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Abstract: Hepatic vessel skeletonization serves as an important means of hepatic vascular analysis
and vessel segmentation. This paper presents a survey of techniques and algorithms for hepatic vessel
skeletonization in medical images. We summarized the latest developments and classical approaches
in this field. These methods are classified into five categories according to their methodological
characteristics. The overview and brief assessment of each category are provided in the corresponding
chapters, respectively. We provide a comprehensive summary among the cited publications, image
modalities and datasets from various aspects, which hope to reveal the pros and cons of every method,
summarize its achievements and discuss the challenges and future trends.

Keywords: skeletonization; hepatic vessel; vessel extraction; review; medical image

1. Introduction

Skeletonization provides an effective and compact representation of an image object
by reducing its dimensionality to a centerline while preserving the original topologic and
geometric properties [1]. Hepatic vascular analysis plays a critical role in the diagnosis and
treatment of many liver diseases, classification of liver function regions and inquiry into
the nature of vascular growth. Hepatic vessel skeletonization serves as an important means
of hepatic vascular analysis, particularly because a hepatic vessel is a kind of thin tubular
object satisfying the growth principle of Murray’s law [2].

1.1. Liver Diseases and Vasculature

Concretely, the liver is an extremely vital organ in our human body, which is vividly
compared to being the “chemical plant” inside the body. It is an important functional
module to maintain the normal metabolism of human body, playing the role of oxidation,
regulating blood, storing liver sugar, manufacturing bile and so on [3,4]. Subsequently, the
liver is also the multiple “zone” of human diseases; in addition, liver diseases belong to
clinical common diseases and frequently occurring diseases. In particular, the incidence of
viral hepatitis, liver cirrhosis and liver cancer is relatively high, which seriously endangers
people’s health. Therefore, the medical community considers the prevention and treatment
of liver disease as a key research topic [5–9]. Among them, liver diseases have many
similar pathological changes, such as the rich vascular lesion, liver focal lesion, liver diffuse
lesion, calcified liver lesion, liver lesion with bleeding, intrahepatic tumor lesion and liver
hemangioma. The occurrence of these hepatic diseases and subsequent treatment process
will generally be involved in hepatic internal tree vascular tissues [7,10,11].

In terms of human liver diseases, liver cancer is one of the most common malignant
tumors. The incidence of liver cancer accounts for 43.7% of the global total, and the
number of deaths accounted for 45%. Its insidious onset, high recurrence rate and poor

Entropy 2022, 24, 465. https://doi.org/10.3390/e24040465 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24040465
https://doi.org/10.3390/e24040465
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-8883-3450
https://orcid.org/0000-0001-9339-8086
https://doi.org/10.3390/e24040465
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24040465?type=check_update&version=1


Entropy 2022, 24, 465 2 of 25

prognosis make liver cancer one of the cancers with the highest death rates. Currently,
the treatment methods of liver tumor mainly include surgical resection, chemotherapy,
radiotherapy, microwave ablation, radiofrequency ablation, etc. It is necessary to fully
consider the blood supply relationship and mutual position relationship of the lesion area
and vessels [12,13]. In addition, as the blood vessels inside the liver fill the entire liver as a
rich tree structure, the treatment of many liver diseases needs to involve the analysis and
treatment of blood vessels; of course, this also includes the treatment of vascular diseases
such as hemangioma [7,14,15]. At the same time, the division of liver functions, such as
the division of liver segment (see Figure 1) [16,17], the progress of liver segmentation and
resection, the division of hepatic portal vein and hepatic vein [18], etc., also rely on the
accurate analysis and calculation of vascular tissue.

Figure 1. Illustration of the liver segments, a visual implementation based on the criterion of
Couinaud’s liver segments. Couinaud scheme uses the horizontal portal vein axes and the three
vertical hepatic veins axes to divide the liver into eight functionally independent segments [16,17].
For liver surgical planning and treatment, the structure of hepatic vessels and their relationship to
tumors are of major interest [19].

Here are some examples of clinical applications. For example, in daily medical diagno-
sis, the hemodynamic characteristics of lesions that revealed, by contrast, enhanced image
scanning are an important basis for the organ diagnosis of livers. According to the blood
supply of the liver in the patient’s body, solid liver lesions can be effectively classified into
rich blood supply, moderate blood supply and poor blood supply. Rich blood supply is one
of the most common cases, which can lead to hepatocellular carcinoma, hepatic adenoma,
hepatic focal nodular hyperplasia, etc., and abnormal blood supply as well. For example,
in actual treatments, the clinical treatment plan for liver cancer generally includes arterial
chemical embolization, surgical resection, radiotherapy and chemotherapy, liver transplan-
tation, ablative surgery, etc. For precise preoperative planning, intraoperative navigation
and postoperative evaluation, physicians need to master the precise drainage and venation
information of liver profiles and internal vascular trees. During liver resection or liver
transplantation, doctors need to carry out a perioperative vascular evaluation of liver trans-
plantation and, at the same time, ensure sufficient residual liver ratio and corresponding
adequate blood supply after surgery to ensure the liver’s regeneration rate and the survival
rate of patients [20]. Moreover, postoperative liver regeneration is also closely related to the
growth of blood vessels [11]. Ablation surgery is the first process that addresses the tumor’s
periphery and increase border security; at the same time, ablation surgery addresses the
security near the melting range of the operation to avoid the main blood vessels so as not
to cause bleeding that can perhaps endanger the patient’s life [12,13,21]. At the same time,
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postoperative liver registration can also use the topology of vascular trees to carry out
relevant non-rigid registration to evaluate the postoperative treatment effect [22,23]. For
instance, the tumor boundary is very vague and difficult to define (see Figure 2). In this
case, the solution can be directly determined by locating the main vascular structure and
vein near the tumor. Moreover, this then ensures the implementation of a final surgical
plan without tumor segmentation to obtain tumor boundary information.

Figure 2. As the tumor boundary is very vague and difficult to define, accurate segmentation of
tumors cannot be achieved; the ablation treatment plan is performed according to the structure of
peripheral vessels.

In summary, vascular analysis is extremely important and urgent in evolution, preop-
erative diagnosis, intraoperative treatment and postoperative evaluation of various liver
diseases. Skeletonization of vasculature is a significant component of quantitative vascular
analysis and vascular topological localization in clinical practice.

