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Abstract: Numerical methods are widely used in structural analysis problems. In the cases of the most
complex and practical problems, they are often the only way to obtain solutions, as analytical methods
prove ineffective. The motivation for this paper was the desire to extend the scope of numerical
methods to cover the problems of creating constitutive models of structural materials. The aim of this
research was to develop a matrix or numerical discrete constitutive model of materials. It presents the
general assumptions of the developed method for modeling the physical properties of materials. The
matrix model is only useful with an appropriate numerical algorithm. Such an algorithm was created
and described in this paper. Based on its findings, computer software was developed to perform
numerical simulations. Presented calculation examples confirmed the effectiveness of the developed
method to create constitutive matrix models of various typical materials, such as steel, but also, e.g.,
hyper-elastic materials. It also presents the usefulness of constitutive matrix models for simulations
of simple stress states and analyses of structural elements such as reinforced concrete. All presented
examples involved the physical nonlinearity of the materials. It is proved that the developed matrix
constitutive model of materials is efficient and quite versatile. In complex analyses of structures
made of nonlinear materials, it can be used as an effective alternative to classical constitutive or
analytical models based on elementary mathematical functions.

Keywords: constitutive model; elastoplastic materials; numerical simulations

1. Introduction

Structural materials used in the construction industry feature a number of parameters
that are important primarily in terms of material strength and structure mechanics, but
also in terms of other parameters related to, for example, building physics. One of the basic
parameters is the material stiffness that is necessary to determine displacements and forces
in structural systems.

Basic construction materials (steel and concrete in particular) behave in a non-linear
way through the whole operating range. This means that their stiffness changes along with
the increase of strain and stress. In the process of designing steel structures, the amount
of stress or strain is limited to a certain acceptable level. This level is related to material
specification (e.g., a clear yield point) or it is a defined arbitrary limit. This approach
means that steel structures almost always operate in constant stiffness range and it is
justified to assume the constant material stiffness in static calculations. The situation is
completely different in case of reinforced concrete structures. Here, cracks occur very
quickly (at a relatively low level of internal forces) in the tensile zones of concrete cross-
sections. As a result, tensile stresses in the cross-sections of bent reinforced concrete
structural elements are mainly transferred with reinforcement bars, and compressive
stresses are mainly transferred with concrete. When internal forces increase, concrete or
steel becomes plasticized, i.e., it behaves in a non-linear way. Yet, most static analyses
of reinforced concrete structures are carried out in a simplified way, assuming that the
geometric characteristics of cross-sections correspond to an uncracked concrete cross-
section (without any reinforcement). This primarily applies to engineering calculations. It

Materials 2021, 14, 5837. https://doi.org/10.3390/ma14195837 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-9460-1963
https://doi.org/10.3390/ma14195837
https://doi.org/10.3390/ma14195837
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14195837
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14195837?type=check_update&version=2


Materials 2021, 14, 5837 2 of 25

leads to displacement values even several times lower compared to the values experienced
in real life. In statically indeterminable systems, significant errors also appear in the results
of internal forces.

The simulation of actual behavior of reinforced concrete requires non-linear calcu-
lations. Such analyses have been carried out for decades, but have also recently been
the subject of many research studies. For example, Dudziak [1] presented the non-linear
analysis of reinforced concrete structures for engineering applications and proposed a new
constitutive hypoelastic–brittle model of concrete. Yapar et al. [2] carried out numerical sim-
ulations of the behavior of prefabricated pre-tensioned concrete beams in specific phases
of operation, also after exceeding limit states (which resulted in damage). The calculation
took into account the non-linear, degradation, elastic–plastic concrete model and the slip
between bars and concrete. Lou et al. [3] performed numerical analyses of double-span
post-tensioned reinforced concrete beams with a non-linear course of prestressing tendons.
They took into account non-linear constitutive relations for concrete, tensioned reinforcing
steel and un-tensioned reinforcing steel. The analyses took into account the effects of con-
crete creep and concrete shrinkage, and tendon relaxation. Material non-linear properties
were taken into account in the analysis of composite elements where steel profiles interacted
with a concrete cross-section. Chiorean and Buru [4] developed a method for non-linear
analysis of beams consisting of a steel I-beam profile and a reinforced concrete slab (the
connection between elements was non-continuous and used steel shear connectors. Liang
and Fragomeni [5] in turn were engaged in the non-linear analysis of columns consisting
of concrete-filled steel pipes. Richard et al. [6] also worked with reinforced concrete beams,
but they focused on the modeling of corroded reinforcement. Their paper formulated
and used a non-linear steel/concrete interface constitutive law. Non-linear behavior of
steel and concrete was also taken into account. Non-linear analyses of constant curvature
cantilever beams loaded with follower force at the end [7] and non-linear calculations were
also performed in studies related to less typical structural components. Zhang et al. [8]
analyzed displacements of geocell mattresses that are a kind of geosynthetic reinforcements
of the ground, e.g., beneath an embankment. In this case, a geometrically non-linear beam
resting on non-linear subgrade soil was taken as the calculation model for geocell mattress.
Davids [9] in turn analyzed arch structures made of inflatable (pressurized) fabric circular
profiles. Displacements and buckling of such arches were analyzed. The material starts
to wrinkle under loads, which was modeled by adopting a non-linear moment–curvature
relation. Patel et al. [10] have performed a non-linear analysis of micro-beams. They
were structural elements of micro-electro-mechanical systems (MEMS) and nano-electro-
mechanical systems (NEMS). A non-linear analysis of the behavior of beam-to-column
connection zones in precast structures was also performed [11]. Various topics related to
concrete structures were also discussed in the research papers [12–16].

