFRMD5 samples are related to intracellular transport,
cilium movement, organization, regulation of organelle, and cytoskeleton organization
(Figure 12, lower panel).



Int. J. Mol. Sci. 2021, 22, 6726 12 of 23

Figure 12. Bubble plots of significantly enriched Gene Ontology (GO) terms for the FRMD5-depleted TPC1 (top panel) and
BCPAP (bottom panel) cells after term similarity reduction. Terms with adjusted p-value on the PHRED scale higher than
4 (TPC1) and 5 (BCPAP) are annotated. The area of the circles is proportional to the number of genes assigned to the term in
the analysis. The z-score (horizontal axis) indicates whether the given term is more likely to be up- or downregulated. The
threshold indicates the adjusted p < 0.05.

A RT-qPCR analysis was performed using the same RNA samples that were used
for RNA-Seq analysis to confirm RNA-Seq-based gene expression data. The analyzed
genes were selected randomly among those whose expression was found to be significantly
altered (up- or downregulated) in RNA-Seq-based analysis (Supplementary Tables S1–S4)
and was involved in GO terms associated with cell migration (Supplementary Tables S5–S8).
For all of the screened genes (Table 1), changes in the expression profiles, which had
originally been found in RNA-Seq data, were confirmed by RT-qPCR (Table 1).



Int. J. Mol. Sci. 2021, 22, 6726 13 of 23

Table 1. List of differentially expressed representative transcripts in RNA-Seq analysis of siFRMD5-
treated TPC1 and BCPAP cells validated by RT-qPCR.

Gene

RNA-Seq RT-qPCR

TPC1 BCPAP TPC1 BCPAP

p
Value

Fold
Change

p
Value

Fold
Change

p
Value

Fold
Change

p
Value

Fold
Change

VEGFA <0.001 0.379 0.016 0.634 <0.001 0.350 0.003 0.632
STAT3 0.105 1.418 0.001 1.905 0.605 1.077 0.036 2.036
MTOR 0.168 1.457 0.006 1.971 <0.001 1.313 0.041 1.186
SOX9 <0.001 0.350 0.409 1.233 <0.001 0.369 0.008 1.189
MMP1 0.672 1.138 <0.001 2.845 0.016 1.158 <0.001 4.737
MMP9 0.042 0.537 <0.001 3.212 <0.001 0.565 <0.001 2.999
TIMP1 0.703 0.921 0.037 1.420 0.189 0.885 0.001 1.593
ITGA2 0.124 0.702 0.004 1.815 0.002 0.585 0.002 2.149
EPHA2 0.019 0.711 <0.001 1.987 0.001 0.600 0.002 1.652
HAS2 0.017 0.585 0.014 1.589 <0.001 0.368 0.046 1.379
ITGA6 0.620 0.873 <0.001 2.419 0.002 0.585 0.002 2.149
PDPN 0.024 0.678 <0.001 1.976 0.007 0.703 <0.001 2.389

3. Discussion

FRMD5 is a still poorly understood FERM-domain protein. Its biological function is
unclear. However, relatively high expression of the FRMD5 gene in various human tissues,
including brain, kidney, thyroid, and testis, underlines its importance for biological pro-
cesses. Former research concerning FRMD3, a close homolog of FRMD5, has emphasized
the role of this FERM protein in tumorigenesis [15]. Likewise, the few studies performed
on FRMD5 have also suggested its involvement in carcinogenesis, although its functions in
this process still remain indistinct [9–12].

Here, we performed an analysis on the role of FRMD5 in thyroid cancer, as we found
significant discrepancies in FRMD5 expression between BRAF- and RET-mutated PTCs,
as well other types of TCs (TCGA and microarray data analysis of clinical specimens).
BRAF and RET tumorigenic genes are the most abundant among TCs and share a common
property of signaling via activation of the MEK-ERK kinase pathway. Nevertheless, cells
harboring these mutations present unique phenotypic features, signifying the different
tumor biology resulting from unequal gene expressional profiles. Based on analyses
of FRMD5 expression in human thyroid cancer tissue, it was concluded that the high
expression of the FRMD5 gene may be associated with the presence of the BRAF V600E
genetic aberration.