1.2. Growth of Hepatic Vessels

Through the evolution of species driven by natural selection, the survival mode and
growth structure of many life forms are very similar and reflect the principle of energy
optimization [24,25]. Specific to the major medical field in this paper, to some extent, the
human body and organs inside the human body all follow the principle of minimum energy.
The development of medical events satisfy some type of energy minimum principle, and
the energy here is to point to the objective object induction of a non-negative function.
Biological vascular systems have proven to be an optimal system suitable for quantitative
analysis by researchers using mathematical topological methods [26,27]. The hepatic
vascular system discussed in this paper is one of the most representative biological vascular
systems [28,29].

Murray’s law is a basic empirical principle against the nature of the transmission
network and vasculature [2,30–32]. The derivation of Murray’s law can be obtained from
Poiseuille Law [33] and Navier–Stokes Equations [34]. The growth of hepatic vessels
follows Murray’s Law and satisfies the energy minimization principle. The research of
hepatic vessel skeletonization and hepatic vascular analysis can help in understanding and
probing the pattern of blood vessel growth [35,36] as well as clinical applications of liver
diseases. Moreover, the methods of hepatic vessel skeletonization can also be inspired by
the rule of Murray’s Law and energy minimization principle [18,37].

As mentioned above, on the whole, hepatic vessel skeletonization forms an essen-
tial step whether in clinical diagnosis and in treatment or in the exploration of growth
mechanism. Values and difficulties coexist. Hepatic vessels are similar to a tree growing
and diffusing throughout the entire liver, and hepatic vessel skeletonization is a valuable
but challenging job due to topological complexity, weak boundaries, local variability and
partial volume effects and so on. Many approaches have been proposed to deal with the
above-mentioned challenges. We survey current hepatic vessel skeletonization methods,
covering both early and recent literature related to hepatic vessel skeletonization algorithms
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and techniques. During the literature review, three databases (Google Scholar, PubMed
and Web of Science) were retrieved. To collect as many publications as possible, we used
a various combinations of keywords, including but not limited to hepatic vessel skele-
tonization, liver vessel skeletonization, liver vessel skeleton, hepatic vessel skeleton, vessel
extration, vessel analysis, CT, MRI, US and so on. The analyzed period covered results
from 2010 to 2022, except for several classical methods (i.e., level set and graph cut) in
this field. The following criteria were adopted to reject papers: (a) papers not written in
English; (b) research not related to methods of hepatic vessel skeletonization; (c) duplicates
of papers from the same research project; (d) papers in which tests and validations of
skeletonization methods were not given. The PRISMA flowchart can be seen in Figure 3.
As a result, we survey over 120 papers and divide hepatic vessel skeletonization algorithms
and techniques into two main categories and five specific categories. We introduce each
group of hepatic vessel skeletonization methods and briefly summarize papers by category.
We aim to provide a quick summary of the papers and refer interested readers to references
for detailed information.

To summarize, since the liver is a vital organ in the body, liver diseases have a signif-
icant impact on human health. Hepatic vessel skeletonization is an essential step in the
process of vessel analysis for disease treatment or vascular growth. Furthermore, in the
literature, a comprehensive survey on hepatic vessel skeletonization cannot be found yet.
Hence, the motivation of our work is to fill in gaps in this field. With this survey, we aim to
summarize the latest developments and the classical methods in the field of hepatic vessel
skeletonization; disclose the pros and cons of each method from multiple perspectives;
identify challenges and outline future trends; and simultaneously provide a brief guidance
of publications readers may be interested in. The following are the major contributions of
our work:

• To our knowledge, this is the first systematic review specifically on the skeletonization
of hepatic vessel, which fills in gaps in the literature.

• With a survey from more than 120 papers, we provide comprehensive introductions,
analyses and detailed statistics on recent and classical publications from different
perspectives (such as methods, image modalities and evaluation criteria) in the related
Sections, Tables and Figures.

• According to our survey and statistics, we reasonably put forward challenges and
future trends in the Discussion and Conclusion.

The remainder of our paper is organized as follows. In Section 2, the common medical
image modalities and public datasets for hepatic vessel analysis are given. Section 3 lists
the common evaluation criteria in the field of hepatic vessel skeletonization (analysis).
Section 4 presents an overall description regarding skeletonization approaches based on
vessel segmentation. Section 5 presents an overview of skeletonization approaches without
vessel pre-segmentation. In Section 6, we draw some conclusions with a discussion on the
issues related to techniques and algorithms for hepatic vessel skeletonization and speculate
some future work and trends in this research domain.
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Figure 3. PRISMA flow diagram.

2. Image Modality for Hepatic Vessels

Medical imaging has long been a crucial method for clinical diagnosis. In recent years,
hardware design and software development have greatly promoted the development of
medical imaging. The purpose of medical image analysis is to highlight some characteristic
information in an image or to classify images. The significance is to help the radiologist
or clinician conduct accurate diagnosis and treatment of the disease [38]. In addition,
the quality of medical imaging and the performance of medical image analysis is quite
important since it directly affects the process of clinical diagnosis and treatment. Table 1
illustrates the main components of medical imaging systems, including Computed To-
mography (CT), Magnetic Resonance Imaging (MRI), ultrasound (US), Optical Coherence
Tomography (OCT), Positron Emission computed Tomography (PET) and X-ray. The six
image modalities have different strengths and application scenarios. For instance, the types
of medical imaging for the liver blood vessels are CT [39–44] and MRI [45–50] in most cases
and then US [51–53]. Moreover, the process of medical imaging for hepatic vessels usually
requires contrast agents for image enhancement; otherwise, the visibility of blood vessels
will be very poor. Only a few researchers [54] chose non-contrast images and conducted
research experiments on hepatic vessels using X-ray [55].