Many researchers have been involved in the modeling of hyper-elastic materials.
Rubber and rubber-filled compounds are best examples of such materials. Hyper-elastic
materials can experience large elastic strains and behave non-linearly in the entire operating
range. Therefore, correct modeling of constitutive relations is essential for the analysis of
stresses and displacements that are produced under loads. Many review and comparison
articles have been created on models of hyper-elastic constitutive materials (e.g., [17–20]).
New or improved models are continually being developed. Liu and Hoo Fatt [21] de-
veloped a hyper-viscoelastic constitutive equation to simulate steady-state response of
rubber-filled compounds subjected to cyclic loads. A number of works of a similar nature
were created (e.g., [22,23]). A six-parameter model, distinguished by its complexity, was
developed by Nguessong Nkenfack et al. [24]. Hyper-elastic models are also suitable
for modeling soft body tissues. This case was discussed by, e.g., Zanelli et al. [25] with
modeling the urethral tissue. They carried out complex analyses to determine optimal
values and the number of relevant model parameters. The issues related to the analysis of
various hyper-elastic materials were also discussed in the articles [26–30].
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The discussed studies were mainly related to two issues: non-linear analyses of
construction elements (mainly reinforced concrete) and non-linear models of hyper-elastic
constitutive materials and their utilization. In some cases, the cyclic load of the system that
usually generates a hysteretic response is taken under consideration ([6,10,11,21,30,31]).
The studies feature a common theme that is creating models of constitutive materials
or elements—using algebraic or differential mathematical relations describing the stress–
strain or moment–curvature relation. Whether models in analyses are correct was most
often verified by comparison with experiment results or other independent numerical
calculations of the same issue. The desired situation was the high compatibility of the
obtained results with the experiment, which could not always be achieved. Moving towards
the increased compatibility of the constitutive model and actual material behavior during
the experiment, Sussman and Bathe [32] proposed an alternative approach to describe
the physical properties of the material. They presented the concept of constructing a
constitutive relation in the form of a spline function, consisting of segments of a cubic
spline. This enables us to achieve a very high consistency with the results of experimental
research. The Sussman and Bathe concept was used in other authors’ studies [33,34].

This paper presents the concept of the matrix description of material properties, e.g.,
constitutive relations. This concept is similar to that of Sussman and Bathe in one point—
interpolation approach in both cases is used to ensure high consistency of constitutive
relation with the experiment. The difference is that Sussman and Bathe used the interpo-
lation of a one-variable function and the study uses the approximation of a two-variable
function. The utilization of two-variable function is the most important difference between
the presented solution and those used so far in other studies. The stress–strain (or moment–
curvature for bending elements) relation is usually the basis for determining the material
stiffness. The stiffness determined this way is a function of one independent variable, i.e.,
stress or strain. This paper proposes to treat stiffness as a function of two variables: stress
and strain. This description of stiffness allows us to include more information about the
material, e.g., partial history of previous strain or strain states.

The first part of this paper presents general assumptions for the description of stiffness
using matrices and discusses the numerical algorithm to use stiffness matrices for analyses
of the displacement and strain of a structure under load. The second part contains calcula-
tion examples and some possibilities of describing stiffness using a matrix are presented.
The summary of the paper outlines the possible development of the presented concept and
potential fields of its use.

The motivation for this paper was an interest in numerical methods and a desire
to broaden their application scope in order to create alternative constitutive models of
building materials. The main objective of this paper was to present the developed method
for modeling the physical characteristics of materials. It is a discrete, matrix-described
model. An appropriate numerical algorithm was developed to demonstrate the model
effectiveness and some application examples. It was used in the presented calculation
examples. The developed method of creating numerical constitutive models is alternative
to classical, analytical approaches. No similar approach presented in this paper has been
found in the scientific literature. Matrix modeling of constitutive features of materials has
both advantages and limitations, compared to classical approaches. It has a potential for
researchers involved in nonlinear structural analysis, e.g., made of hyper-elastic materials.

2. Materials and Methods
2.1. The Matrix Description of Material Stiffness Concept

In order to improve the commonly used approach to describe the properties of building
materials, the concept of describing the coefficient of elasticity E as a function of two
variables was developed, i.e., strain ε and stress σ. Different values of elasticity coefficients
for load and unload may occur in a given state of the body defined by values (σ, ε),
therefore the description of material stiffness requires two functions, which are indicated
as Ep and En. Ep(σ, ε) is a function of Young’s modulus at primary load cycle, En(σ, ε)
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is a function for the unload and secondary load cycle. These functions are related to
tangential modules.

Function E(σ, ε) is presented in the form of a discrete array of values that can be
conveniently used in computer calculations. This value table is called the stiffness matrix in
this paper. The graphical representation of the idea of such a matrix structure is presented
in Figure 1.
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In Figure 1, both the X axis (ε values) and Y axis (σ values) were digitized, but the
division does not have to be uniform. X-axis values are collected in the X vector:

X =
[
ε1, ε2, . . . , εj, . . . , εn

]
(1)

and Y-axis values—in the Y vector:

Y = [σ1,σ2, . . . , σi, . . . , σm] (2)

The graphical interpretation of Young’s tangential moduli for the primary load cycle
is shown with solid blue arrows pointing upwards, and for the unload and secondary load
cycles—with red dashed arrows pointing downwards. Arrow directions are tangential to
possible σ(ε) graphs. The general form of stiffness matrices is the following:

Ep(σ, ε) =



Ep
11 · · · Ep

1j · · · Ep
1n

...
. . .

...
...

Ep
i1 · · · Ep

ij · · · Ep
in

...
...

. . .
...

Ep
m1 · · · Ep

mj · · · Ep
mn


, (3)

En(σ, ε) =



En
11 · · · En

1j · · · En
1n

...
. . .

...
...

En
i1 · · · En

ij · · · En
in

...
...

. . .
...

En
m1 · · · En

mj · · · En
mn


. (4)
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Matrix values describe the following relations:

Ep
ij = tg

(
α

p
ij

)
, (5)

En
ij = tg

(
αn

ij

)
. (6)

The αp
ij and αn

ij angles are shown in Figure 2, that is a fragment of the graph presented
in Figure 1.
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Stiffness matrices created according to discussed principles are used later in this paper.

2.2. Calculation Algorithm That Utilizes Stiffness Matrices

Stiffness matrices contain tabular values of tangential moduli and are therefore suitable
for use primarily in incremental methods of solving non-linear issues. In this case, two basic
calculation problems arise. The first one is to determine the value of the Young modulus
at any point outside the nodes. The second problem is related to the determination of the
modulus value in a given calculation step (including increment).