Here, we performed an analysis on the role of FRMD5 in thyroid cancer specimens
and cell lines, as we found significant discrepancies in FRMD5 expression between BRAF-
and RET-mutated PTCs, as well other types of TCs (TCGA and microarray data analysis
of clinical specimens). BRAF and RET tumorigenic genes are most abundant among
TCs and share a common property of signaling via activation of the MEK-ERK kinase
pathway. The nature of imbalance in FRMD5 intracellular yield and expression observed
in cells harboring BRAF-wt and BRAF V600E is not clear and might result from overall
unequal gene expressional profiles, which determines phenotypic features and unique
tumor biology cells harboring these mutations. Based on analyses of FRMD5 expression in
human thyroid cancer tissue, it was concluded that high expression of the FRMD5 gene
may be associated with the presence of the BRAF V600E genetic aberration.

To search for biological processes and define genes associated with FRMD5 expression,
we knocked down FRMD5 in PTC-derived, TPC1, and BCPAP cells, harboring RET/PTC
and BRAF V600E mutations, respectively. We found that the depletion of FRMD5 signifi-
cantly increases the migration and invasiveness, as well as promotes spheroid formation
of BCPAP cells. In contrast, the depletion of FRMD5 in TPC1 cells strongly suppressed
their metastatic potential. The observed diverse impact of FRMD5 knockdown was not
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associated with alterations in the cells’ viability, proliferation, or apoptosis, as they re-
mained unaffected. Together, these data strongly indicate that the observed disproportions
in the motility of FRMD5-deficient cells do not result from altered viability of cells, but
rather other processes, such as impaired transduction signal trafficking by major pathways
involved in the control of migration processes, cell–cell or cell–matrix adhesion.

Partly, the effect of FRMD5 on the metastatic potential of PTC cells stays in accordance
with previously published studies on glioblastoma, lung, and colorectal cancer (mentioned
in the Introduction), suggesting its pro-migratory potential. Nevertheless, our findings also
imply its antimetastatic character in BRAF-mutated cells, indicating that the expressional
status and functions of FRMD5 may not be dependent on the type of cancer tissue but rather
on genetic alternations in cancer cells. Interestingly, such an anti-migratory gene expression-
dependent effect was previously reported for podoplanin, a membrane glycoprotein, which
is also predominantly expressed in mutant BRAF V600E PTC cells [16].

Altered motility of FRMD5-deficient TPC1 and BCPAP cells was also associated
with increased or decreased (respectively) adhesion to selected ECM proteins. Therefore,
discrepancies in adherence of siFRMD5-treated TPC1 and BCPAP cells may at least partially
explain the detected opposite migratory patterns.

Another novel finding concerned the ability of FRMD5 to modulate multidrug resis-
tance genes. Intriguingly, depletion of FRMD5 in both cell lines resulted in the upregulation
of key ABC transporter genes (P-gp and MRP6). This, in turn, led to increased survival of
the cells treated with the chemotherapeutic agent (DOX). We cannot exclude that FRMD5
affects the expression of MDR genes indirectly. We consider that the mechanism of MDR
regulation is rather independent of the BRAF mutational status, as a decrease in DOX sen-
sitivity was observed in both tested cell lines. As induction of drug resistance by FRMD5 is
unclear, the mechanism and critical molecular players involved in this phenomenon must
be further elucidated.

Phospho-kinase array and RNA-Seq analyses were completed to identify signaling
pathways and genes associated with the observed FRMD5 phenotype. The study on the
profile of phospho-kinases revealed that lack of FRMD5 may significantly disturb the
activity of various signaling pathways. The activation status of several kinases, including
SRC and two STAT family kinases (3 and 5), was upregulated in both cell lines, while
other kinases were deregulated uniquely in only one of the cell lines. For example, two
STAT (1 and 6) and extracellular signal-regulated kinases 1/2 (ERK1/2) proteins were
upregulated only in BCPAP cells, while c-JUN was repressed in TPC1 FRMD5-deficient
cells. Upregulation of STAT family proteins is especially intriguing, as they are partners of
JAK, another FERM-domain protein, and play a significant role in tumorigenic processes.
Disrupted JAK-STAT signaling affects cellular growth and transformation, preventing
apoptosis or tumor formation [17]. Therefore, it can be considered that an interaction
between the FRMD5 protein and the JAK-STAT axis may exist.

Furthermore, a detailed analysis of ERK1/2 in FERM-depleted cells showed their
increased activation in BCPAP and decreased phosphorylation in TPC1 cell lines. As
ERK1/2 is one of the major regulators of the mitogen-activated protein kinase (MAPK)
pathway, their deregulation may partially explain the observed variances in metastases
of FRMD5-silenced TPC1 and BCPAP cells. In addition, other phosphokinases, AKT and
cAMP response element-binding protein (CREB), were upregulated in TPC1 and downregu-
lated in BCPAP FRMD5-depleted cells. AKT is a critical regulator of the PI3K/AKT/mTOR
signaling pathway [18], while CREB is considered a key mediator in carcinogenesis, includ-
ing invasion and metastasis [19]. As apoptosis was not significantly affected by FRMD5
silencing in both cell lines, an alternative role of the PI3K/AKT/mTOR pathway must
be considered.