Some classical public datasets for the medical image analysis of liver and hepatic
vessels such as MICCAI-Sliver07 [56], LiTS [57], CHAOS [58], Vascular Synthesizer [35],
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MSD-Task08 [59], 3D-IRCADb-01 [60] and TCGA-LIHC [61] can be acquired from their
references and websites, for which their summaries can be observed in Table 2. The MICCAI-
Sliver07 dataset [56] was derived from the Segmentation of the Liver Competition 2007
(Sliver07) as part of the workshop in conjunction with MICCAI 2007, which is composed
of 30 3D CT volumes (20 Training + 10 Testing). The LiTS dataset [57] came from Liver
Tumor Segmentation Challenge organised in conjunction with ISBI 2017 and MICCAI
2017, in which the training dataset contains 130 contrast-enhanced CT scans and the test
dataset contrast-enhanced 70 CT scans. CHAOS [58] was derived from the Combined
(CT-MR) Healthy Abdominal Organ Segmentation challenge held in ISBI 2019, which is a
multi-organ and cross-modality dataset consisting of 40 CT volumes and 120 MRI volumes.
The Vascular Synthesizer [35] is a dataset for simulating vascular or other tubular tree-like
structures, as well as its accompanying software. It contains 10 groups of 12 volumes and
can be used to simulate and conduct analysis for the volumetric images of vascular trees
with bifurcation locations, branch properties and tree hierarchy. MSD-Task08 [59] is mainly
for hepatic vessels as part of the Medical Segmentation Decathlon, which contains 443 3D
volumes (303 Training + 140 Testing). The 3D-IRCADb-01 dataset [60] is composed of the
3D CT-scans of 10 women and 10 men with hepatic tumours in 75% of cases, for which
the total number is 22 CT volumes (20 Training + 2 Testing). The Cancer Genome Atlas
Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset [61] is part of the effort to build
a research community focused on connecting cancer phenotypes to genotypes, which is
composed of three kinds of modalities, 97 participants and 237 volumes.

To sum up, most publications discuss the medical image analysis of hepatic vessel in
CT, MRI and US images or their cross-modal types [52,62,63], which can be used for studies
in image registration and image fusion as well as quantitative analysis.

Table 1. Main image modalities in medical imaging [38].

Imaging System Imaging Method Imaging Basis Advantage

CT Mathematics reconstruction Absorption coefficient High density resolution
MRI Mathematics reconstruction A variety of parameters Multiple functions
US Mathematics reconstruction Acoustic impedance interface Safe, dynamic and repetitive
OCT Mathematics reconstruction Based on interferometer principle High resolution
PET Mathematics reconstruction Using positron radionuclide labeling Accurate location and high clinical value
X-ray Transmission projection Density and thickness Strong penetrability

Table 2. Main public datasets of liver and hepatic vessels. MICCAI-Sliver07, the Segmentation of the
Liver Competition 2007 (MICCAI Workshop); LiTS, Liver Tumor Segmentation; CHAOS, Combined
(CT-MR) Healthy Abdominal Organ Segmentation; MSD, Medical Segmentation Decathlon; 3D-
IRCADb-01, 3D Image Reconstruction for Comparison of Algorithm Database; TCGA-LIHC, The
Cancer Genome Atlas Liver Hepatocellular Carcinoma.

Name Time Modality File Format Number

MICCAI-Sliver07 [56] 2007 CT MetaImage 20 Training + 10 Testing
LiTS [57] 2017 CT Nifti 130 Training + 70 Testing
CHAOS [58] 2019 CT+MR DICOM 40 CT+120 MRI
Vascular Synthesizer [35] 2013 3D synthetic data MetaImage 120
MSD-Task08 [59] 2018 CT Nifti 303 Training + 140 Testing
3D-IRCADb-01 [60] 2010 CT DICOM 20 Training + 2 Testing
TCGA-LIHC [61] 2016 CT+MRI+PET DICOM 237

3. Evaluation Criteria

Evaluating completed experiments of hepatic vessel skeletonization (analysis) makes it
possible to compare the performance of corresponding methods and also to improve them
or develop new and better solutions. This section presents the frequently used performance
evaluation metrics implemented in all surveyed studies, which are summarized in Table 3.
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Table 3. Evaluation criteria and performance measures for hepatic vessel skeletonization (analysis).
True positives (TP) are pixels classified correctly as positive, false positives (FP) are pixels classified
incorrectly as positive, true negatives (TN) are pixels classified correctly as not positive and false
negatives (FN) are pixels classified incorrectly as not positive.

Metrics Formula Description

Dice [64] Dice = 2∗TP
2∗TP+FP+FN Similarity between two sample sets.

Accuracy [65] Accuracy = TP+TN
TP+TN+FP+FN

Proportion of detected true samples that are actually
true.

Sensitivity; recall; true
positive rate (TPR) [66] Sensitivity = TP

TP+TN Proportion of positives that are correctly identified.

Specificity [66] Specificity = TN
FP+TN Proportion of negatives that are correctly identified.

False positive rate (FPR) [67] FPR = FP
FP+TN

Ratio of the number of negative samples wrongly
categorized as positive (FP) to the total number
of actual negative samples.

False negative rate (FNR) [67] FNR = FN
FN+TP

Ratio of the number of positive samples wrongly
categorized as negative (FN) to the total number
of actual positive samples.

Root mean standard
error (RMSE) [68] RMSE =

√
1
|R| (∑

|R|
i=1|dR|)

Measure of the average squared difference between the
result R and the actual value T (ground truth), where
dR denotes the distances from points R to points T.

Hausdorff distance (HD) [60]
dH(A, B) = max{supa∈A infb∈B d(a, b),
supb∈B infa∈A d(a, b)}

Overlapping index, which measures the largest
Euclidean distance between two contours A and B
and vice versa, computed over all pixels of each curve.

4. Skeletonization Approaches Based on Vessel Segmentation

A graphical representation of the overall classification of techniques and algorithms
for hepatic vessel skeletonization is shown in Figure 4, which helps readers gain a compre-
hensive preliminary understanding at first. Approaches of hepatic vessel skeletonization
follow a uniform pipeline, as shown in Figure 5, where the input volume of CT slices acts
as a demo of multiple image modalities mentioned in the previous section. Techniques
and algorithms for hepatic vessel skeletonization can be grouped into two major categories
based on their calculation schemes and input types: (A) skeletonization approaches based
on vessel segmentation and (B) skeletonization approaches without vessel segmentation.
The first category (A) will be given an overall description in the following paragraphs of
this section, and then a comprehensive introduction of the second category (B) will be given
in the next section. As demonstrated in Figure 5, category A contains entire stages, while
the workflow of category B will skip the third step.
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Figure 4. Classification of techniques and algorithms for hepatic vessel skeletonization in medical images.

Figure 5. The schematic diagram of a uniform pipeline of hepatic vessel skeletonization. It represents
two classes of skeletonization approaches (Category A and B). Category A: from Step 1 to Step 4, the
datailed skeletonization methods executed between Step 3 and Step 4. Category B: Step 3 will be
skipped, and the skeletonization outputs can be directly computed from the image data of Step 1 or
Step 2. Note that the 3D visualization of Step 2, Step 3 and Step 4 can be implemented by ITK [69],
VTK [70] and MITK [71].