A node should be understood as a point defined with a pair of values
(
σi, εj

)
that

occur in vectors Y and X for which the modulus value Eij is given in the stiffness matrices.
In general, it is necessary to set modulus values for any points. For a selected A point,
defined with a pair of values (σA, εA), the determination of the modulus value EA requires
to run the algorithm in two steps. The first step is to establish the value of vectors Y and
X between which the point A lies. This step is just to determine such values i and j that
σi ≤ σA ≤ σi+1 and εj ≤ εA ≤ εj+1. The second step is to determine the modulus value at
the A point. The principle is shown in Figure 3.
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Taking into account the markings shown in Figure 3 and additionally defining:

∆σi = σi+1 − σi, ∆εj = εj+1 − εj, ∆σA = σA − σi, ∆εA = εA − εj, (7)

the requested value is determined with the following relation:

EA = Eij

(
1 − ∆σA

∆σi

)(
1 − ∆εA

∆εj

)
+ Ei,j+1

(
1 − ∆σA

∆σi

)
∆εA
∆εj

+ Ei+1,j
∆σA
∆σi

(
1 − ∆εA

∆εj

)
+

Ei+1,j+1
∆σA
∆σi

∆εA
∆εj

.
(8)

As presented in Figure 3 and Formula (8), linear interpolation was used to determine
the modulus value outside the nodes.

When determining the elasticity modulus in a given calculation step, it is assumed
that the value of stress increase ∆σ is known. The determination of its corresponding
∆ε value, and thus the value of Young’s modulus in a given step, is done with successive
approximations. The idea of this process is presented in Figure 4.
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Let us assume that stiffness matrix, point A coordinates and increment value ∆σ
are given. The value of the stiffness modulus at the A point shall be determined accord-
ing to Formula (8). During the first, initial approximation, angle α0 is assumed so that
tg(α0) = EA and the position of the B0 point is calculated. Then, with a second approxima-
tion, the EB0 modulus value is determined (i.e., value at the B0 point) and the α1 calculated
angle is that tg(α1) = 0.5(EA + EB0). This enables the calculation of the position of the B1
point and with similar actions, as in case of α1, determine the α2 angle. Such calculations
are performed to achieve assumed α angle accuracy and thus the accuracy of the Young’s
modulus. The value of the modulus can be determined in the same way if the strain
increase ∆ε in one step is known.

The basic elements of a calculation algorithm to use the stiffness matrix are very simple,
and based on elementary mathematical operations. However, the algorithm simplicity
should be considered as its advantage.

2.3. Flowchart of the Calculation Algorithm

Figure 5 shows a general basic block diagram of the calculation algorithm. It is a
simplified diagram that focuses on activities relevant to the issues at hand. The activities
performed in the operation block marked with a double box are shown in Figure 6. These
refer to the issues described in Section 2.2.
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Materials 2021, 14, 5837 8 of 25

For each node of the discretized structure:
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3. Results

The first part was limited to the presentation of simulation examples of relatively
simple sample tests made of an abstract elastic–plastic material. These tests are the axial
tensile stress bar test, cyclic tensile and relief stress bar test, and the tensile stress bar test
with relief, compression and another relief stage. During the second part, the tension of
three bars connected with a rigid beam was simulated and the reinforced concrete beam
was calculated.

For the purpose of the presented simulations, a hypothetical material was adopted,
the Young’s modulus of which is described with the values of dimensionless deformations
ε collected in the X vector:

X =
[

0.00 0.04 0.08 0.12 0.16 0.20
]
. (9)

σ stress values expressed in (MPa), collected in the Y vector:

Y =
[

0.00 1.22 2.44 3.67 4.89 6.11 7.33 8.56 9.78 11.00
]

(10)
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and two stiffness matrices, expressed in (MPa):

Ep =



200 200 195 185 163 135 100 50 20 0
200 200 195 185 163 135 100 50 20 0
200 200 195 185 163 135 100 50 20 0
200 200 195 185 163 135 100 50 20 0
200 200 195 185 163 135 100 50 20 0
200 200 195 185 163 135 100 50 20 0



T

, (11)

En =



200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200



T

. (12)

3.1. Example A. Axial Bar Tension

The first analyzed issue is relatively simple. Its solution is to be used primarily to
study the course of the σ(ε) function. It is clear that in case of analyzing real issues,
laboratory tests must first be performed to identify the σ(ε) relation, and then appropriate
stiffness matrices Ep and En must be created. However, stiffness matrices themselves and
graphs based on them are not directly represented in the σ(ε) relation. Only the laboratory
sample simulation, e.g., the axial bar tension, will allow the corresponding σ(ε) graph to
be depicted.

It is assumed that a bar that is stretched has a length L = 2.0 m and a cross-section area
A = 0.01 m2. The bar material is described with matrices (11) and (12). Tension is static and
continues until a tensile force of 105kN is reached.

To solve the issue of the tensile bar simulation, the algorithm discussed in the previous
chapter was used. The algorithm was the basis for a computer program written in the Scilab
environment. The selection of the ∆σ step (see Figure 4) was carried out adaptively so that
the transition of the graph through one cell of the stiffness matrix (the field separated with
two adjacent values from the X vector and two adjacent values from the Y vector) took
place in about four steps.

The graph based on the simulation is shown in Figure 7. Since a continuous stress
increase was present during the simulation, only the Ep matrix was used in the calculations.
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Figure 7. Diagram of σ(ε) relation obtained after performing bar tension simulation.

The graph presented in Figure 7 shows the material behavior, described with X vectors
according to (9), Y vectors according to (10) and the Ep matrix given in (11).
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Based on experimental data, it is quite simple to create a suitable stiffness matrix. This
will be presented in the next example.