The role of altered adhesion, hampering migration of siFRMD5-treated TPC1 cells, may
be supported by the activation of the SRC kinase in FRMD5-depleted cells. Surprisingly,
β-catenin, another important protein involved in the regulation of cell–cell adhesion and
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previously marked as one of the potential FRMD5 partners, was not affected in FRMD5-
silenced cells.

The analysis using the RNA-Seq technique revealed hundreds of genes, which were
up- or downregulated in FRMD5-suppressed TPC1 and BCPAP cells. Examination of the
GO term enrichment of the differentially expressed genes in both studied cell lines revealed
distinct differences. In siFRMD5-treated TPC1 cells, none of the GO terms of the upreg-
ulated genes were linked with cell migration. In contrast, a similar analysis of GO terms
performed for siFRMD5-treated BCPAP cells revealed significant upregulation of genes
associated with extracellular matrix organization and migration. GO terms representing
downregulated genes in TPC1/siFRMD5 cells were associated with the suppression of the
cells’ motility. In contrast, gene ontology enrichment analysis of the downregulated genes
in BCPAP/siFRMD5 cells showed changes in processes related to cilium organization and
movement, microtubule- and cytoskeleton-dependent transport.

Additional analysis of alternatively expressed genes in siFRMD5-treated cells showed
significant upregulation of matrix metalloproteinases (MMPs)-encoding genes (e.g., MMP1
and MMP9) in BCPAP cells. MMPs are critical enzymes targeting extracellular matrix
components, including collagen, elastin, fibronectin, and laminin proteins. MMP-driven
degradation of ECM results in the remodeling of cells and promotes their detachment.
Furthermore, MMPs affect cell adhesion receptors, such as E-cadherin or integrins, and
therefore directly disrupt cell–cell adhesion [20]. As MMPs are the most significant enzymes
in the degradation of the extracellular matrix, their observed upregulation may explain both
observed increased motility and decreased adhesion of BCPAP/siFRMD5 cells. Overall,
RNA-Seq and GO term profiles stay in accordance with the observed phenotype of FRMD5-
deficient PTC-derived cells, which showed significant changes in migratory properties.

In conclusion, we have provided a novel insight into the role of FRMD5 in cancer cell
biology. Moreover, it is the first trial reporting a genome-wide analysis of gene expression
in FRMD5-deficient cells. Our findings indicate that the biological properties of FRMD5
are strongly dependent on the mutational status of cancer cells. It has been shown that lack
of FRMD5 promotes the cells’ migration, likely via activation of the MAPK pathway of
BRAF-mutated BCPAP cells but decreases motility of PTC-derived BRAF-wt TPC1 cells.
It has also been presented that FRMD5 depletion affects the expression of various other
contributors of metastases, mainly by regulating cellular matrix organization, cell–cell, and
cell–matrix adhesion.

4. Materials and Methods
4.1. Retrieval of TCGA and GTEx Data

A visualization website GEPIA (Gene Expression Profiling Interactive Analysis), avail-
able at http://gepia2.cancer-pku.cn/#analysis (accessed on 24 May 2021), was used to
analyze FRMD5 expression in cancer and normal thyroid tissues in the Genotype Tissue
Expression (GTEx) and the Cancer Genome Atlas (TCGA) projects data. The expression
analyses were performed using the following terms: Gene, FRMD5; Dataset (cancer name),
THCA; log 2-fold change cutoff, 1; p-value cut-off, 0.05; differential methods, ANOVA.

4.2. Microarray Data Analysis

FRMD5 gene expression analysis was examined using previously published microar-
ray data [6,14]. The dataset contained 54 samples of PTC, including 30 BRAF-wt and
24 BRAF V600E. The quality of the data was checked using dedicated software—Affymetrix
Expression Console. Analysis was performed on gene and exome levels according to
Affymetrix’s whitepaper. All data passed the quality test. Further analysis was performed
in R Studio. Raw data were pre-processed; background subtraction, normalization, and
summarization were performed with the fRMA algorithm implemented in the fRMA pack-
age. Arguments specifying methods for each step were selected as follows: for background
correction, it was RMA, for normalization—quantile method, and for summarization: me-
dian polish. Due to the occurrence of batch effect between two series of sample processing,

http://gepia2.cancer-pku.cn/#analysis
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batch effect removal was necessary. It was performed with COMBAT (Empirical Bayes
method), implemented in SVA package. Afterward, control probe sets were removed,
and only those described as “main” in Affymetrix documentation were used for further
analysis. Afterward, the p-value and false discovery rate (FDR) were calculated to detect
the significance of expression deregulation in the FRMD5 gene. The boxplots with the
expression of FRMD5 in both subsets were created using the ggplot2 package.

