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ABSTRACT

The KFC Server is a web-based implementation of
the KFC (Knowledge-based FADE and Contacts)
model—a machine learning approach for the predic-
tion of binding hot spots, or the subset of residues
that account for most of a protein interface’s bind-
ing free energy. The server facilitates the automated
analysis of a user submitted protein–protein or
protein–DNA interface and the visualization of its
hot spot predictions. For each residue in the inter-
face, the KFC Server characterizes its local struc-
tural environment, compares that environment to
the environments of experimentally determined hot
spots and predicts if the interface residue is a hot
spot. After the computational analysis, the user can
visualize the results using an interactive job viewer
able to quickly highlight predicted hot spots
and surrounding structural features within the pro-
tein structure. The KFC Server is accessible at
http://kfc.mitchell-lab.org.

INTRODUCTION

Protein–protein interactions underlie most biological pro-
cesses, hence there is a great interest in modifying protein
interfaces to elicit cellular responses. A major focus of this
effort involves binding ‘hot spots’, a small subset of resi-
dues that account for a significant part of a protein inter-
face’s free energy of binding (1–4). Many studies have
successfully disrupted protein interactions by mutating
individual or small numbers of interface residues, to a
point that databases cataloging hundreds of experimental
interface mutations exist (5,6). In addition to mutation
studies, hot spots are also receiving attention as potential
binding motifs for small molecule inhibitors of protein
interactions (7,8).

Hot spot identification requires the experimental char-
acterization of a mutation’s effect on binding affinity.
Since the stability of protein complexes is mediated by

a collection of biophysical properties (including hydro-
phobicity, van der Waals forces, shape specificity, hydro-
gen bonds, salt bridges and solvent accessibility (2,9–12)
among others), hot spot searches typically focus on muta-
tions that disrupt hydrogen bonds, van der Waals contacts
and chemical complementarity. Predictive models can
improve the efficiency of this process. Even though the
forces that mediate binding are not fully understood (12),
computational models that use physics and knowledge-
based methodologies (13–20) can successfully predict sub-
sets of hot spot residues using different aspects of these
forces.
Here, we present the KFC Server—a web-based imple-

mentation of the KFC (Knowledge-based FADE and
Contacts) model, which uses a physical and knowledge-
based approach to predict binding hot spots. Normally,
predictive web servers generate textual output, which a
user must then manually incorporate into their existing
structural model. To streamline this process, we designed
a customized interface for the KFC Server that allows
users to visualize hot spot predictions along with the
protein structure. In addition, users may upload scores
for Robetta’s alanine scanning (16), ConSurf sequence
conservation (21,22) or known experimental data, such
as that available through the Alanine Scanning Energetics
Database (5) or the Binding Interface Database (6). Indi-
vidual controls are provided to display a space-filling,
stick, or surface representation of each interface residue.
The controls are color-coded to indicate the chemical
property of each residue, and whether the residue is a
predicted hot spot. The control panel also simplifies the
execution of several standard molecular viewer features,
such as altering visual representations, changing color
schemes and rendering molecular surfaces. Additionally,
the server includes two important and unique features: the
ability to highlight local regions of well-matched or mis-
matched shape specificity between the binding partners,
and the ability to save and recall snapshots from the
user’s session. The result is an interactive tool that enables
users to intuitively understand the role of shape specifi-
city and biochemical contacts associated with binding
hot spots.
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HOT SPOT PREDICTIONS

Recently, we introduced the KFC model, a machine learn-
ing approach for predicting binding hot spots within
protein–protein interactions. Since this model is the
basis of predictions generated by the KFC Server, the
following section summarizes its construction and per-
formance. Further details are available in the original
manuscript (23).