3.2. Example B. Stiffness Matrix Calibration with Axial Tensile Bar Test Simulation

• Case 1

The following example shows the results of stiffness matrix calibration. It was created
manually by introducing subsequent corrections in the matrix values and observing the
obtained effects. Let us assume that the tensile bar test produced the F(∆L) relation graph.
Some characteristic points are indicated in this graph and then the σ stresses corresponding
to the F forces and the ε strains corresponding to ∆L elongations are calculated for these
points. Finally, the σ(ε) graph should go through the vector points

ε̂ = [0 0.002 0.0022 0.0031 0.004 0.006 0.009 0.014], (13)

and
σ̂ = [00.580.600.6050.610.750.850.90]. (14)

Values in the ε̂ vector are dimensionless and values in the σ̂ vector are expressed in
(MPa). Additionally, the graph in the first section (between points 1 and 2) should be linear.

The vectors X, Y and the Ep matrix were produced with successive value adjustments
to finally obtain the following:

X = [0 0.0010 0.0020 0.0022 0.0031 0.0040 0.0041 0.0060 0.0090 0.0140 0.0160], (15)

Y = [0 0.29 0.58 0.60 0.605 0.61 0.615 0.75 0.80 0.85 0.90 0.95], (16)

Ep
11×12 =


290 290 290 5.6 5.6 5.6 77 70 37 15 6.3 0
290 290 290 5.6 5.6 5.6 77 70 37 15 6.3 0

...
290 290 290 5.6 5.6 5.6 77 70 37 15 6.3 0


T

. (17)

Values in the X vector are dimensionless, and values in the Y vector and the Ep matrix
are expressed in (MPa). For a specific material stiffness determined with this method,
the axial tensile test was simulated until a stress value of 0.9 MPa was reached. A computer
program created for example A was used. Figure 8 shows an achieved tensile simulation
graph for the calibrated stiffness matrix (solid line). Points defined with ε̂ and σ̂ vectors
are marked with crosses. It can be seen that the tensile simulation graph matches the base
points quite well. The shape of the resulting graph corresponds to a material with a distinct
yield strength, e.g., low-carbon steel.

Materials 2021, 14, 5837 10 of 25 
 

 

3.2. Example B. Stiffness Matrix Calibration with Axial Tensile Bar Test Simulation 
• Case 1 

The following example shows the results of stiffness matrix calibration. It was created 
manually by introducing subsequent corrections in the matrix values and observing the 
obtained effects. Let us assume that the tensile bar test produced the F(∆L)  relation 
graph. Some characteristic points are indicated in this graph and then the σ stresses cor-
responding to the F forces and the ε strains corresponding to ∆L elongations are calcu-
lated for these points. Finally, the σ(ε) graph should go through the vector points εො = ሾ0  0.002  0.0022  0.0031  0.004  0.006  0.009  0.014ሿ, (13) 

and σෝ = ሾ0  0.58  0.60  0.605  0.61  0.75  0.85  0.90ሿ. (14) 

Values in the εො vector are dimensionless and values in the σෝ vector are expressed in 
(MPa). Additionally, the graph in the first section (between points 1 and 2) should be lin-
ear. 

The vectors X, Y and the E୮ matrix were produced with successive value adjust-
ments to finally obtain the following: X =ሾ0  0.0010  0.0020  0.0022  0.0031  0.0040  0.0041  0.0060  0.0090  0.0140  0.0160ሿ, (15) 

Y = ሾ0  0.29  0.58  0.60  0.605  0.61  0.615  0.75  0.80  0.85  0.90  0.95ሿ, (16) 

Eଵଵ×ଵଶ୮ = ൦290 290 290 5.6 5.6 5.6 77 70 37 15 6.3 0290 290 290 5.6 5.6 5.6 77 70 37 15 6.3 0⋮290 290 290 5.6 5.6 5.6 77 70 37 15 6.3 0 ൪୘
. (17) 

Values in the X vector are dimensionless, and values in the Y vector and the E୮ ma-
trix are expressed in (MPa). For a specific material stiffness determined with this method, 
the axial tensile test was simulated until a stress value of 0.9 MPa was reached. A com-
puter program created for example A was used. Figure 8 shows an achieved tensile sim-
ulation graph for the calibrated stiffness matrix (solid line). Points defined with εො and σෝ 
vectors are marked with crosses. It can be seen that the tensile simulation graph matches 
the base points quite well. The shape of the resulting graph corresponds to a material with 
a distinct yield strength, e.g., low-carbon steel. 

 
Figure 8. σ(ε) relation graph achieved for the calibrated stiffness matrix in case 1. 

  

σ (MPa
) 

ε  
Figure 8. σ(ε) relation graph achieved for the calibrated stiffness matrix in case 1.



Materials 2021, 14, 5837 11 of 25

• Case 2

In the second example, the same actions were performed as before, assuming the
following set of base data:

ε̂ =[0 0.001 0.0016 0.0022 0.0030 0.0040 0.0051 0.0063 0.0074 0.0082 0.0090], (18)

σ̂ = [00.21 0.29 0.33 0.36 0.38 0.40 0.44 0.52 0.63 0.80]. (19)

These are the experimental data read from Figure 6b in the paper [23].
In this case, stiffness is described with the following vectors

X =
[

1 1.02 1.06 1.11 1.2 1.31 1.42 1.68 1.94 2.49 3.03 3.43 3.75 4.07 4.26 4.45
]
, (20)

Y =
[

0 0.1 0.15 0.24 0.33 0.44 0.51 0.69 0.77 0.96 1.24 1.44 1.71 1.97 2.2 2.42
]
, (21)

and the matrix

Ep
16×16 =


7 2 1.6 1.5 1.1 0.9 0.65 0.35 0.38 0.4 0.53 0.65 0.85 1.05 1.12 1.3
7 2 1.6 1.5 1.1 0.9 0.65 0.35 0.38 0.4 0.53 0.65 0.85 1.05 1.12 1.3

...
7 2 1.6 1.5 1.1 0.9 0.65 0.35 0.38 0.4 0.53 0.65 0.85 1.05 1.12 1.3


T

. (22)

The graph shown in Figure 9 was obtained with simulating the tensile test. A high
degree of compatibility with the base data was also achieved. The shape of the graph is
similar to the ones corresponding to hyper-elastic materials that offer a stiffness increase at
high deformations. Rubber is a good example of such material.
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Figure 9. Relation graph achieved for the calibrated stiffness matrix in case 2 (the axis designations
used in Figure 6b in Ref. [23] were used).