Skeletonization approaches are based on vessel segmentation; that is, the liver blood
vessels are segmented and extracted from the image in advance, and then the skeleton
is extracted based on the results of blood vessel pre-segmentation. Before blood vessel
extraction, with the help of liver segmentation algorithms, the liver parenchyma is generally
extracted from the initial input image such as the DICOM gray scale so as to obtain the
effective Region of Interest (ROI) of blood vessel segmentation, which is convenient to the
next step of image processing. Based on the obtained binarization image results of liver vas-
cular segmentation, the vascular skeleton could be extracted by the representation methods
described below. Before we delve into the details of every skeletonization approach based
on vessel pre-segmentation, we provide a brief overview of hepatic vessel segmentation
approaches, which can be divided into two classes of traditional methods and machine
learning-based methods.



Entropy 2022, 24, 465 9 of 25

4.1. Hepatic Vessel Segmentation

The main approaches of hepatic vascular pre-segmentation are briefly described in
this section. Currently, with the rapid development of deep learning techniques, the
main approaches can be roughly grouped into traditional methods and machine learning-
based methods [72–74].

The traditional methods are mainly represented by the combination of a Hessian
matrix for vascular multi-scale enhancement and threshold algorithm [75–77] or active
contour model (ACM) [45,78–81]. The Hessian matrix is a matrix composed of image pixels
corresponding to second derivatives in an image space , which represents the gradient
change degree of image gray scale. For the actual three-dimensional medical image, the
Hessian matrix has three eigenvalues and three corresponding eigenvectors. The three
eigenvalues represent the anisotropy of the image changes in the direction indicated by the
three eigenvectors. The point structure in the image has isotropy, while linear structure
has anisotropy. Therefore, the linear vascular structure in the image can be enhanced by
the filter function designed by the eigenvalue calculation of the Hessien matrix. Then,
based on the results of vascular enhancement, classical threshold algorithms such as
region growing [82–84] or graphcuts [85–87] can be used to complete the task of vascular
segmentation. Due to the complexity of vascular structure of hepatic vessels, the imaging
quality of small vessels and other factors, it is difficult to guarantee the continuity and even
correctness of vascular segmentation results, which is one of the main problems faced by
traditional vascular segmentation methods, and of course, it is also the focus of machine
learning-based methods in recent years.

Two groups of machine learning-based methods can be distinguished: supervised and
unsupervised. Supervised learning uses the dataset that contains annotated datas repre-
senting the expected answer. In unsupervised learning, on the contrary, no answers are
provided. For instance, Kitrungrotsakul et al. [43] proposed a multipathway CNN architec-
ture for automatic hepatic vessel segmentation, for which the learning process was carried
out for three planes in space to fully extract the features. Kehwani et al. [88] presented a
multi-task 3D fully convolutional neural network for reconstructing the vessel tree. In [89]:
The authors exploited 3D-U-Net-based methods [90,91] for extracting hepatic vessels with
incomplete annotations, and they designed a penalty function for incorrectly classified
voxels to improve the network in terms of recognizing vessels with weak boundaries and
low contrast. In [92], the authors specifically designed the loss function of preserving
continuity in this vascular segmentation method. The discontinuity of vascular region
generally includes the discontinuity of the boundary contour of vascular region and the
discontinuity of the interior region. In order to deal with the problem of the segmentation
accuracy of the discontinuity of vascular segmentation, Chu et al. [93] put forward two
kinds of solutions. Using the direction field information starting from the nearest contour
point, the feature inside the region is replaced by the feature of the pixel near the contour
so as to improve the distinguishing ability of the feature near the contour and improve
segmentation accuracy. For the gray discontinuities inside the region, the authors designed
the edge detection operator to locate these discontinuities and then strengthened the weight
of the corresponding loss function. In [94], Wang et al. added a distance transformation
module for tubular structures to the deep learning model to guide and optimize the corre-
sponding network model training, which improves the generalization ability of the vessel
segmentation task and increases the geometric measurement ability of tubular structures. In
general, this series of machine learning methods has made methodological improvements
in the continuity of vascular segmentation results. However, for deep learning methods
for vascular segmentation problem scenarios, the biggest difficulty is the acquisition of
training data [95]. Vascular annotation is very complicated and difficult, and small blood
vessels are hard to be marked; hence, for any network model, in its inference process, the
recognition and segmentation of small blood vessels will also be greatly weakened.

With the exception for the main methods of traditional methods and machine learning-
based methods above, in the entire workflow of hepatic vessel segmentation, various
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preprocessing methods [96,97] are employed because the medeical imaging techniques
(i.e., CT, MRI, US) exploited will produce images with different resolution and contrast.
Moreover, postprocessing methods are applied to refine results; remove noise and minor
artifacts that do not correspond to hepatic vessels; and connect incomplete vessel sections.
Some reseachers have proposed approaches that combine traditional methods and machine
learning-based methods, such as using traditional methods as a postprocessing to refine
the results of learning-based methods [74]. Some skeleton-based methods [73,98] were
also proposed to return more continuous and topological segmentation results of blood
vessels, and readers can refer to the references for more concrete information. The algorithm
performance statistics of the surveyed traditional methods and machine learning-based
methods can be seen in Table 4.

Table 4. The algorithm performance statistics of the surveyed traditional methods and machine
learning-based methods of hepatic vessel segmentation.

Methods Datasets Dice (%) Accuracy (%) Sensitivity (%)

Paetzold et al., 2019 [92] Vascular Synth 98.73 99.94 -
Wang et al., 2020 [94] MSD-Task08 63.43 - -
Kitrungrotsakul et al., 2019 [43] 3D-IRCADb-01 87.9 - 91.8
Pock et al., 2005 [77] non-public - 54.0 -
Huang et al., 2018[89] 3D-IRCADb-01 and Sliver07 66.5 96.9 75.8
Isensee et al., 2018 [91] MSD-Task08 63.00 - -
Keshwani et al., 2020 [88] 3D-IRCADb-01 92.0 - 96.0
Sangsefidi et al., 2018 [85] Vascular Synth 93.73 93.74 93.68
Frangi et al., 1998 [76] 3D-IRCADb-01 66.4 - 61.8
Alhonnoro et al., 2010 [82] non-public - 87.0 -
Ronneberger et al., 2015 [90] 3D-IRCADb-01 72.3 - 75.8
Lu et al., 2017 [45] non-public 72.74 - -
Jegelka et al., 2011 [86] 3D-IRCADb-01 75.0 - 77.6
Chu et al., 2020 [93] self-collected 90.17 - -
Boykov et al., 2006 [87] 3D-IRCADb-01 33.4 - 41.6

4.2. Morphological Thinning Algorithm

Based on the binarization image results after vascular pre-segmentation, the entire
image consists of only a foreground and background. The vascular region is the foreground,
and its pixel value is generally set to be 1, while non-vascular region is the background
and its pixel value is generally set to be 0. Therefore, it is much easier to carry out further
vascular skeleton extraction based on the vascular region in the foreground, among which
there are many classical methods in the literature. Here, an overview of the relevant
methods of morphological image processing is provided.