KFC MODEL

The KFC model is comprised of two decision tree-based
classifiers: K-FADE [based on shape specificity features
calculated by the Fast Atomic Density Evaluator, or
FADE (24)] and K-CON (based on biochemical contact
features). Each decision tree, which provides a set of hier-
archical rules for hot spot classification, was trained by a
supervised learning process to recognize the local struc-
tural environments that are indicative of hot spots. In
practice, every path through the tree terminates with a
prediction/classification as to whether a residue is a hot
spot. The training set used for learning consisted of 249
experimentally characterized alanine mutations within
the interface of 16 nonredundant protein complexes.
Structures for each complex were obtained from the
Protein Data Bank (PDB) (25). For this work, residues
were classified as hot spots if their mutation to alanine
resulted in a change of binding energy (��G) greater
than 2 kcal/mol. The data mining tool C5.0 (Rulequest,
St. Ives, Australia) was used to create predictive models
from many different combinations of structurally-derived
chemical and physical features that describe the interface
residues, and those that best described the hot spot envi-
ronment were selected as features for the K-FADE and
K-CON models. K-FADE predicts hot spots using the
size of the residue and the radial distribution of shape
specificity and interface points. K-CON predicts hot
spots in terms of a residue’s intermolecular atomic con-
tacts, hydrogen bonds, interface points and chemical type.
To validate this approach, KFC’s ability to predict

known hot spots was compared to the Robetta Interface
Alanine Scanning (Robetta-Ala) service, a leading hot
spot prediction utility that predicts the ��G of a residue’s
mutation to alanine (16,26). The predictive performance
of each method was described in terms of F1 score, a
statistical measure of accuracy balancing precision (the
fraction of positive hot spot predictions that are correct)
and recall (the fraction of known hot spots that are
predicted). As described in ref. (23), we have used the
F1 score as a standard measure of predictive accuracy.
A cross-validation analysis of the training data

showed that KFC exceeded the predictive accuracy
of Robetta-Ala, and a model combining KFC and
Robetta-Ala performed significantly better than
Robetta-Ala alone (P ¼ 0:02). The combined model pre-
dicts a residue is a hot spot if either KFC or Robetta-Ala
makes a positive prediction. In addition, this result was
verified by using an independent test set of 112 mutations
and the final KFC models trained on the full training
set. Again, KFC slightly outperformed Robetta-Ala, and

the combination of KFC and Robetta-Ala achieved a
large statistical improvement in predictive accuracy over
either individual model (P ¼ 0:0071). In addition to its
high accuracy, KFC is computationally fast. Using
common computer hardware, a typical KFC analysis is
complete in less than 2min. Given its speed and accuracy,
the KFC model can support hot spot predictions for mul-
tiple users in a server environment.

WEB SERVER IMPLEMENTATION

The KFC Server automates the analysis of a user
submitted protein–protein or protein–DNA interface
and presents an interactive visualization of its hot spot
predictions. The server is organized into three main sec-
tions: the submission page, the queue and the job viewer.
On the submission page, the user provides a protein struc-
ture and defines the interface to analyze. Next, the sub-
mitted job enters the server’s queue for processing.
Afterwards, the job viewer superimposes the results from
the KFC analysis onto the protein structure. These tools
help the user to quickly analyze a protein interface and to
simply visualize the structural environment around puta-
tive hot spots.

Submitting a protein complex

Before the KFC analysis can begin, the user must provide
the structure of a protein complex and define the interface
to analyze. A protein interface is the region between two
binding partners, where each partner is comprised of one
or more molecules. Typically, users will analyze structures
found in the PDB; however, the KFC Server will accept
any PDB formatted coordinate file, such as structures gen-
erated from protein docking or other molecular modeling
techniques. As a warning, model structures containing
many clashes may vastly overestimate the number of hot
spots in the interface. Also, the KFC model can only ana-
lyze structures containing proteins and nucleic acids. Some
processing errors can be avoided if other types of molecules
are removed from the PDB file prior to submission.

The user can provide a PDB file in one of two ways:
enter a four character PDB code to download the file
directly from the PDB, or upload a structure from their
computer using the submission form. The binding part-
ners are defined by listing the PDB chain identifiers that
comprise each partner. If the chain identifiers are not
found in the file, the two binding partners are defined by
splitting the file at the first TER record. Files that do not
contain a bound complex or specifying noncontacting
partners will not yield useful results. Users may also reg-
ister to have their predictions sent to their email address,
but registration is not required to submit jobs or view
results. The KFC Server is free and open to all users.