In both examples, material stiffness matrices were developed to reproduce hypothet-
ical laboratory tensile sample tests of different materials with high accuracy (evaluated
visually, based on graphs). It should be noted that there were different increments between
the values of X and Y vectors. As a consequence, the ∆σ increments used in the algorithm
are adjusted accordingly. This means that the value density in X and Y vectors in the zones
with more rapid changes in the elasticity modulus automatically caused a decrease in ∆σ
step and thus better algorithm accuracy.
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In both cases, the values in vectors X and Y are mostly repetitions of the base data set
in vectors ε̂ and σ̂. Such a relationship is fairly obvious, but not a requirement. Selection
of values in vectors ε̂ and σ̂ depends on the person that builds the stiffness matrix of a
given material. It must be done in such a way that it closely reproduces the tension graph
obtained in the laboratory. In zones of large changes of the inclination angle that is tangent
to the graph, the value drops in vectors ε̂ and σ̂ have to be small—this is clearly visible in
Figure 8. Incorrect selection of base values in vectors ε̂ and σ̂ will lead to the creation of
an inadequate constitutive model. A solution to the problem would also be to use small
increments in complete vectors ε̂ and σ̂, but it would lead to a significant size increase of
the stiffness matrix.

3.3. Example C. Axial Cyclic Tension and Relief Stress Bar Test

This example shows a simulation of the tension and relief stress test of the bar. The
subject of the analysis will be exactly the same bar that is made of the same material as
in example A (Section 3.1). This time, however, it was assumed that the bar would be
cyclically stretched to a certain force value and then relieved. During individual cycles,
tensile forces of 95, 100, 103 and 105 kN, respectively, were assumed to be achieved. The
obtained tension graph is shown in Figure 10.
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Figure 10. σ(ε) relation graph for the simulation of cyclic tension and relief of the bar.

In this case, only the Ep matrix was used during the first load cycle. During the relief
and another load stage to the previously achieved stress level, the values were taken from
the En matrix. When applying load above the previously achieved stress level, the Ep

matrix was reused.
The graph obtained in Figure 10 corresponds to the model behavior of such materials

as steel. Extreme upper parts of the graph from Figure 10 should match the graph pre-
sented in Figure 7. The confirmation of this rule was obtained by comparing both graphs
in Figure 11.

The graph shown in Figure 10 shows that the lines corresponding to reliefs and
consecutive repeated loads in successive cycles are parallel to one another. This is obvious,
as only the En matrix with constant coefficients is used in the simulation during these
phases. Appropriate calibration of this matrix may result in a change of the slope in graph
sections related to relief and another application of load. Another method is to change En

stiffness matrix coefficients during the calculation. Figure 12 shows an example graph of
cyclic tension and relief with such matrix modification.
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Figure 12. σ(ε) relation graph produced during the simulation of cyclic tension and relief of the bar
with changing En matrix values.

In the presented example, after the sample material exceeded certain deformation
limits (0.07 in this case), the matrix was multiplied by En, by a coefficient whose value was
a certain function of achieved deformation. Such a mechanism can be used, for example,
to build degradation models.

3.4. Example D. Sample Tension and Compression—Hysteretic Material Response

This example shows the simulation of a tensile sample test described in example A
(Section 3.1) with a force of 107 kN, followed by a relief, compression with a force of 107 kN
and final relief. In order to exclude the possibility of stability loss by the compressed
sample, this time it was assumed that the sample length will be 0.2 m.

The simulation required to extend the stiffness matrix. First, the vectors were ex-
panded: X with the relation (9) and Y with the relation (10) that add specific values
symmetrically to the 0.00 values and then change their signs to negative. In case of the Ep

matrix given with a Formula (11), symmetrization relative to the first column (containing
values of 200) was performed and an appropriate number of repeating rows was also
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added. The En matrix has been expanded to appropriate size and filled with 200 values
(see relation (12)). For the data prepared in this way, a simulation was performed that
produced the σ(ε) relation graph shown in Figure 13.
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As it can be seen in Figure 13, a hysteresis loop graph was obtained. The shape results
from the adoption of the symmetry of values in the Ep matrix. Precise loop closure at the
(0.0) point additionally indicates high accuracy of the algorithm used.

3.5. Example E. Tension and Relief of the Three Bar System

The next analyzed issue is related to the tension of the system of three connected bars
shown in Figure 14.
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Figure 14. A three bar system in tension.

The bars have the same length L and the distances between them are constant and
are indicated as a. It is assumed that the upper fastening position of each bar (marked
with numbers as i = 1, 2 and 3) are not displaced in any way. At the bottom, the bars are
attached to a beam, which was treated as a rigid body. The tensile force P is transmitted to
the system through the beam. Individual bars have different cross-section areas Ai and can
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also be made of materials that feature different properties. Tensile forces inside the bars are
indicated as Pi.

The system being solved is statically indeterminable. Three equations have been
formulated to solve the problem: two static equations and one displacement-related
equation, resulting from the assumption that the beam is a rigid body (no deformations).
The sum of forces equation of the analyzed case is as follows:

P1 + P2 + P3 = P. (23)

The equation of the sum of force moments related to any point on bar no. 2 results in
the following relation:

P1 − P3 = 0. (24)

The last relation on the assumed geometry of the system is in the form of the following:

u2 =
u1 + u3

2
or u1 − 2u2 + u3 = 0, (25)

where ui indicates the vertical displacement of the no. i bar end, that is elongation of this
bar. Introducing the relation describing the classical Hooke’s law (Pi = EiAiui/L) into the
above equations, a system of three equations with unknown ui displacements is obtained: E1A1/L E2A2/L E3A3/L

E1A1/L 0 −E3A3/L
1 −2 1

 u1
u2
u2

 =

 P
0
0

. (26)

Assuming that Ei = f(σi, εi), and thus Ei = f(ui), the above system is non-linear.
As in previous examples, the equation system was solved using the incremental

method with a previously described computational algorithm implemented in the pro-
prietary program created in the Scilab environment. The stiffness of the bar material is
described with Ep

i and En
i matrices. For rods No. 1 and 3 the stiffness matrices identical

to problem D were used, while in case of rod No. 2 the matrices from problem D were
multiplied by 0.75.