It is very important to thin out binary images in target recognition. The core of parallel
thinning algorithm is the thinning algorithm. The parallelism is a result of the parallel
program and it can be developed in the structure of the algorithm to greatly improve the
efficiency of the original thinning algorithm. Morphological thinning (that is, the input of
the binary image) the foreground target area strips the contour points layer by layer, but it
still retains the original shape until the image centerline skeleton is obtained. The thinning
algorithm is generally implemented by morphological thinning [99–102], erosion [103],
Voronoi algorithm [104,105] or distance transform [106,107] based on the connected do-
main, in which the algorithm of [108] is the most classical one. It deletes or retains the
corresponding pixels based on the distribution of pixels in eight neighborhoods and finally
reasonably ensures connectivity after thinning and maintains the basic morphology of the
original image, but the thinning results cannot be strictly guaranteed to be a single pixel.
In 3D medical images, it is impossible to guarantee the property of a single voxel with
respect to the thinning results, which brings difficulties to post-processing such as blood
vessel classification. Therefore, many subsequent scholars put forward corresponding
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improvement schemes for these types of problems. For more information on Hilditch,
Pavlidis, Rosenfeld and other thinning algorithms, please refer to [109].

4.3. Path Planning Algorithm

Based on the obtained binarization images of hepatic vessel segmentation, the path
search based on Euclidean distance or Manhattan distance can also be performed directly
for the foreground area where the blood vessels are located. Many classical path planning
algorithms can be transferred to binary images for vessel skeleton searches based on vessel
segmentation results. This section focuses on the classic Dijkstra algorithm, A* algorithm ,
RRT* algorithm and their present variants.

The Dijkstra algorithm [110,111] is a shortest-path algorithm proposed by Edsger
Wybe Dijkstra in 1956. This method is a classical single-source shortest path algorithm,
which is used to calculate the shortest path from the initial node to other nodes. Combined
with the breadth-first search idea, its main characteristic is using Euclidean distance as the
cost to measure the path’s length, taking the starting point as the center to expand to the
outer neighborhood iteratively, until extension to the end point. The Dijkstra algorithm
constructs graph G = (V, E) in the computational domain. Assuming that the length (i.e.,
weight) of each edge Ei is wi, according to Algorithm 1, after iterative searcing, the shortest
path from the initial vertex s relative to other points (including the target point) can be
calculated. Thus, the final vessel skeleton can be obtained through path planning and the
corresponding constraints.

Algorithm 1: Dijkstra Framework.
Input: G, wi, s
Output: Final Shortest Path

1 INITIALIZE-SINGLE-SOURCE(G, s) ;
/* Initialize, set d(s) to be 0, other infinite */

2 S← ∅ ;
3 Q← s ;
4 while Q 6= ∅ do
5 u← EXTRACTMIN(Q)
6 end
7 S← S ∪ u;
/* ADJu denotes the neighbor of u, updating by comparing the

shortest distance */
8 foreach Vertex v ∈ ADJu do
9 UPDATE(u, v, wi)

10 end

The A* algorithm [112–114] was formally proposed by Peter E. Hart et al. in 1968,
which integrated the advantages of the Dijkstra algorithm. The A* algorithm added
heuristic functions to guide the path search to improve the efficiency of the algorithm.
At the same time, by using the cost function, an optimal path is guaranteed to be found,
for which its frequently used cost metric is the Manhattan distance or is mathematically
defined as L1 norm. Compared with the Dijkstra algorithm, the A* algorithm adds the cost
evaluation function of distance from the target point as inspiration. The cost estimation
function of the A* algorithm can be expressed as Equation (1), where f (n) represents
the cost estimation from the starting point through any point n to the target point. g(n)
represents the actual distance from the starting point to any point n, h(n) represents the
estimated distance from any point n to the target point and Ω is the computational domain
of the entire image space. According to the formula, if g(n) is equal to 0 (that is, only the
evaluation function h(n) from any point n to the target is calculated, but the distance from
the starting point to the vertex n is not calculated), then the algorithm is transformed to a
search using greedy strategy, and the optimal solution may not be obtained. If h(n) is less
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than or equal to the actual distance between vertex n and the target point, then the optimal
solution can be obtained. The smaller h(n) is, the more nodes need to be calculated, and
the lower the efficiency of the algorithm. If h(n) is 0, only the shortest path g(n) from the
starting point to any point n is needed, and no evaluation function h(n) is calculated. In this
case, the Dijkstra algorithm needs to calculate the most vertices. In general, the difference
between the A* algorithm and the Dijistra algorithm is whether there is no valuation h(n)
as a heuristic, and the Dijistra algorithm is equivalent to the case where the valuation
is 0 in the A* algorithm. These two path search algorithms are two classical methods in
the development history of path planning methods and have a profound influence on
many subsequent research methods in this field. Currently, with the development of deep
learning, more deep learning model encoders are constructed to guide the path search and
the classic method of fusion research [115,116].

f (n) = g(n) + h(n), n ∈ Ω (1)

Rapidly exploring the Random Tree Star (RRT*) algorithm [117,118] is currently a
highly used path planning approach, and its search mode of asymptotic optimal random
tree expansion is conducive to solving path planning problems efficiently in many un-
known environments. It is a classical graph algorithm for searching non-convex and high
dimensional space, which has many variants of the RRT* family [119–121] for various appli-
cation scenarios and particular functions. The principle of RRT* is to start with the starting
point xinit and randomly sample some points xrand in the environment, which can form a
pathway between the father and the child without obstacles, and the final sampling point
reaches the target point, and the relevant father-and-son points are connected to form the
final path trajectory. The resulting random tree of RRT* forms a graph, which is convenient
for subsequent expansion. Sampling mechanism samples randomly, and sampling points
added to the path tree until the region near the end point are explored. Obviously, the
RRT* method ends up with a random tree that can be defined as graph G = (V,E), where
the reselection of the parent node and rewiring keep the distance cost of the corresponding
path lower, so as to chase the global optimization of the entire random tree.