Computing predictions

Submitted jobs are processed in a queue, ensuring that
simultaneous submissions cannot exceed the hardware
resources of the server. When the job is activated, the
server begins to calculate the structural features surround-
ing each residue in the interface. Here, an interface residue
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is defined as a residue with at least one atom within 4 Å of
the opposite binding partner. First, a FADE analysis is
performed and the radial distribution of shape specificity
markers is calculated about each residue. If an error
occurs at this point, it is likely that the submitted chain
identifiers are incorrect or the selected binding partners do
not form a valid interface.

Next, each residue’s intermolecular contacts and hydro-
gen bonds are tabulated. The assignment of hydrogen
bonds is automated by PDB2PQR (27), which produces
comparable results to the WHAT IF (28) program used
to create KFC training data. Finally, the K-FADE and
K-CON models are applied to the calculated features and
the putative hot spots are selected. The results file lists the
predicted classification of each residue by both models
(namely ‘hot spot’ or ‘interface residue’) and a score
indicating the confidence of each prediction (its worst
value is 0 and its best value is 1).

Viewing hot spot predictions

The interactive job viewer enables the user to quickly
highlight predicted hot spots and surrounding structural
features. Its customized interface is built around the
Jmol molecular viewer (http://www.jmol.org) and requires
the Sun Java Runtime Environment (version 1.4 or later,
http://www.java.com) and a Javascript enabled web
browser to function. The job viewer has two major

components: the molecular viewer and the control panel
(Figure 1). Users can directly interact with the molecular
viewer or use the control panel to affect the display. This
section describes the functionality of the control panel
components in detail.

FADE shape markers. At the top of the control panel is a
group of check boxes that affect the display of FADE-
calculated shape specificity markers. Users can highlight
different degrees of shape specificity within the interface
by clicking on the corresponding color-coded boxes.
Red and orange represents regions with well-matched
shape fit, yellow and green represent flat surfaces and
blue and violet represent mismatched surfaces. When
boxes are selected, corresponding spheres will appear in
the molecular viewer to highlight the different degrees of
shape specificity.

Display controls. The display controls are located in the
middle of the control panel and they alter the appearance
of the selected atoms. By default, all protein atoms in the
complex are selected. Different sets of atoms can be
selected using the pop-up menus located in the ‘Interface
and Hot Spot’ panel (next section). Advanced users may
also change the atom selection by using the Jmol scripting
language. To help users refine their atom selections,
the ‘Show Selection’ check box can be used to highlight
the current atom selection.

Figure 1. The major components of the job viewer are: the molecular viewer, the FADE shape marker controls, the display controls and the interface
and hot spot controls. Displayed is the KFC analysis of the Smad4/Ski protein complex (PDB: 1MR1) and the control panel configuration used to
generate the image. Molecular surfaces surround Smad4 (white) and the predicted hot spots in Ski (pink). This representation clearly shows two
distinct hot spot clusters, one which is strongly associated with favorable shape specificity (red and orange spheres). Regions of mismatched
shape specificity (blue and violet spheres) flank both clusters. In the case of Glu268, both the K-FADE and K-CON models predict this residue
is a hot spot.
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The panel also contains four pop-up menus which sim-
plify the execution of several molecular viewer commands.
The background menu controls the color of the back-
ground. The style menu manipulates the representation
of the selected backbone or sidechain atoms. Its styles
include several stick, wireframe, ribbon and space-filling
representations. The color menu applies different color
schemes to the selected atoms, including coloring by
chain, secondary structure, temperature factor and chemi-
cal properties. Lastly, the surface menu allows the user to
render a molecular or solvent accessible surface around
the selected molecules.
In addition to these functions, users can also save up to

four different views of their modeling session. Clicking one
of the ‘Save’ buttons will record the current state of the
display, and clicking the appropriate ‘View’ button will
restore the viewer to the saved state. This uncommon
feature is relatively simple to build into Jmol applets,
and we have found it tremendously useful when doing
detailed explorations of new protein interfaces.