A cycle consisting of a load phase until the P force reaches 3.5 MN and a load relief
phase were assumed. The following length L = 2.0 m and bar cross-section areas are
assumed: A1 = 0.17 m2, A2 = 0.20 m2, A3 = 0.09 m2. It was assumed that the whole system
is weightless and that there were no stresses in the bars before the start of applying the load.

Calculation results are shown in Figures 15 and 16. Figure 15 shows the relations
between the Pi forces (MN) in specific bars and their elongations ui (m). The graphs are
color coded: red for bar No. 1, green for bar No. 2 and blue for bar No. 3. The combined
maximum forces achieved with individual bars reach a value of 3.5 MN. After load relief,
there are forces in the bars, the sum of which is 0. Bars No. 2 and No. 3 were extended
from their original length and bar No. 1 was shortened.

Graphs in Figure 16 show the relation between σi stresses [MPa] and εi strains. It can
be seen that the load curves for bars no. 1 no. 3 overlap (partly as more stress is achieved
in bar no. 3), while the curve for bar no. 2 is more inclined. This is also the case during the
relief stage. It is caused by different stiffness of the materials from which the bars are made.
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The presented example differs from the previous ones as its solution required solving
a system of non-linear equations. Based on the achieved results, it was concluded that:

• Obtained solutions (in each calculation step) met the equations of the solved equation system;
• σ1(ε1) and σ3(ε3) stress graphs have the same shape as the graph in Figure 7 (stiffness

matrices are the same in each case); a similar check was also performed for the σ2(ε2)
graph, and in this case, the charts were also confirmed to be consistent.

Indicated observations prove the correctness of the algorithm and the usefulness of
the stiffness matrix for solving non-linear systems that are statically indeterminable.

3.6. Example F. Bending of a Reinforced Concrete Beam

The last example is the most complex and, at the same time, features the most reference
for practical aspects. It refers to bending of a double-span reinforced concrete beam shown
in Figure 17. The beam cross section is rectangular in shape with the following dimensions
b × h = 40.0 cm × 60.0 cm. The bottom reinforcement of 3 Ø20 in positive moment zones,
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and the top reinforcement of 8 Ø20 in negative moment zones were assumed. C30/37
concrete and 34GS reinforcing steel were used, and concrete features were taken from
standard [35] Distances between reinforcement centers of gravity and beam edges are
4.0 cm. The stiffness of intermediate elastic support is k = 700 MN/m.
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Figure 17. Static diagram of the beam being analyzed.

In this case, the stiffness matrices of two considered beam cross-sections (with different
reinforcement) were built first. The algorithm for determining the stiffness of reinforced
concrete bend cross-sections was used, which was defined in the paper [36]. It uses cross-
sectional dimensions, surface area and location of main reinforcement, as well as the
physical relations for concrete and reinforcing steel as defined in Eurocode 2. Based on
achieved results, stiffness matrices were defined. Section stiffness with the reinforcement
of 3 Ø20 is described with vectors

X1 = [0 1.22 2.44 3.65 4.38 7.06 9.50 12.18 14.61 17.05 25.00]× 10−3, (27)

Y1 = [0 53.5 106.7 159.5 191.0 203.8 205.3 206.5 207.2 207.8 208.3 250.0] (28)

and the matrix

Ep
1 (11×13) =


44135 43854 43606 43186 41405 650 450 200 200 200 200 200 0
44135 43854 43606 43186 41405 650 450 200 200 200 200 200 0

...
44135 43854 43606 43186 41405 650 450 200 200 200 200 200 0


T

. (29)

The En
1 (11×13) matrix consist entirely of 44,135 values.

Section stiffness with the reinforcement of 8 Ø20 is described with vectors

X2 =[0 1.00 2.20 3.40 4.40 5.40 5.60 7.80 10.00 12.20 14.40 16.60 18.80 31.70]× 10−3, (30)

Y2 =[0 95.3 212.6 327.8 418.2 506.9 512.9 521.1 526.3 529.9 532.5 534.5 536.0 537.5 600.0] (31)

and the matrix

Ep
2 (14×15) =


98576 97360 95640 93719 92190 90424 8000 2200 1726 1449 800 · · · 800 0
98576 97360 95640 93719 92190 90424 8000 2200 1726 1449 800 · · · 800 0

...
98576 97360 95640 93719 92190 90424 8000 2200 1726 1449 800 · · · 800 0


T

. (32)

The En
2 (14×15) matrix consist entirely of 98,576 values.

Vectors X1 and X2 are curvature vectors here (κ) expressed in (m−1), Y1 and Y2 are
bending moment vectors (M) expressed in (kNm), and matrices Ep

1_, En
1 , Ep

2_ and En
2 describe

the bending stiffness of sections expressed in (kNm2). The M(κ) relation graphs generated
based on the data compiled above are presented in Figures 18 and 19.



Materials 2021, 14, 5837 18 of 25
Materials 2021, 14, 5837  18  of  25 
 

 

 

Figure 18. The Mሺκሻ  relation graph corresponding to the  Eଵ
୮
 matrix (reinforcement of 3 Ø20). 

 

Figure 19. The Mሺκሻ  relation graph corresponding to the  Eଶ
୮
 matrix (reinforcement of 8 Ø20). 

The problem was solved with the finite difference method and the incremental algo‐

rithm  incorporating  stiffness matrices  that was discussed earlier and used  in previous 

problems. The beam undergone discretization assuming a digitizing range of 0.1 m. One 

load cycle for the beam and the subsequent relief was assumed. Maximum load value of 

q = 160 kN/m was chosen so that the plasticization effect of beam sections could be clearly 

seen during the simulation. Building the load increment vector, the load phase was di‐

vided into two ranges. The first range, covering the force range from 0 to 0.95q  (i.e., up to 
the value of 144 kN/m), was divided into 15 subranges with an increment of 9.60 kN/m. 