4.3. Cell Culture

The experiments were performed on cell lines derived from human papillary thyroid
cancer, BCPAP bearing the BRAF V600E mutation, and TPC1 bearing RET/PTC rearrange-
ment. BCPAP cells were purchased from the German Collection of Microorganisms. TPC1
cells were kindly provided by Prof. M. Santoro (The University of Naples Federico II,
Naples, Italy) and were authenticated by short tandem repeat (STR) analysis at the Ameri-
can Type Culture Collection (ATCC), as already described [21]. Cells were propagated in
Roswell Park Memorial Institute (RPMI) 1640 medium (Cat No. SH30027.FS, HyClone,
Cytiva, Marlborough, MA, USA) supplemented with 10% fetal bovine serum (FBS; Cat No.
SV30160.03, HyClone, Cytiva). Cells were cultured in a humidified incubator at 37 ◦C with
5% CO2.

4.4. Silencing of FRMD5 by Small Interfering RNA (siRNA)

The FRMD5 gene was silenced by transfection with siRNA specifically targeting
human FRMD5 (siFRMD5; siRNA ID: s39794, Silencer Select, ThermoFisher Scientific,
Inc., Rockford, IL, USA) or MISSION siRNA Universal Negative Control (siNEG; Cat No.
SIC001, Sigma-Aldrich, Steinheim, Germany), and Lipofectamine 2000 (Cat No. 11668019,
ThermoFisher Scientific, Inc.) in Opti-MEM I Reduced Serum Medium (Cat No. 11058021,
ThermoFisher Scientific, Inc.), as previously described [22]. The efficiency of FRMD5-
knockdown was verified by RT-qPCR and Western blotting.

4.5. Total RNA Extraction, Reverse Transcription, and RT-qPCR

Forty-eight hours post-transfection, total RNA was isolated from cells using GeneMA-
TRIX Universal RNA Purification Kit (Cat No. E3598, EURx, Gdansk, Poland) with the step
of the on-column DNase I (Cat No. 1009-100, A&A Biotechnology, Gdynia, Poland) diges-
tion according to the producer’s instructions. Five hundred nanograms of total RNA was
reverse transcribed using a High-Capacity cDNA Reverse Transcription Kit with RNase
Inhibitor (Cat No. 4374966, ThermoFisher Scientific, Inc.), following the recommended
protocol. The expression of the genes was quantified by RT-qPCR using a 5x HOT FIREPol
EvaGreen qPCR Mix Plus (Cat No. 08-25-00020, Solis BioDyne, Tartu, Estonia), 6-times
diluted cDNA, and 0.5 µM of specific oligonucleotide primers (listed in Table 2). RT-qPCR
was performed in the CFX96 Detection System (Bio-Rad, Hercules, CA, USA) with one
cycle of 15 min at 95 ◦C, followed by 40 cycles of 15 s at 95 ◦C, 20 s at 58 ◦C, and 20 s at 72 ◦C.
The expression of target genes was calculated using the 2−∆∆Ct method and normalized to
the 18S rRNA reference gene.

Table 2. List of primers used in RT-qPCR.

Gene Name Nucleotide Sequences (5′→3′)

ABCB1 F: CAGGAACCTGTATTGTTTGCCACCAC
R: TGCTTCTGCCCACCACTCAACTG

ABCC1 F: TGTGGGAAAACACATCTTTGA
R: CTGTGCGTGACCAAGATCC

ABCC6 F: TGTCGCTCTTTGGAAAATCC
R: AGGAACACTGCGAAGCTCAT
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Table 2. Cont.