Interface and hot spots. The bottom panel controls the
display of each interface residue and predicted hot spot,
and provides summary information about each residue.
The residues are grouped by chain, and the appearance
of each sidechain is controlled by a set of three check
boxes. The first check box highlights the residue with
a space filling representation, the second box shows the
residue in stick form and the third box adds a surface
around the residue. Also, the coloring within each table
cell encodes information about that particular residue.
The background color describes the chemical type of the
amino acid. Hydrophobic residues are gray, polar are
yellow, acidic are red and basic are blue. Second, pink
highlighting around a residue’s name indicates that it is
a putative hot spot.
Holding the mouse over the highlighted name activates

a display box containing KFC confidence scores for that
hot spot. Scores marked as ‘K-FADE’ mean that the hot
spot was predicted based on its shape specificity features,
and those marked ‘K-CON’ are predicted based on
biochemical contacts. In some cases, both methods will
predict the same sidechain, suggesting that both geometry
and physics play a strong role in its favorability. It is
important to note that KFC makes predictions for all
residues within the protein interface. As such, residues
whose sidechains are directed into the protein core may
be predicted as hot spots. Mutation of these residues can
indirectly disrupt the protein complex by destabilizing the
monomeric protein. To identify this scenario, putative hot
spots with only intermolecular backbone contacts are
flagged as ‘backbone’ in the results file, and the pop-up
box of scores will distinguish these cases using ‘KFADE-
bb’ and ‘KCON-bb’.
In addition to these individualized controls, the lower

panel contains controls that are applied to an entire chain.
The check box next to the chain name toggles whether the
chain is displayed or hidden. Additionally, the pop-up
menu beneath the chain name determines which subset
of atoms is selected for action by the ‘Display Controls’.
Note that selections made with the Jmol scripting

language will override any mouse-driven selection and dis-
play controls.

Incorporating external data

As noted in the description of the KFC model, combining
different prediction methods can lead to an overall
improvement in hot spot predictions. In order to allow
users to visualize hot spot predictions generated using
other methods, and to allow easy comparison between
methods, three types of external data can be uploaded.
Because we have used Robetta-Ala service as a basis for
comparison with KFC (23), the server supports uploading
Robetta’s predictions. Sidechains for which alanine
substitution is predicted to generate a ��G greater than
2 kcal/mol will be marked as hot spots.

Two additional types of external input further extend
the utility of our hot spot visualization. Because sequence
conservation at interface residues can indicate functional
importance, we also include the ability to upload output
from the ConSurf server (21,22). Sidechains with conser-
vation class greater than 7, as determined by ConSurf, are
listed as conserved in the output. Finally, we allow the
user to upload a file containing hot spots that are experi-
mentally determined or otherwise known. The user indi-
cates whether each included residue is a known hot spot,
and score describing its effect on binding. This score is
a variable field and can contain any preferred type of
score, such as ��G values or the percentage decrease in
binding affinity.

We have created a demonstration area on the server
with a KFC analysis for each protein complex in the train-
ing and test sets described in the original KFC manuscript
(23) augmented with Robetta-Ala predictions, ConSurf
conservation scores and experimental results for the
listed residues. These examples illustrate how quickly
users can identify convergent hot spot predictions (sug-
gesting a particularly important residue for binding) and
simultaneously view the predictions from the different
models within the context of the displayed structure.
Additionally, these results are downloadable and can be
used as a benchmarking set for the development of other
binding hot spot prediction methods. This integration of
external data results in a powerful way for a user to intui-
tively investigate how chemical, physical, energetic and
conservational properties affect the importance of residues
within a binding interface.

CONCLUSIONS

The importance of a user-friendly interface for computa-
tional tools cannot be over emphasized. In this spirit, the
KFC Server streamlines the submission process, auto-
mates the analysis and integrates its predictions into a
visual framework. Our hope is that the KFC Server is
adopted by experimenters to guide molecular recognition
experiments. Given a known structure, its most straight-
forward application is to predict residues whose mutation
can significantly disrupt an interaction. Currently, we are
also using the KFC Server to design a protein with
improved affinity for its binding partner. Using the shape
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specificity analysis to highlight shape mismatches, we are
performing substitutions in these regions to optimize
shape fit and biochemical contacts. In addition, we are
screening modeled mutations with KFC to predict if
they introduce new binding hot spots.
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