The second range, covering the force range from 0.95 q  to  q  (i.e., from 144 to 160 kN/m), 

was divided into 15 subranges with an increment of 1.067 kN/m. The load phase (from the 

value  q = 160 kN/m to 0) was divided into 15 subranges with an increment of 10.67 kN/m. 

The displacement  (deflection) graph obtained during specific steps  (for successive 

load values in the load and relief phases) is shown in Figure 20. The x axis describes the 

coordinates of the beam sections starting from the leftmost support. 

M
 ሺ

kN
m
ሻ 

κ (m−1) 

κ (m−1) 

M
 ሺ

kN
m
ሻ 

Figure 18. The M(κ) relation graph corresponding to the Ep
1 matrix (reinforcement of 3 Ø20).
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Figure 19. The M(κ) relation graph corresponding to the Ep
2 matrix (reinforcement of 8 Ø20).

The problem was solved with the finite difference method and the incremental al-
gorithm incorporating stiffness matrices that was discussed earlier and used in previous
problems. The beam undergone discretization assuming a digitizing range of 0.1 m. One
load cycle for the beam and the subsequent relief was assumed. Maximum load value of
q = 160 kN/m was chosen so that the plasticization effect of beam sections could be clearly
seen during the simulation. Building the load increment vector, the load phase was divided
into two ranges. The first range, covering the force range from 0 to 0.95q (i.e., up to the
value of 144 kN/m), was divided into 15 subranges with an increment of 9.60 kN/m. The
second range, covering the force range from 0.95 q to q (i.e., from 144 to 160 kN/m), was
divided into 15 subranges with an increment of 1.067 kN/m. The load phase (from the
value q = 160 kN/m to 0) was divided into 15 subranges with an increment of 10.67 kN/m.

The displacement (deflection) graph obtained during specific steps (for successive
load values in the load and relief phases) is shown in Figure 20. The x axis describes the
coordinates of the beam sections starting from the leftmost support.
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Figure 20. Beam deflection w(x) graph during specific load and relief steps.

The other graphs (Figures 21–25) show only the calculation results corresponding to
maximum load (q = 160 kN/m)—solid lines, and the total beam relief—dashed lines.
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Figure 21. The w(x) [m] deflection graph—at maximum and after relief.
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Figure 22. The ϕ(x) (rad) angle of rotation graph—at maximum and after relief.
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Figure 23. The κ(x) (m−1) curvature graph—at maximum and after relief.
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Figure 25. The T(x) (kN) shearing force graph—at maximum and after relief.

From the achieved results, it can be observed that the beam did not return to its
original shape after load relief. The system is statically indeterminable and therefore
non-zero internal forces in the beam also remained.
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In the presented example, there were different values of bending moments and cur-
vatures in individual cross-sections. The most significant plastic rotation of cross sections
occurred at beam start and end (at terminal supports). The fact that plastic joints were
formed only in the most stressed sections is typical for bar structures. The plasticization of
the outermost sections is indicated by large value jumps at these locations seen in Figure 23.
In Figure 22, the presence of plastic cross sections in these sections is indicated less clearly,
but it is due to the limitations of the finite difference method used. Figure 26 shows the
M(κ) relation graph in these cross-sections overlapped with the graph from Figure 19.

Materials 2021, 14, 5837 21 of 25 
 

 

occurred at beam start and end (at terminal supports). The fact that plastic joints were 
formed only in the most stressed sections is typical for bar structures. The plasticization 
of the outermost sections is indicated by large value jumps at these locations seen in Fig-
ure 23. In Figure 22, the presence of plastic cross sections in these sections is indicated less 
clearly, but it is due to the limitations of the finite difference method used. Figure 26 shows 
the M(κ) relation graph in these cross-sections overlapped with the graph from Figure 
19. 

 
Figure 26. The M(κ) relation graph in cross-sections at beam start and end (thick dashed line) 
overlapped with the graph from Figure 19. 

High compatibility of both graphs can be seen in Figure 26. Some differences oc-
curred at the point of severe changes of graph inclination angle. These differences could 
be reduced, for example, as a result of reduced load increments. 

The analyzed beam was previously solved in study [37]. Calculations performed 
there took into account stiffness functions determined in accordance with the same algo-
rithm (study [36]), but without using the stiffness matrix description. One load cycle up 
to q = 50 kN/m was taken into account. At such load, the maximum deflection value of 
0.0031073 m was obtained in [37]. Having solved the same problem using the algorithm 
discussed in this paper, a maximum deflection value of 0.0031061 m was obtained. This 
means that the relative error of the deflection value is −0.04%. This confirms that the algo-
rithm works correctly as planned. 

4. Discussion 
The purpose of this paper was to present the developed matrix constitutive model of 

structural materials. The main assumptions of this method and the numerical algorithm 
to allow for its efficient use were presented in Section 2. 

In Section 3, the paper presented calculation examples that confirm the effectiveness 
of the developed method and show some fields of application. Example B presented two 
constructed stiffness matrices for the assumed baseline data, with the second matrix (Case 
2) referring to the data extracted from the experiment. Despite manual calibration of the 
stiffness matrix, a good compliance between the tension test simulation results and the 
baseline data was obtained. The versatility of the method is also apparent here. Stiffness 
matrices can be constructed for materials with distinct yield strength, for hyper-elastic 
materials, and material types not considered in this paper. 

Examples C and D show simulations of tension, relief, and compression of a sample 
in axial compressive stress. Obtained simulation results confirm the high versatility of the 
method as well as the ease of adaptations. In example E, a degradation model was built 
by introducing a coefficient that depends on strain history, but a similar effect could be 
obtained by modifying the stiffness matrix accordingly. In Example D, the stiffness matrix 

M (kNm
) 

κ (m−1) 

Figure 26. The M(κ) relation graph in cross-sections at beam start and end (thick dashed line)
overlapped with the graph from Figure 19.

High compatibility of both graphs can be seen in Figure 26. Some differences occurred
at the point of severe changes of graph inclination angle. These differences could be
reduced, for example, as a result of reduced load increments.