Gene Name Nucleotide Sequences (5′→3′)

ABCG2 F: GGTGGAGGCAAATCTTCGTTATTAGA
R: GAGTGCCCATCACAACATCATCTT

FRMD5 F: ATCAAAAGGGATCTCTACCATG
R: ATCTCCGCTTGAAGGATGTA

HAS2 F: TGACAGGCATCTCACGAACC
R: CAGCCATTCTCGGAAGTAGG

ITGA2 F: CTCACCAGGAACATGGGAAC
R: GTCAGAACACACACCCGTTG

ITGA6 F: ATGCACGCGGATCGAGTTT
R: TTCCTGCTTCGTATTAACATGCT

MMP1 F: CTGGCCACAACTGCCAAATG
R: CTGTCCCTGAACAGCCCAGTACTTA

MMP9 F: GCACGACGTCTTCCAGTACC
R: CAGGATGTCATAGGTCACGTAGC

MTOR F: GACGAGAGATCATCCGCCAG
R: ACAAGGGACCGCACCATAAG

PDPN F: CGAAGATGATGTGGTGACTC
R: CGATGCGAATGCCTGTTAC

SOX9 F: CGTGGACATCGGTGAACTGA
R: GGTGGCAAGTATTGGTCAAACTC

STAT3 F: CCACCACCAAGCGAGGAC
R: GCCAGACCCAGAAGGAGAAG

TIMP1 F: AAGGCTCTGAAAAGGGCTTC
R: GAAAGATGGGAGTGGGAACA

VEGFA F: CTTGCCTTGCTGCTCTACCT
R: AAGATGTCCACCAGGGTCTC

18S rRNA F: CCAGTAAGTGCGGGTCATAAG
R: CCATCCAATCGGTAGTAGCG

F, forward; R, reverse.

4.6. RNA-Seq Library Preparation and Sequencing

The integrity of the extracted RNA was evaluated using the 2100 Bioanalyzer instru-
ment (Agilent Technologies, Inc., St. Clara, CA, USA) and the Agilent RNA 6000 Nano Kit
(Cat No. 5067-1511, Agilent Technologies, Inc.). Samples with RIN (RNA integrity number)
values of 8 or greater were taken to construct a cDNA library. The Ion AmpliSeq Tran-
scriptome Human Gene Expression Panel (Cat No. A31446, ThermoFisher Scientific, Inc.)
was applied for the preparation of the library, following the manufacturer’s protocol [23].
In brief, cDNA libraries were prepared with the Ion AmpliSeq Transcriptome Human
Gene Expression Panel (ThermoFisher Scientific, Inc.) according to the manufacturer’s
protocol. RNA samples were reverse-transcribed, and cDNA libraries were generated and
quantified on the Bioanalyzer 2100 with a High Sensitivity DNA Kit (Agilent Technolo-
gies, Inc.). Eight barcoded library templates (50 pM) were mixed and loaded onto Ion PI
chips with Ion Chef Instrument and sequenced on an Ion Proton Sequencer (ThermoFisher
Scientific, Inc.) with the Ion PI Hi-Q Chef Kit, according to the manufacturer’s instruc-
tions. Signal processing and base calling was conducted using the Ion Torrent Suite v5.10
(https://github.com/iontorrent/TS, accessed on 17 January 2020). The read-outs were
mapped to the hg19 AmpliSeq Transcriptome v1 genome with tmap v5.10. Read counts per
gene were obtained with HTSeq-count [24] v0.6, using default parameters. Normalization
and differential gene expression estimations were performed using DESeq2 [25] v1.18.1,
using default parameters and options. A gene was considered differentially expressed

https://github.com/iontorrent/TS
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when the adjusted p-value was less than 0.05. Functional analysis of differentially expressed
genes was conducted with the Cytoscape [26] (v3.7.2) plugin ClueGo [27] (v2.5.7), on a
database consisting of Biological Process (BP) and Molecular Function (MF) categories in
Gene Ontology [28] (GO, version 8 May 2020). Benjamini–Hochberg p-value adjustment
was used, and terms with adjusted p-value less than 0.05 were considered significant.
GO enrichment visualization was prepared with GOplot [29] R package v1.0.2, using a
reduction of similar terms (90% for BCPAP and 70% for TPC1).