In Figure 6a, the percentage the pie chart of different methods in the category of
skeletonization approaches based on vessel pre-segmentation is plotted. It is obvious
that 75% of the problems were addressed by thinning-based methods after vessel pre-
segmentation, due to the better continuity-preserving of thinning methods. The path
planning method accounts for the least, but it has potential in the scenarios of vascular
surgery navigation. A summary of methods, performance measures, pros and cons in
this category of skeletonization approaches based on vessel pre-segmentation is listed
in Table 5.
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Table 5. Summarization of techniques and algorithms for Hepatic Vessel Skeletonization (evaluation
metrics are provided in Table 3).

References Methods Datasets Metrics Results Pros and Cons

Lebre et al., 2018 [16] 3D thinning 3D-IRCADb-01
accuracy = 0.97
specificity = 0.98
sensitivity = 0.69

full-auto, but affected
by vessel segmentation

Chen et al., 2016 [122] 3D thinning non-public visualization
full-auto, but affected
by vessel segmentation

Chung et al., 2018 [123] distance ordered thinning non-public Dice = 0.96
full-auto, but affected
by vessel segmentation

Pan et al., 2020 [124] 3D iterative thinning non-public visualization
full-auto, but affected
by vessel segmentation

Zhang et al., 2020 [37] Pixel-RRT* Sliver07 and LiTS
HD = 4.816, 2.829,
6.241, 5.984
visualization

ensure continuity,
but semi-auto

Sangsefidi et al., 2018 [85]
axes enhancement
and thinning Vascular Synth

Dice = 0.93
specificity = 0.94
sensitivity = 0.93

full-auto, but affected
by vessel segmentation

Yan et al., 2017 [18] distance transform non-public visualization
full-auto, but affected
by vessel segmentation

Alirr et al., 2020 [125] fast marching method 3D-IRCADb-01
distance error =
1.65, 1.77 mm

full-auto, but affected
by vessel segmentation

Zhao et al., 2018 [126] path planning non-public
cosine angle = 73.76
arc length = 234.19 mm

ensure continuity, but
not strict center axes

Sangsefidi et al., 2017 [127]
axes enhancement
and threshold Vascular Synth

Dice = 0.93
TPR = 0.96

full-auto, but
weak robustness

Dagon et al., 2008 [128]
geodesic distance
transform non-public visualization

full-auto, but too
many hyperparameters

Drechsler et al., 2010 [129] 3D thinning non-public visualization
full-auto, but affected
by vessel segmentation

Merveille et al., 2017 [130] 3D thinning 3D-IRCADb-01
accuracy = 0.90
specificity = 0.97
sensitivity = 0.20

full-auto, but affected
by vessel segmentation

Ibragimov et al., 2017 [131] distance ordered thinning non-public Dice = 0.83
full-auto, but affected
by vessel segmentation

Sato et al., 1997 [132] 3D thinning 3D-IRCADb-01
accuracy = 0.89
specificity = 0.97
sensitivity = 0.24

full-auto, but affected
by vessel segmentation

Mueller et al., 2008 [37,133] fast marching method Sliver07 and LiTS
HD = 69.311, 3.162,
81.025, 81.025
visualization

ensure continuity,
but conventional
grid search

Wang et al., 2016 [134]
thinning and connection
cost computation non-public

skeleton coverage
= 0.55
mean symmetrical
distance = 12.7 mm

full-auto, but
affected by vessel
pre-segmentation

Wu et al., 2013 [135]
3D thinning and
linear interpolation non-public visualization

full-auto, but
affected by vessel
pre-segmentation

Kang et al., 2014 [136]
Laplacian-based
contraction non-public accuracy = 0.97

full-auto, but not
strict single voxel
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Figure 6. (a). Percentage pie chart of different methods in the category of skeletonization approaches
based on vessel presegmentation. It is obvious that 75% problems were addressed by thinning-based
methods after vessel pre-segmentation. (b). The percentage pie chart of different methods in the
category of skeletonization approaches without vessel presegmentation, where the classical Fast
Marching Method is the most commonly used. (c). Percentage pie chart of different medical image
modalities used in the field of hepatic vessel skeletonization. It can be observed that the research work
regarding US and cross modality images may increase in the future. (d). Overview of the number of
publications in the field of hepatic vessel skeletonization. It can be found that algorithms based on all
kinds of thinning methods occupy the majority of skeletonization applications all the time. With the
rapid development of deep learning (DL), the number of DL-based methods is increasing.

5. Skeletonization Approaches without Vessel Pre-Segmentation

The skeleton extraction method without vessel pre-segmentation bypasses the stage
of vessel pre-segmentation and avoids a series of problems caused by the error of vessel
pre-segmentation results. Skeleton extraction without vessel pre-segmentation is mainly
based on the idea of the minimal path method. Currently the existing minimization path
methods are mainly represented by the fast marching method [137,138], gray weighted
distance transform [139] and Pixel-RRT* [37]. The overview and discussion of them are
as follows.

5.1. Fast Marching Method

Fast marching method is an efficient numerical method of solving Eikonal Equation
(See Equation (2)) [138,140], which was proposed together with the level set curve evolution
method. The functional equation is a kind of nonlinear partial differential equation, which
can be regarded as a kind of approximate wave equation:

F|∇T| = 1, (2)

where F represents the normal speed, and T represents the shortest time required for the
curve to reach each point in the computational domain at the speed of F. When F = 1,
the solution of the functional equation represents the distance field in the computational
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domain. The fast marching method uses a special difference quotient for approximation,
and the first order approximation of Equation (2) is the following Equation (3):

|∇T|2 ≈ (max{−∆+xT, ∆−xT, 0})2 + (max{−∆+yT, ∆−yT, 0})2, (3)

where ∆+x denotes the first-order forward difference operator for the independent variable
x, and ∆−x denotes the first-order backward difference operator for the independent
variable x. Variable y is in accordance with x. If T1 is the smaller neighborhood in the x
direction, T2 is the smaller neighborhood in the x direction, t is the value to be solved and
the grid space step of the image is set to 1. Equation (3) can be further deduced as follows.