The analyzed beam was previously solved in study [37]. Calculations performed there
took into account stiffness functions determined in accordance with the same algorithm
(study [36]), but without using the stiffness matrix description. One load cycle up to
q = 50 kN/m was taken into account. At such load, the maximum deflection value of
0.0031073 m was obtained in [37]. Having solved the same problem using the algorithm
discussed in this paper, a maximum deflection value of 0.0031061 m was obtained. This
means that the relative error of the deflection value is −0.04%. This confirms that the
algorithm works correctly as planned.

4. Discussion

The purpose of this paper was to present the developed matrix constitutive model of
structural materials. The main assumptions of this method and the numerical algorithm to
allow for its efficient use were presented in Section 2.

In Section 3, the paper presented calculation examples that confirm the effectiveness
of the developed method and show some fields of application. Example B presented
two constructed stiffness matrices for the assumed baseline data, with the second matrix
(Case 2) referring to the data extracted from the experiment. Despite manual calibration of
the stiffness matrix, a good compliance between the tension test simulation results and the
baseline data was obtained. The versatility of the method is also apparent here. Stiffness
matrices can be constructed for materials with distinct yield strength, for hyper-elastic
materials, and material types not considered in this paper.

Examples C and D show simulations of tension, relief, and compression of a sample
in axial compressive stress. Obtained simulation results confirm the high versatility of the
method as well as the ease of adaptations. In example E, a degradation model was built
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by introducing a coefficient that depends on strain history, but a similar effect could be
obtained by modifying the stiffness matrix accordingly. In Example D, the stiffness matrix
was modified to easily account for compressive stresses. The simulation of the tensile
processes of the sample resulted in a graph in the form of an exactly closed hysteresis loop,
which confirms that the method is correct and accurate.

Examples E and F deal with the analysis of statically indeterminate systems. In these
cases, the calculation algorithms shown in Figures 5 and 6 were fully utilized. In Example E,
a system of three parallel connected bars that were tensioned with a force that causes plastic
deformation was analyzed. After relief, the system did not return to its original position
and non-zero strains and stresses remained in the system. Example F was related to a
double-span reinforced concrete beam. The stiffness matrices created in this case referred
to the complete reinforced concrete beam cross-sections that take into account the concrete
matrix and reinforcing bars (in earlier examples the matrices described material stiffness).
This is another confirmation of the versatility and adaptability of the developed method.
In this case, the finite difference method was used to create the mathematical model of
the task, but stiffness matrices can be used along with other numerical methods such as
the finite element method. Simulation of the beam behavior under stress causing high
plasticization of outermost sections and then during relief was carried out. After the load
relief, non-zero displacements and internal forces remained in the beam. The example
in question was previously solved for another article. Result comparison confirmed the
correct functioning of the stiffness matrix and calculation algorithm. During the simulation,
high compatibility of the obtained M(κ) function with the assumed one was obtained (see
Figure 26), which is another confirmation of the proper operation of the algorithm.

An important advantage of the developed matrix description of material properties
is the dependence of the stiffness function on two variables, stress σ and strain ε. The
difference between this approach and the classical approach is shown in Figure 27. In the
classical approach (Figure 27a), the stiffness function depends on one variable, and it can
be represented graphically as a line on a plane graph. Method presented in this paper
refers to a description of the stiffness, the graphical interpretation of which is the surface
(Figure 27b). This way it is much easier to analyze the loading and unloading processes
and take the earlier deformation history of the material into account.
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The matrix description of materials ensures many more possibilities than those pre-
sented in this paper. In particular, it is possible to introduce more variables on which the
described parameters will depend. This is explained in Figure 28.
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Figure 28a shows a situation where a material parameter depends on two variables.
This corresponds to stiffness matrices E(σ, ε) included in this paper. Figure 28b shows
the case of a parameter that depends on three variables. This third variable may be, for
example, the distortion rate

.
ε, which will enable time-dependent analysis. Figure 28c

develops the concept with adding another variable. For practical reasons, the cases shown
in Figure 28b,c can be prepared by using matrix structures with more than two dimensions.
The use of such multidimensional matrices would require appropriate modification of the
calculation algorithm discussed in this paper.

The developed method of describing material properties is alternative to classical
constitutive models of constitutive materials. It has both advantages (described above) and
limitations related to classical models. These limitations include:

• Time-consuming calibration of the stiffness matrix that requires supervision by experi-
enced and dedicated researchers,

• Application limitation to nonlinear issues (using this method in linear problems is
possible but inefficient),

• The need to adapt the incremental method parameters of given problem solution to
the distribution of characteristic points in vectors X and Y.

Areas of further planned research and activities to improve the method include,
among others, the algorithm development for automated calibration of the stiffness matrix.
This will enable a quick creation of accurate stiffness matrices based on basic data, e.g.,
laboratory test results.

Potential areas of application of the method include the analysis of structures made of
hyper-elastic materials and structures connected with the ground. The ground behaves in a
non-linear and complex way, which is difficult to describe using mathematical expressions,
so writing down its properties in the form of a stiffness matrix should give good results.
Due to the possibility of direct referencing the stiffness matrix with the results of material
laboratory tests, it is possible to apply the method when analyzing structures made of new
materials or for which no verified analytical constitutive models exist.

5. Conclusions

The concept of matrix description of material properties presented in this paper is
an original approach to the creation of nonlinear constitutive models. The distinguishing
feature of this concept is the exclusive use of numerical description (in the form of one
or more matrices) and taking into account the dependence of the stiffness parameter
on at least two variables. The developed method offers the accurate description of the
material behavior, at the cost of its workload. The computational examples presented in
the paper, incorporating the developed numerical algorithm, confirmed the effectiveness
and accuracy of the method. It is primarily developed for the description and analysis
of nonlinear materials. In particular, it is suitable for the description of materials where
effective analytical constitutive models have not been developed. The proposed approach
offers great adaptability for describing different types of materials as well as for the analysis
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of a variety of structural analysis issues. Stiffness matrices can be used in conjunction with
numerical structural analysis methods such as the finite difference method or the finite
element method.
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