4.7. Total Protein Isolation and Western Blotting

Seventy-two hours after transfection, the cells were washed 3 times with chilled
phosphate-buffered saline (PBS; pH 7.3) and lysed with RIPA Lysis and Extraction Buffer
(Cat No. 89900, ThermoFisher Scientific, Inc.) supplemented with Pierce Phosphate
Inhibitor Cocktail (Cat No. A32957, ThermoFisher Scientific, Inc.), Complete Protease
Inhibitor Cocktail (Cat No. 4693116001, Roche, Basel, Switzerland), and Viscolase (Cat No.
1010-100, A&A Biotechnology) on ice for 30 min. Protein extraction from tissue samples
was performed as described previously [30]. After one freeze-thaw cycle, the total protein
concentration in the cell lysate was determined using the BCA Protein Assay Kit (Cat No.
23225, ThermoFisher Scientific, Inc.). The membrane was further processed as already
described, with some minor modifications [31]. Twenty to thirty micrograms of the total
protein lysate was resolved in 9% SDS-PAGE under reducing conditions and subsequently
electro-transferred to a PVDF membrane (Cat No. IPVH00010, Merck Millipore, Tullagreen,
Ireland). After one hour blocking in 5% skimmed milk in Tris-buffered saline (TBS) sup-
plemented with 0.1% Tween 20 (TBST) at room temperature (RT) and extensive washing
in TBST, the membrane was probed overnight at 4 ◦C with a primary antibody diluted
in 5% skimmed milk-TBST or 5% BSA (Cat No. 7906, Sigma-Aldrich)-TBST (primary
antibodies and blocking agents used in the study are listed in Table 3). After extensive
washing, the membrane was incubated for 1 h at RT with secondary antibodies (1:5000 in
1% skimmed milk-TBST): goat anti-rabbit immunoglobulins/horseradish peroxidase (HRP;
Cat No. P0448, Dako, Carpinteria, CA, USA), or goat anti-mouse immunoglobulins/HRP
(Cat No. 115-035-146, Jackson ImmunoResearch Lab, Inc., West Grove, PA, USA). Then, the
membrane was intensively washed, and signals from reactive bands were visualized using
the SuperSignal West Dura Extended Duration Substrate (Cat No. 34076, ThermoFisher
Scientific, Inc.) or SuperSignal West Pico PLUS Chemiluminescent Substrate (Cat No. 34577,
ThermoFisher Scientific, Inc.).

Table 3. Primary antibodies used in the study for Western blotting.

Antigen Catalog No. Type/
Clone (Symbol)

Dilution/
Blocking Agent Source

β-actin 3700
Mouse monoclonal

(IgG2b)/
8H10D10

1:5000/
5% skimmed milk

Cell Signaling
Technology, Inc.

(Beverly, MA, USA)

pERK1/2 (T202/Y204) 4370 Rabbit monoclonal/
D13.14.4E

1:2000/
5% BSA

Cell Signaling
Technology, Inc.

tERK1/2 9102 Rabbit polyclonal 1:2000/
5% BSA

Cell Signaling
Technology, Inc.

P-gp sc-13131
Mouse monoclonal

(IgG2b)/
G-1

1:200/
5% skimmed milk

Santa Cruz
Biotechnology, Inc.

(Santa Cruz, CA, USA)

pPRAS40 (T246) 13175 Rabbit monoclonal/
D4D2

1:2000/
5% BSA

Cell Signaling
Technology, Inc.

tPRAS40 sc-517549 Mouse monoclonal (IgG1)/
73P21

1:200/
5% skimmed milk

Santa Cruz
Biotechnology, Inc.
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Table 3. Cont.

Antigen Catalog No. Type/
Clone (Symbol)

Dilution/
Blocking Agent Source

pSRC (Y416) 2101 Rabbit polyclonal 1:1000/
5% BSA

Cell Signaling
Technology, Inc.

tSRC 2110 Mouse monoclonal (IgG1)/
L4A1

1:1000/
5% skimmed milk

Cell Signaling
Technology, Inc.

pSTAT3 (Y705) 4113 Mouse monoclonal (IgG1)/
M9C6

1:2000/
5% skimmed milk

Cell Signaling
Technology, Inc.

pSTAT3 (S727) 94994 Rabbit monoclonal/
D8C2Z

1:1000/
5% BSA

Cell Signaling
Technology, Inc.

tSTAT3 sc-8019 Mouse monoclonal (IgG1)/
F-2

1:200/
5% skimmed milk

Santa Cruz
Biotechnology, Inc.

BSA, bovine serum albumin; p, phosphorylated protein; t, total protein.

4.8. Phospho-Kinase Proteome Profiling

The assay was performed using the Human Phospho-Kinase Array Kit (Cat No.
ARY003C, R&D Systems), according to the manufacturer’s instructions. Seventy-two hours
post-transfection, the cells were rinsed three times with chilled phosphate-buffered saline
(PBS; pH 7.3) and lysed with Lysis Buffer 6 supplemented with Complete Protease Inhibitor
Cocktail (Roche), Pierce Phosphate Inhibitor Cocktail (ThermoFisher Scientific, Inc.), and
nuclease (Viscolase; A&A Biotechnology) on ice for 30 min. After a single freeze–thaw
cycle, the total protein concentration in the cell lysate was determined using a BCA Protein
Assay Kit (ThermoFisher Scientific, Inc.). The array membranes were blocked in Array
Buffer 1 for 1 h and incubated overnight with 600 µg of total protein lysate in Array Buffer
1 at 4 ◦C. Then, they were probed with a Detection Antibody Cocktail for 2 h, followed by
30-min incubation with Streptavidin-HRP solution. After each step, the membranes were
washed three times with Wash Buffer. The chemiluminescent signal was developed using
the Chemi Reagent Mix and captured on the Mini HD9 acquisition system (Uvitec Ltd.,
Cambridge, UK). The results were confirmed by Western blot analysis.