(max{t− T1, 0})2 + (max{t− T2, 0})2 = 1/F2 (4)

By calculating the above equation, the solution for t is the distance of each update of
fast marching method, which has a similar logic to Dijkstra’s algorithm. The framework of
fast marching method is basically the same as Algorithm 1. The difference between them
is that the Dijkstra algorithm updates according to the Euclidean distance between grid
nodes, while the fast marching algorithm is updated according to the numerical solution t
of Equation (3), which is closely related to the pixel values of grid nodes and corresponding
nodes. The fast marching algorithm integrates the reciprocal of the pixel intensity of the
image to simulate the flow rate of the wave equation so as to solve the problem that the
classical Dijkstra algorithm cannot directly deal with gray scale images in path planning.

5.2. Gray Weighted Distance Transform

Distance transform [106] has many applications in morphological operation, graphic
image processing, computer vision and other fields, such as skeleton extraction, target
refinement, template matching and so on. However, the general distance transform requires
binarization of the image, which will lose some useful information in the image and increase
the subsequent risk caused by the error of binarization results. Because the pure distance
transform is the shortest distance from the foreground to the background, the physical
meaning represented by the gray information of image texture will, thus, be lost. Therefore,
Soille et al. fused image gray scale information on the basis of distance transform and
presented the Gray-Weighted Distance Transform (GWDT) [139,141]. The cost function of
GWDT is calculated by Equation (5):

t f (p) =
N

∑
i=1

f (pi−1) + f (pi)

2
=

f (p0)

2
+

f (pN)

2
+

N−1

∑
i=1

f (pi), (5)

where pi is the location of pixel point i on the path estimated in the image grid domain,
f (pi) denotes its pixel value and the total amount is N. t f (p) represents the total cost of
a path in the image grid computing domain. It is easy to see that the cost of the GWDT
method is calculated by summing the pixel values of the beginning and end nodes on the
entire path to be measured by 1

2 with the pixel values between the beginning and end of
the path. By the simple definition of Equation (5), the measurement of image and distance
fusion can be added on the basis of distance transform, which is used to evaluate the pixel
distribution and path cost of images as well as binary images. The GWDT method also
uses the basic framework of the Dijkstra algorithm Algorithm 1.

5.3. Pixel-RRT*

Pixel-RRT* [37] is the first variant of RRT*-based methods for gray scale image pro-
cessing owing to its proposed pixel-based cost metric (Defined in Equations (6) and (8)),
which is motivated by the scalable incremental-search-based RRT* and the least-energy
principle of hepatic vasculature. Pixel-RRT* follows the general algorithmic framework
of RRT* [117,118], and the authors made reasonable redesigns in three modules based on
the general RRT*. Pixel-RRT* consists of a novel cost metric of out-of-grid image space,
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a pixel-distributed random sampling operator, a fast multi-goal module and the varia-
tional refinement models. Without vessel pre-segmentation, Pixel-RRT* can track down
the rationally bifurcated vascular trajectories rapidly and ensure energy minimization and
topological continuity. Pixel-RRT* is applicable to two-dimensional and three-dimensional
tasks uniformly, as the algorithm needs to change nothing but the dimension.

E =
∫

I(x) dl(x). (6)

The pixel-distributed random sampling module reads as follows:

xrand=


Line(xgoal(s))•Pp, i f pr > 1− a,

Uniform(χ)•Pp, i f
{

pr≤1−a
b or

@path(xinit, xgoal(s)),
Ellipsis(xinit, xgoal(s))•Pp, otherwise.

(7)

where pr is a random number in [0, 1]. Notations a and b represent user-given constant vari-
ables similar with RT-RRT* [121], and Pp denoted the probabilistic operator. Line(xgoal(s))
samples randomly in the line between xgoal(s) and the node closest to xgoal(s). Uniform(χ)
samples the entire search environment uniformly. Ellipsis(xinit, xgoal(s)) samples inside
an ellipsis such that the trajectory from xinit to xgoal(s) is inside it. Readers can refer
to [120,121] for more detail on how to choose the parameters and samples in the ellipsis.

The novel cost metric of [37] (Equation (6)) is a continuous energy calculation of edges
E based on line l(x) and intensity I(x) of it. With pixel-distributed random sampling
(Equation (7)), Pixel-RRT* builds an out-of-grid G, for which its edges E own an arbitrary
degree of freedom without the constraints of meshed space of the input image. Conse-
quently, the calculation of Equation (6) is continuous and in an arbitrary direction; thus,
the pixel-based cost metric is a type of flexible criterion that is the same as the Euclidean
distance. The cost function of Pixel-RRT* is defined in Equation (8) from continuity to
discretization based on Equation (6):

Cp = Eexternal + λEinternal , (8)

where the following is the case:

Eexternal =
N

∑
i=1

exp(
|P0 − Pi|n
S ), (9)

Einternal =
N−1

∑
i=1

exp(
|Pi − Pi+1|n

S ), (10)

and n ∈ Z+, λ ∈ [0, 1], S is a scale factor, P0 is the notation of starting point, Pi is the pixel
value involved by the connecting line between two vertices of tree G, N is the total number
of points on the line after subdivision interpolation and n is usually set to 1. The cost of
edges in the tree G can be measured only by considering image intensity, which avoids
the drawback of distance-based cost for image analysis. As is demonstrated in Figure 7,
the pixel values of orange points are Pi of Equation (8), and the total number of them is
N. According to Figure 8, we find that the pixel-based cost metric can measure the pixel
distribution of a gray-scale image, while the metrics of Euclidean distance and Manhattan
distance overlooked the main image features.

Pixel-RRT* can be considered to be a new fast and scalable minimal path method
without conventional grid neighborhood searchs, which can be employed in the field such
as hepatic vessel skeletonization without vessel pre-segmentation. Compared with the
conventional grid neighborhood expansion of the fast marching method and gray-weighted
distance transform, Pixel-RRT*-related methods are a new type of minimal path method
based on the scalable graph search. Consequently, the local minimum can be avoided, and
the expansion performance of the algorithm can be further improved as well.
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Figure 7. Illustration of the computation of cost function. Line AB represents the arbitrary edge E of
random tree G. The orange points lying on AB are acquired through subdivision interpolation, for
which its total number is N. The pixel values Pi of orange points are determined by the located cyan
pixel blocks.

Figure 8. The comparison of cost maps among pixel-based cost metric (b), the classical Euclidean
metric (c) and Manhattan metric (d). Cost computation from every pixel points on the same gray-scale
image to the same start point. Calculation of (a) is based on |P0 − Pi|n of Equation (9). Calculation of
(b) is based on Equation (8).