4.9. Cell Migration and Matrigel Invasion Assays

The cell migration and invasion assays were determined using 8-µm pore non-coated
(Cat No. 353097, Corning, Inc., Corning, New York, NY, USA) and Matrigel-coated (Cat
No. 354480, Corning) inserts, respectively, as already described [16,22]. Briefly, 48-h after
transfection, the harvested cells (2× 105) were added to the upper chambers in a serum-free
medium and cultured for a further 24 h. Complete medium in the lower well was used
as a chemoattractant. Cells that migrated or invaded through the membranes underwent
fixation and staining using a RAL Diff-Quik kit (Cat No. 720555-0000, RAL Diagnostics,
Martillac, France) and the cells were counted using Olympus BX41 microscope (Olympus
Corporation, Tokyo, Japan) with a 40× objective lens.

4.10. In Vitro Wound Healing Motility Assay

A wound-healing assay was performed as already described [22]. Briefly, siRNA-
treated cells were seeded on a 6-well plate and cultured until the formation of a nearly
confluent monolayer. Then, a scratch wound was created using a sterile 200 µL pipette tip.
Any cellular debris was removed by washing with Dulbecco’s phosphate-buffered saline
without calcium and magnesium (D-PBS; Cat No. SH30028.FS, HyClone, Cytiva), and then
growth medium was added. Images of the scratched areas were captured between 0 and
48 h using a light microscope (10× lens; AxioObserver D1, Carl Zeiss AG, Oberkochen,
Germany) equipped with AxioVision LE software (Carl Zeiss AG). The cell migration
distance was calculated by measuring the wound width, dividing it by two, and subtracting
this value from the initial half-wound width. For the 10× lens, 1 pixel is equal to 1.026 µm.
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4.11. Cell Adhesion Assay

The assay was performed using a colorimetric ECM Adhesion Array Kit (Cat No.
ECM 540, Merck Millipore), following the manufacturer’s instructions. Seventy-two hours
after FRMD5 silencing, cells were detached with HyQTase Cell Detachment Solution (Cat
No. SV30030.01, HyClone, Cytiva) and quenched with Dulbecco’s Modified Eagle Medium
(DMEM; Cat No. 10-013-CV, Corning, Inc.) supplemented with 5% BSA. Then, 100 µL of
cell suspension (1 × 106/mL in Assay Buffer) was added to each well. After a two-hour
incubation, the plate was washed with Assay Buffer and stained with Cell Stain Solution
for 5 min. The excess stain was removed by washing with deionized water, and the plate
was air-dried. After the dye solubilization with Extraction Buffer for 10 min, the absorbance
was determined using Synergy 2 Multi-Mode Microplate Reader (BioTek Instruments, Inc.,
Winooski, VT, USA) at 560 nm.

4.12. Cell Proliferation Assay

The assay was performed using BrdU-based colorimetric Cell Proliferation ELISA (Cat
No. 11647229001, Roche) following the manufacturer’s protocol. Five thousand siRNA-
transfected cells in a final volume of 100 µL were seeded in 96-well plates (8 replicates).
Forty-eight hours later, 10 µL of BrdU labeling solution was added to each well, and the
incubation was continued for an extra 7 h. The culture medium was removed, cells were
fixed, and DNA was denatured by adding FixDenat. Then, cells were incubated with
a BrdU-specific antibody for 90 min, and unbound antibody conjugates were removed
in three washing cycles. After 15-min of incubation with tetramethylbenzidine (TMB)
substrate, the absorbance was determined using the Synergy 2 Multi-Mode Microplate
Reader (BioTek Instruments, Inc.) at 370 nm with a reference wavelength of 492 nm and
finally expressed as the percentage of control (siNEG-treated cells).

4.13. Cell Viability Assay (MTS-Based Assay)

The assay was performed using the MTS CellTiter 96 AQueous Non-Radioactive
Cell Proliferation Assay (MTS; Cat No. G3581, Promega Corporation, Madison, WI, USA)
according to the manufacturer’s protocol. Five thousand siRNA-transfected cells in a
final volume of 100 µL were seeded in 96-well plates (12 replicates). After 48 h, 20 µL of
MTS reagent was added to each well, and the incubation was continued for an additional
3 h. In some experiments, 48 h post-transfection, the culture medium was supplemented
with doxorubicin (Cat No. T1020, TargetMol, Boston, MA, USA), at a final concentration
of 10 µM and MTS-based cell viability assay was performed 24 h later. The absorbance
readings were recorded at 490 nm with a reference wavelength of 650 nm using the Synergy
2 Multi-Mode Microplate Reader (BioTek Instruments, Inc.). The data are expressed as the
percent of control (siNEG-treated cells).

4.14. Cell Viability Assay (Trypan Blue-Based Assay)

Seventy-two hours after transfection, the trypan blue exclusion assay was performed,
as described elsewhere [32,33]. Briefly, all cells (both attached and unattached) were
harvested, centrifuged, resuspended in D-PBS (HyClone, Cytiva), and stained with trypan
blue dye (NanoEnTek, Inc., Seoul, Korea) at a final concentration of 0.2%. The number of
total and viable cells was determined using an automated cell counter (EVE; NanoEnTek,
Inc.). Results are expressed as the percent of viable cells.

4.15. Cell Viability Assay (Annexin V/Propidium Iodide-Based Flow Cytometry)

The viability of siRNA-treated cells (for 72 h) using the FITC Annexin V Apoptosis
Detection Kit I (Cat No. 556547, BD Biosciences, San Diego, CA, USA) was performed, as
suggested by the manufacturer. Briefly, all cells were mixed, washed with D-PBS (HyClone,
Cytiva), resuspended in Binding Buffer at a final concentration of 106 cells/mL. Afterward,
100 µL (1 × 105) of cell suspension was probed with 5 µL of FITC-conjugated Annexin V
and 5 µL of propidium iodide for 15 min protected from light. Then, 400 µL of Binding
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Buffer was added to each tube, and cells were analyzed by flow cytometry using a BD
Accuri C6 Plus flow cytometer and dedicated BD Biosciences software (v.1.0.23.1; BD
Biosciences).

4.16. Confocal Microscopy

The transfected cells (1 × 105) were seeded in 6-well plates containing uncoated
cover glasses in a final volume of 2 mL. Forty-eight hours later, the culture medium was
supplemented with doxorubicin (Cat No. T1020, TargetMol) at a final concentration of
10 µM, and the incubation was continued for a further 17 h. Next, the cells were fixed with
4% paraformaldehyde (Cat. No. 6148, Sigma-Aldrich) in PBS, as already described [31],
followed by permeabilization with 0.25% Triton X-100 (Cat No. X-100, Sigma-Aldrich) in
deionized water for 3 min. After washing with PBS, the cells were blocked with 2% BSA
(Cat No. 7906, Sigma-Aldrich) in TBST for 1 h and stained with phalloidin conjugated
with FITC (2 µg/mL in PBS; Cat No. P5282-.1MG, Sigma-Aldrich) and 4′,6-diamidino-
2-phenylindole dihydrochloride (DAPI; 0.4 µg/mL in deionized water; Cat No. P5282-
.1MG, Sigma-Aldrich) for 30 min and 2 min, respectively. After a final wash with PBS
and mounting using Fluorescence Mounting Medium (Cat No. S3023, Dako), the cells
were examined using the Zeiss LSM800 confocal unit supplied with a plan-apochromatic
63x/1.4 oil DIC M27 lens (Carl Zeiss AG), as previously described [31].

4.17. Spheroid Formation Assay

Forty-eight hours after transfection, 1× 104 of 0.05% trypsin-EDTA (HyClone, Cytiva)-
detached cells in a final volume of 100 µL were seeded in Costar ultra-low attachment 96-
well round-bottom plates (Cat No. 7007, Corning, Inc.) in complete medium (12 replicates).
Spheroid formation was monitored and visualized using AxioObserver D1 microscope
(10× lens; Carl Zeiss AG) and AxioVision LE software (Carl Zeiss AG) as previously
described [32]. The area of spheroids was calculated using ImageJ (NIH) software. The
results are presented as the percentage of spheroid area compared to controls (siNEG-
treated cells).

4.18. Statistical Analysis

All experiments were performed at least three times. Quantitative data are expressed
as mean ± standard deviation (SD). The data were analyzed using GraphPad Prism 6.0 for
Windows (GraphPad, Inc., San Diego, CA, USA). For statistical purposes, nonparametric
Mann–Whitney U test and one-way ANOVA followed by Bonferroni posthoc comparative
test or t-student test were used. Statistical significance was considered at p-values < 0.05.
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