In Figure 6b, the percentage pie chart of different methods in the category of skele-
tonization approaches without vessel pre-segmentation is demonstrated. It can be observed
that the classical Fast Marching Method is the most commonly used, and as a new kind
of minimal path method, Pixel-RRT* may be a potential skeletonization method owing to
its performance advantage. According to statistical comparisons in Figure 6d and Table 5,
and the pros and cons of two broad categories, perhaps the development potential of
skeletonization approaches without vessel pre-segmentation will be better.

6. Discussion and Conclusions

Although hepatic vessel skeletonization has been extensively studied, the relevant
research study is still a challenge, due to the thin and complex tree-like structure hepatic
vessels and imaging factors, etc. We have surveyed over 120 papers, most of which were
published in the last four to five years, and some of them belong to the highly cited
classic articles. We generally classify these methods into two broad categories and five
small categories according to their methodological characteristics. In this review, we
describe the relationship between skeletonization and vessel growth and introduce the
contribution of vessel skeletonization to clinical disease. In addition, we also provide a brief
summary on hepatic vessel segmentation, as vessel segmentation and skeletonization are
usually inseparable. In detail, vessel segmentation can employ skeleton-based approaches,
and in turn, most skeletonization methods are based on the vessel segmentation results.
The overview of typical techniques and algorithms for hepatic vessel skeletonization
according to our category rules can be observed in Table 5, where the approach in [16]
shows better performance.

In Figure 6, we provide an overview of the statistis of the methods, medical images
and articles. It is observed that 75% problems were addressed by thinning-based methods
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after vessel presegmentation. The Fast Marching Method is the most frequently used
approach in the category of hepatic vessel skeletonization without vessel pre-segmentation.
The experiments are mainly conducted with CT and MRI images for a long period of time,
which may counter a certain bottleneck according to the terrific metrics results of Table 5.
Thus, the research work regarding US and cross modality images may increase in the future.
In Figure 6d, it can be observed that algorithms based on all types of thinning methods
occupy the majority of skeletonization applications all the time, which reached the peak
in the period of 2007–2012. With the rapid development of deep learning (DL) in recent
years, the number of DL-based methods is increasing. Readers can select the methods of
interest according to the performance measures and statisical comparisons in Table 5. In
the following sections, we will disclose the challenges, opportunities and future trends of
this research field based on our survey.

6.1. Challenges and Opportunities

Because blood vessels are diffused throughout the liver, the accurate analysis of lesion
and blood supply, the accurate identification of lesion and vessel location, lesion analysis
of the vessel itself, vascular navigation requirements and vascular venation are crucial
for clinical diagnosis. Due to the structural particularity and complexity of liver blood
vessels, there are many challenges and opportunities in the research of hepatic vessel
skeletonization. They are summarized as follows:

1. The continuity of vessel skeletonization results is difficult to guarantee. The current
methods mainly employ graph-based postprocessing techniques to reconnect. We could
try to explore a mathematical method combined with biological information with image
information to solve the problem of topological continuity. Biological information may be
based on Murray’s Law or other physical rules of life.

2. Currently, the skeletonization methods mainly concentrate on thinning techniques.
The results are usually influenced by the quality of vessel segmentation results, which
cannot guarantee single voxel skeleton, and then some template matching filters are added
to remove extra voxels. It will affect the precision of subsequent computations based on
skeleton. Hence, we should try to explore the new graphic thinning approach or further
study better skeletonization methods without vessel pre-segmentation.

3. Due to local variability, heterogeneity, image noise, local volume effect, weak
boundaries, difficulty of labeling small vessels and so on, it is difficult to obtain sufficient
eligible data for deep learning models. We could focus on small sample learning and
unsupervised learning.

4. The quantitative analysis of hepatic vessel is often implemented from the vessel
contour to vessel centerline. We could explore the study of vessel analysis from the central
skeleton to the vascular boundary (skeletonization priority), which may be more aligned
with the growth logic of vessels.

6.2. Future Trends

Judging from the comprehensive understanding of the cited works, there is a clear
trend of deep learning methods in ultrasonic images for hepatic vessel analysis. Owing to
the hazard of radiology, the ultrasound examination of liver and blood vessels increases. In
addition, ultrasound image processing is more difficult and challenging than the image
processing of CT or MR imaging, because the ultrasound image possesses low contrast
and its quality is influenced by the sonographer’s skill and experience. We speculate
that increasing research will be focused on ultrasonic images and multi-modal images for
hepatic vessel analysis in the future. For the shortage of vessel data, model-driven deep
learning methods and small sample learning combined with mathematical formulation of
vessel growth will be a hot topic for a long period. In summary, the field of medicine is
serious and cannot be easily fallible; thus, the interpretability of any methods, including
deep learning model, will always be worth exploring in the future by researchers.
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Abbreviations
The following abbreviations and notations are used in this manuscript:

G Graph
V Vertex of Graph
E Edge of Graph
Ei The i-th Edge of Graph
wi Weight of the i-th Edge
s Starting point(initial vertex)
d(s) Initial distance of starting point
S The set of vertices with known shortest path
Q The set of vertices not in S
∅ Empty set
u Vertex of shortest path in Q
ADJu The set of neighbor vertices of u
v The element of ADJu
3D three dimensional
CT Computed Tomography
MR Magnetic Resonance
MRI Magnetic Resonance Imaging
US ultrasound
OCT Optical Coherence Tomography
PET Positron Emission computed Tomography
DICOM Digital Imaging and Communications in Medicine
ROI Region of Interest
ACM active contour model
CNN Convolutional Neural Networks
RRT* Rapidly exploring Random Tree Star
DT Distance Transform
DL deep learning
FMM Fast Marching Method
GWDT Gray Weighted Distance Transform
ITK The Insight Toolkit
VTK The Visualization Toolkit
MITK The Medical Imaging Interaction Toolkit
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TP true positives
FP false positives
TN true negatives
FN false negatives
TPR true positive rate
FPR false positive rate
FNR false negative rate
RMSE root mean standard error
HD Hausdorff distance
SLIVER07 the Segmentation of the Liver Competition 2007
LiTS Liver Tumor Segmentation
CHAOS Combined (CT-MR) Healthy Abdominal Organ Segmentation
3D-IRCADb-01 3D Image Reconstruction for Comparison of Algorithm Database
TCGA-LIHC The Cancer Genome Atlas Liver Hepatocellular Carcinoma
MSD Medical Segmentation Decathlon
ISBI The IEEE International Symposium on Biomedical Imaging
MICCAI International Conference on Medical Image Computing and Computer

Assisted Intervention
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